首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Certain anesthetics might enhance aversive memory at doses around 0.1 minimum alveolar concentration. This issue was investigated in a rat model of learning and memory. In addition, evidence for basolateral amygdala (BLA) involvement in mediating memory enhancement was sought.

Methods: First, the memory-enhancing potential of various anesthetics was determined. Rats underwent single-trial inhibitory avoidance training (0.3 mA shock/1 s) during exposure to air, 0.11% sevoflurane, 0.10% halothane, 0.77% desflurane, or 0.12% isoflurane. Memory was assessed at 24 h. Second, the BLA contribution to sevoflurane memory enhancement was determined. Rats received bilateral excitotoxic N-methyl-d-aspartate (12.5 mg in 0.2 [mu]l per BLA) lesions of the BLA 1 week before training. Memory of lesioned and control rats was compared 24 h after training in air or sevoflurane.

Results: Sevoflurane exposure during training significantly enhanced 24-h retention performance for both nonoperated and sham-operated rats (P < 0.005 for both vs. their respective controls). Halothane, but not desflurane or isoflurane, also enhanced retention performance (P < 0.05). However, halothane-induced hyperalgesia during learning clouds interpreting enhanced retention performance solely as a memory consolidation effect. BLA lesions significantly reduced and equalized retention performance for both sevoflurane- and air-exposed animals. Lesions blocked memory enhancement without also causing a generalized inability to learn, because additional training revealed essentially normal task acquisition and 24-h memory.  相似文献   


2.
Alkire MT  Gorski LA 《Anesthesiology》2004,101(2):417-429
BACKGROUND: Doses of volatile anesthetics around 0.3 minimum alveolar concentration (MAC) inhibit learning. However, threshold amnesic doses and relative potencies between agents are not well established. The authors determined amnesic potency in rats for four common volatiles and nitrous oxide. METHODS: After institutional review board approval, adult Sprague-Dawley rats received inhibitory avoidance training during exposure to either air or various subanesthetic doses of desflurane, sevoflurane, isoflurane, halothane, or nitrous oxide (4-21 rats/dose). Animals were trained to remain in a starting "safe" compartment for 100 consecutive seconds by administering a foot shock (0.3 mA) each time they entered an adjacent "shock" compartment. Memory was assessed at 24 h. Anesthetic effects on pain thresholds were separately determined. RESULTS: Learning: Only relatively higher doses of sevoflurane, halothane, and desflurane increased the number of shocks required for task acquisition. Memory: Significantly decreased retention performance (P < 0.05) was found at relatively low inspired concentrations of 0.2% isoflurane, 0.3% sevoflurane and halothane, 0.44% desflurane, and 20% nitrous oxide. Amnesic potency was nitrous oxide >/= desflurane > sevoflurane >/= isoflurane > halothane, (rank-ordered ED50 values as %MAC). Amnesic potency correlated with oil:gas partition coefficients (r = -0.956, P < 0.007). Halothane, only at 0.08%, enhanced retention (P < 0.01). All agents were analgesic at higher doses. CONCLUSIONS: Amnesic potency differs between agents; nitrous oxide is most potent and halothane is least potent relative to MAC. The amnesic threshold ranges from 0.06 to 0.3 MAC. The correlation between potency and oil:gas partition coefficients suggests a fundamental role for hydrophobicity in mediating amnesia, similar to its association with MAC. Some agents (e.g., halothane) may enhance aversive memory retention at doses typically encountered during emergence.  相似文献   

3.
Background: Doses of volatile anesthetics around 0.3 minimum alveolar concentration (MAC) inhibit learning. However, threshold amnesic doses and relative potencies between agents are not well established. The authors determined amnesic potency in rats for four common volatiles and nitrous oxide.

Methods: After institutional review board approval, adult Sprague-Dawley rats received inhibitory avoidance training during exposure to either air or various subanesthetic doses of desflurane, sevoflurane, isoflurane, halothane, or nitrous oxide (4-21 rats/dose). Animals were trained to remain in a starting "safe" compartment for 100 consecutive seconds by administering a foot shock (0.3 mA) each time they entered an adjacent "shock" compartment. Memory was assessed at 24 h. Anesthetic effects on pain thresholds were separately determined.

Results: Learning: Only relatively higher doses of sevoflurane, halothane, and desflurane increased the number of shocks required for task acquisition. Memory: Significantly decreased retention performance (P < 0.05) was found at relatively low inspired concentrations of 0.2% isoflurane, 0.3% sevoflurane and halothane, 0.44% desflurane, and 20% nitrous oxide. Amnesic potency was nitrous oxide >= desflurane > sevoflurane >= isoflurane >> halothane, (rank-ordered ED50 values as %MAC). Amnesic potency correlated with oil:gas partition coefficients (r = -0.956, P < 0.007). Halothane, only at 0.08%, enhanced retention (P < 0.01). All agents were analgesic at higher doses.  相似文献   


4.
We evaluated the circulating and lung oxidative status during general anesthesia established with propofol, sevoflurane, or desflurane in mechanically ventilated swine. Blood samples and bronchoalveolar lavage fluid (BAL) specimens were respectively performed via an internal jugular vein catheter and a nonbronchoscopic BAL for baseline oxidative activity measurements: malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX). A 4-h general anesthesia was then performed in the three groups of 10 swine: the Propofol group received 8 mg x kg(-1) x h(-1) of IV propofol as the sole anesthetic; the Desflurane group received 1.0 minimum alveolar concentration of desflurane; and the Sevoflurane group received 1.0 minimum alveolar concentration of sevoflurane. We observed significantly larger levels of MDA in plasma and BAL during desflurane exposure than with the other anesthetics. We also observed smaller concentrations of circulating GPX and alveolar GPX. We found a significant decrease for MDA measurements in the plasma and the pulmonary lavage during propofol anesthesia. We also found larger values of GPX measurements in the serum and the pulmonary lavage. No significant changes were observed when animals were exposed to sevoflurane. No significant changes were found for circulating concentrations of SOD during exposure to all anesthetics. In this mechanically ventilated swine model, desflurane seemed to induce a local and systemic oxidative stress, whereas propofol and sevoflurane were more likely to have antioxidant properties. IMPLICATIONS: Superoxide is an unavoidable byproduct of oxygen metabolism that occurs in various inflammatory reactions. Inhalation of volatile anesthetics under mechanical ventilation induces an inflammatory response. We evaluated the bronchoalveolar and systemic oxidative stress in swine during exposure to propofol and newer volatile anesthetics. Desflurane induces more lipid peroxidation than do the other anesthetics.  相似文献   

5.
OBJECTIVE: To compare the anesthetic maintenance and early postoperative recovery and psychomotor function in patients who have been anesthestized with desflurane, sevoflurane or isoflurane during prolonged open urological surgery. PATIENTS AND METHODS: Seventy-five patients were randomly assigned to receive desflurane, sevoflurane or isoflurane with N2O 60% for anesthetic maintenance. The concentration of each drug was adjusted to maintain arterial pressure and heart rate +/- 20% of baseline. After the operation the anesthetics were discontinued and times until eye opening, spontaneous breathing, extubation and orientation were recorded. In the post-anesthesia recovery ward we applied the Newman-Trieger and Aldrete tests and recorded instances of nausea and vomiting and need for analgesia during the first 24 hours after surgery. RESULTS: The groups were similar with regard to demographic features, anesthetic maintenance, duration of anesthesia and relative doses of the anesthetics used. Recovery times in the operating room were significantly shorter (p < 0.05) after anesthesia with desflurane and sevoflurane than with isoflurane, with no significant differences between the desflurane and sevoflurane groups (duration of anesthesia 198 +/- 90, 171 +/- 67 and 191 +/- 79; eye opening 7.6 +/- 3.7, 7.8 +/- 3.0 and 11.9 +/- 4.5; time until extubation 7.8 +/- 3.0, 8.3 +/- 3.0 and 11.0 +/- 3.5 for desflurane, sevoflurane and isoflurane, respectively; all data in minutes). Recovery in the post-anesthetic recovery ward was similar for all three groups. CONCLUSIONS: Anesthetic maintenance was comparable with all three drugs. Desflurane and sevoflurane demonstrated advantages over isoflurane during recovery from anesthesia in the operating theater. No significant differences were found in psychomotor recovery, nausea and/or vomiting or requirements for postoperative analgesia.  相似文献   

6.
BACKGROUND: An extracorporeal system was used to investigate the direct coronary vasomotor effects of sevoflurane and desflurane in vivo. The role of the adenosine triphosphate-sensitive potassium channels (KATP channels) in these effects was evaluated. METHODS: Twenty-one open-chest, anesthetized (fentanyl-midazolam) dogs were studied. The left anterior descending coronary artery was perfused at controlled pressure (80 mmHg) with normal arterial blood or arterial blood equilibrated with either sevoflurane or desflurane. Series 1 (n = 16) was divided into two groups of equal size on the basis of whether sevoflurane (1.2, 2.4, and 4.8%) or desflurane (3.6, 7.2, and 14.4%) was studied. The concentrations for the anesthetics corresponded to 0.5, 1.0, and 2.0 minimum alveolar concentration (MAC), respectively. Coronary blood flow (CBF) was measured with an ultrasonic, transit-time transducer. Local coronary venous samples were obtained and used to evaluate changes in myocardial oxygen extraction (EO2). In series 2 (n = 5), changes in CBF by 1 MAC sevoflurane and desflurane were assessed before and during intracoronary infusion of the KATP channel inhibitor glibenclamide (100 microg/min). RESULTS: Intracoronary sevoflurane and desflurane caused concentration-dependent increases in CBF (and decreases in EO2) that were comparable. Glibenclamide blunted significantly the anesthetic-induced increases in CBF. CONCLUSIONS: Sevoflurane and desflurane have comparable coronary vasodilative effects in in situ canine hearts. The KATP channels play a prominent role in these effects. When compared with data obtained previously in the same model, the coronary vasodilative effects of sevoflurane and desflurane are similar to those of enflurane and halothane but considerably smaller than that of isoflurane.  相似文献   

7.
Background: Amnesia for aversive events caused by benzodiazepines or propofol depends on the basolateral amygdala (BLA). Whether the amnesia of volatile anesthesia is also mediated through the BLA is unknown. If so, a general principle of anesthetic-induced amnesia may be emerging. Here, using an inhibitory avoidance paradigm, the authors determine whether BLA lesions prevent sevoflurane-induced amnesia.

Methods: Male Sprague-Dawley rats were separated into two groups: sham-operated controls (n = 22) and rats given bilateral N-methyl-d-aspartate lesions of the BLA (n = 32). After a 1-week recovery, the rats were randomly assigned to be trained during either air or sevoflurane (0.3% inspired, 0.14 minimum alveolar concentration) exposure. Animals learned to remain in the starting safe compartment of a step-through inhibitory avoidance apparatus for 100 consecutive seconds by administering foot shock (0.3 mA) whenever they entered an adjacent shock compartment. Memory was assessed at 24 h. Longer latencies to enter the shock compartment at 24 h imply better memory.

Results: Sham-air (n = 10) animals had a robust memory, with a median retention latency of 507 s (interquartile range, 270-600 s). Sham-sevoflurane (n = 6) animals were amnesic, with a latency of 52 s (27-120 s) (P < 0.01, vs. sham-air). Both the air-exposed (n = 5) and the sevoflurane-exposed (n = 8) animals with BLA lesions showed robust memory, with latencies of 350 s (300-590 s) and 378 s (363-488 s), respectively. The latencies for both did not differ from the performance of the sham-air group and were significantly greater than the latency of the sham-sevoflurane group (both P < 0.01).  相似文献   


8.
BACKGROUND: A double-blind, randomized trial was conducted to determine the behavioural effects of chronic exposure to subanesthetic concentrations of halothane, sevoflurane and desflurane in rats. METHODS: Halothane, sevoflurane and desflurane group rats received 0.1%, 0.3%, and 0.6% concentrations in a flow rate of 3 L.min(-1) O(2) respectively. Control animals also received 3 L.min(-1) O(2) in another investigation room, which had the same properties as the study group rooms. Rats breathed inhaled agents or oxygen between 09:00-13:00 hr every day for 30 days. After 30 days of inhalation of subanesthetic doses of inhaled agents or oxygen, behavioural tests were applied. RESULTS: Tests of exploratory activity and curiosity (hole-board test), anxiety (elevated plus maze test) and learning and memory functions (multiple T maze test), demonstrated that chronic exposure to subanesthetic concentrations of all three anesthetics alters behavioural functions in rats. However, impairment of learning (P<0.05) and memory function (P<0.05) were greater in association with desflurane, in comparison to halothane and sevoflurane-treated rats. CONCLUSION: Chronic exposure to subanesthetic concentrations of halothane, sevoflurane and desflurane is associated with behavioural change in rats. Of the three drugs, desflurane was associated with the lowest learning and memory function test scores.  相似文献   

9.
We tested the prediction that the alveolar washin and washout, tissue time constants, and pulmonary recovery (volume of agent recovered during washout relative to the volume taken up during washin) of desflurane, sevoflurane, isoflurane, and halothane would be defined primarily by their respective solubilities in blood, by their solubilities in tissues, and by their metabolism. We concurrently administered approximately one-third the MAC of each of these anesthetics to five young female swine and determined (separately) their solubilities in pig blood and tissues. The blood/gas partition coefficient of desflurane (0.35 +/- 0.02) was significantly smaller (P less than 0.01) than that of sevoflurane (0.45 +/- 0.02), isoflurane (0.94 +/- 0.05), and halothane (2.54 +/- 0.21). Tissue/blood partition coefficients of desflurane and halothane were smaller than those for the other two anesthetics (P less than 0.05) for all tissue groups. As predicted from their blood solubilities, the order of washin and washout was desflurane, sevoflurane, isoflurane, and halothane (most to least rapid). As predicted from tissue solubilities, the tissue time constants for desflurane were smaller than those for sevoflurane, isoflurane, and halothane. Recovery (normalized to that of isoflurane) of the volume of anesthetic taken up was significantly greater (P less than 0.05) for desflurane (93% +/- 7% [mean +/- SD]) than for halothane (77% +/- 6%), was not different from that of isoflurane (100%), but was less than that for sevoflurane (111% +/- 17%). The lower value for halothane is consistent with its known metabolism, but the lower (than sevoflurane) value for desflurane is at variance with other presently available data for their respective biodegradations.  相似文献   

10.
Alkire MT  Nathan SV 《Anesthesiology》2005,102(4):754-760
BACKGROUND: Amnesia for aversive events caused by benzodiazepines or propofol depends on the basolateral amygdala (BLA). Whether the amnesia of volatile anesthesia is also mediated through the BLA is unknown. If so, a general principle of anesthetic-induced amnesia may be emerging. Here, using an inhibitory avoidance paradigm, the authors determine whether BLA lesions prevent sevoflurane-induced amnesia. METHODS: Male Sprague-Dawley rats were separated into two groups: sham-operated controls (n = 22) and rats given bilateral N-methyl-D-aspartate lesions of the BLA (n = 32). After a 1-week recovery, the rats were randomly assigned to be trained during either air or sevoflurane (0.3% inspired, 0.14 minimum alveolar concentration) exposure. Animals learned to remain in the starting safe compartment of a step-through inhibitory avoidance apparatus for 100 consecutive seconds by administering foot shock (0.3 mA) whenever they entered an adjacent shock compartment. Memory was assessed at 24 h. Longer latencies to enter the shock compartment at 24 h imply better memory. RESULTS: Sham-air (n = 10) animals had a robust memory, with a median retention latency of 507 s (interquartile range, 270-600 s). Sham-sevoflurane (n = 6) animals were amnesic, with a latency of 52 s (27-120 s) (P < 0.01, vs. sham-air). Both the air-exposed (n = 5) and the sevoflurane-exposed (n = 8) animals with BLA lesions showed robust memory, with latencies of 350 s (300-590 s) and 378 s (363-488 s), respectively. The latencies for both did not differ from the performance of the sham-air group and were significantly greater than the latency of the sham-sevoflurane group (both P < 0.01). CONCLUSIONS: BLA lesions block sevoflurane-induced amnesia. A role for the BLA in mediating anesthetic-induced amnesia may be a general principle of anesthetic action.  相似文献   

11.
Minimum alveolar anesthetic concentrations (MAC) values of volatile anesthetics in cardiovascular diseases remain unknown. We determined MAC values of volatile anesthetics in spontaneously breathing normal and cardiomyopathic hamsters exposed to increasing (0.1%-0.3% steps) concentrations of halothane, isoflurane, sevoflurane, or desflurane (n = 30 in each group) using the tail-clamp technique. MAC values and their 95% confidence interval were calculated using logistic regression. In normal hamsters, inspired MAC values were: halothane 1.15% (1.10%-1.20%), isoflurane 1.62% (1.54%-1.69%), sevoflurane 2.31% (2.22%-2.40%), and desflurane 7.48% (7.30%-7.67%). In cardiomyopathic hamsters, they were: halothane 0.89% (0.83%-0.95%), isoflurane 1.39% (1.30%-1.47%), sevoflurane 2.00% (1.85%-2.15%), and desflurane 6.97% (6.77%-7.17%). Thus, MAC values of halothane, isoflurane, sevoflurane, and desflurane were reduced by 23% (P < 0.05), 14% (P < 0.05), 13% (P < 0.05), and 7% (P < 0.05), respectively in cardiomyopathic hamsters. IMPLICATIONS: Minimum alveolar anesthetic concentrations of volatile anesthetics were significantly lower in cardiomyopathic hamsters than in normal hamsters.  相似文献   

12.
BACKGROUND: Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. METHODS: Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. RESULTS: Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. CONCLUSION: Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.  相似文献   

13.
E D Kharasch  E J Frink  A Artru  P Michalowski  G A Rooke  W Nogami 《Anesthesia and analgesia》2001,93(6):1511-20, table of contents
Sevoflurane degradation by carbon dioxide absorbents during low-flow anesthesia forms the haloalkene Compound A, which causes nephrotoxicity in rats. Numerous studies have shown no effects of Compound A formation on postoperative renal function after moderate-duration (3-4 h) low-flow sevoflurane; however, effects of longer exposures remain unresolved. We compared renal function after long-duration low-flow (<1 L/min) sevoflurane and isoflurane anesthesia in consenting surgical patients with normal renal function. To maximize degradant exposure, Baralyme was used, and anesthetic concentrations were maximized (no nitrous oxide and minimal opioids). Inspired and expired Compound A concentrations were quantified. Blood and urine were obtained for laboratory evaluation. Sevoflurane (n = 28) and isoflurane (n = 27) groups were similar with respect to age, sex, weight, ASA status, and anesthetic duration (9.1 +/- 3.0 and 8.2 +/- 3.0 h, mean +/- SD) and exposure (9.2 +/- 3.6 and 9.1 +/- 3.7 minimum alveolar anesthetic concentration hours). Maximum inspired Compound A was 25 +/- 9 ppm (range, 6-49 ppm), and exposure (area under the concentration-time curve) was 165 +/- 95 (35-428) ppm. h. There was no significant difference between anesthetic groups in 24- or 72-h serum creatinine, blood urea nitrogen, creatinine clearance, or 0- to 24-h or 48- to 72-h urinary protein or glucose excretion. Proteinuria and glucosuria were common in both groups. There was no correlation between Compound A exposure and any renal function measure. There was no difference between anesthetic groups in 24- or 72-h aspartate aminotransferase or alanine aminotransferase. These results show that the renal and hepatic effects of long-duration low-flow sevoflurane and isoflurane were similar. No evidence for low-flow sevoflurane nephrotoxicity was observed, even at high Compound A exposures as long as 17 h. Proteinuria and glucosuria were common and nonspecific postoperative findings. Long-duration low-flow sevoflurane seems as safe as long-duration low-flow isoflurane anesthesia. IMPLICATIONS: Postoperative renal function after long-duration low-flow sevoflurane (with Compound A exposures greater than those typically reported) and isoflurane anesthesia were not different, as assessed by serum creatinine, blood urea nitrogen, and urinary excretion of protein and glucose. This suggests that low-flow sevoflurane is as safe as low-flow isoflurane, even at long exposures.  相似文献   

14.
X Chen  M Zhao  P F White  S Li  J Tang  R H Wender  A Sloninsky  R Naruse  R Kariger  T Webb  E Norel 《Anesthesia and analgesia》2001,93(6):1489-94, table of contents
We evaluated the cognitive recovery profiles in elderly patients after general anesthesia with desflurane or sevoflurane. After IRB approval, 70 ASA physical status I-III consenting elderly patients (> or =65 yr old) undergoing total knee or hip replacement procedures were randomly assigned to one of two general anesthetic groups. Propofol and fentanyl were administered for induction of anesthesia, followed by either desflurane 2%-4% or sevoflurane 1%-1.5% with nitrous oxide 65% in oxygen. The desflurane (2.5 +/- 0.6 MAC. h) and sevoflurane (2.7 +/- 0.5 MAC. h) concentrations were adjusted to maintain comparable depths of hypnosis using the electroencephalogram bispectral index monitor. The Mini-Mental State (MMS) test was used to assess cognitive function preoperatively and postoperatively at 1, 3, 6, and 24-h intervals. The use of desflurane was associated with a more rapid emergence from anesthesia (6.3 +/- 2.4 min versus 8.0 +/- 2.8 min) and a shorter length of stay in the postanesthesia care unit (213 +/- 66 min versus 241 +/- 87 min). However, there were no significant differences between the Desflurane and the Sevoflurane groups when the MMS scores were compared preoperatively, and postoperatively at 1, 3, 6, and 24 h. Compared with the preoperative (baseline) MMS scores, the values were significantly decreased at 1 h postoperatively (27.8 +/- 1.7 versus 29.5 +/- 0.5 in the Desflurane group, and 27.4 +/- 1.7 versus 29.2 +/- 1.0 in the Sevoflurane group, respectively). However, the MMS scores returned to preoperative baseline levels within 6 h after surgery. At 1 h and 3 h after surgery, 51% and 11% (versus 57% and 9%) of patients in the Desflurane (versus Sevoflurane) Group experienced cognitive impairment. In conclusion, desflurane is associated with a faster early recovery than sevoflurane after general anesthesia in elderly patients. However, recovery of cognitive function was similar after desflurane and sevoflurane-based anesthesia. IMPLICATIONS: Desflurane was associated with a faster early recovery than sevoflurane after general anesthesia in elderly patients. However, recovery of cognitive function was similar with both volatile anesthetics.  相似文献   

15.
BACKGROUND: The effects of volatile anesthetics on left atrial function in vivo have not been described. The authors tested the hypothesis that desflurane, sevoflurane, and isoflurane alter left atrial mechanics evaluated with invasively derived pressure-volume relations. METHODS: Barbiturate-anesthetized dogs (n = 24) were instrumented for measurement of aortic, left atrial, and left ventricular pressures (micromanometers) and left atrial volume (orthogonal sonomicrometers). Left atrial contractility and chamber stiffness were assessed with end-systolic and end-reservoir pressure-volume relations, respectively, obtained from differentially loaded diagrams. Relaxation was determined from the slope of left atrial pressure decline after contraction. Stroke work and reservoir function were assessed by A and V loop areas, respectively. Left atrial-left ventricular coupling was determined by the ratio of left atrial contractility and left ventricular elastance. Dogs received 0.6, 0.9, and 1.2 minimum alveolar concentration desflurane, sevoflurane, or isoflurane in a random manner, and left atrial function was determined after 20-min equilibration at each dose. RESULTS: Desflurane, sevoflurane, and isoflurane decreased heart rate, mean arterial pressure, and maximal rate of increase of left ventricular pressure and increased left atrial end-diastolic, end-systolic, and maximum volumes. All three anesthetics caused dose-related reductions in left atrial contractility, relaxation, chamber stiffness, and stroke work. Administration of 0.6 and 0.9 minimum alveolar concentration desflurane, sevoflurane, and isoflurane increased V loop area. All three anesthetics decreased the ratio of stroke work to total left atrial pressure-volume diagram area, increased the ratio of conduit to reservoir volume, and reduced left atrial contractility-left ventricular elastance to equivalent degrees. CONCLUSIONS: The results indicate that desflurane, sevoflurane, and isoflurane depress left atrial contractility, delay relaxation, reduce chamber stiffness, preserve reservoir and conduit function, and impair left atrial-left ventricular coupling in vivo.  相似文献   

16.
Keyl C  Schneider A  Hobbhahn J  Bernardi L 《Anesthesia and analgesia》2002,95(6):1629-36, table of contents
Sevoflurane and desflurane modulate autonomic nervous activity by different mechanisms. We tested the hypothesis that these anesthetics also exhibit different effects on short-term baroreflex regulation of arterial blood pressure. Forty ASA physical status I patients, aged 20 to 42 yr, were randomly assigned to receive either 1.0 minimum alveolar anesthetic concentration of sevoflurane or desflurane for the maintenance of anesthesia. Patients were studied during awake conditions and 20 min after the anesthesia induction using sinusoidal neck suction at 0.2 Hz (baroreflex response mediated mainly by vagal activity) and 0.1 Hz (baroreflex response mediated by vagal and sympathetic activity), whereas respiratory frequency was fixed at 0.25 Hz. RR interval and arterial blood pressure responses were evaluated by power spectral analysis and complex transfer function analysis. Sevoflurane and desflurane did not disturb the linear relationship between baroreceptor stimulation and effector response, expressed as squared coherence of signals, i.e., the equivalent of the correlation coefficient of power spectra. Sevoflurane and desflurane depressed the response of the heart rate to neck suction in a similar way without affecting the time delay between baroreceptor stimulation and vagal-mediated cardiac response. The gain of the transfer function between neck suction and oscillation in arterial blood pressure at 0.1 Hz decreased with sevoflurane and desflurane to comparable values. Both anesthetics increased the delay of systolic blood pressure response to baroreceptor stimulation from approximately 3.5 to 4.3 s. Baroreflex-mediated short-term control of arterial blood pressure is similar between desflurane and sevoflurane during steady-state conditions. IMPLICATIONS: Despite exhibiting different effects on autonomic activity, sevoflurane and desflurane depress the baroreflex-mediated short-term control of heart rate and blood pressure in a similar manner.  相似文献   

17.
BACKGROUND: Bronchospasm is a potential complication in anyone undergoing general anesthesia. Because volatile anesthetics relax bronchial smooth muscle, the effects of two newer volatile anesthetics, desflurane and sevoflurane, on respiratory resistance were evaluated. The authors hypothesized that desflurane would have greater bronchodilating effects because of its ability to increase sympathetic nervous system activity. METHODS: Informed consent was obtained from patients undergoing elective surgery with general anesthesia. We recorded airway flow and pressure after thiopental induction and tracheal intubation (baseline) and for 10 min after beginning volatile anesthesia ( approximately 1 minimum alveolar concentration inspired). Respiratory system resistance was determined using the isovolume technique. RESULTS: Fifty subjects were randomized to receive sevoflurane (n = 20), desflurane (n = 20), or thiopental infusion (n = 10, 0.25 mg. kg-1. h-1). There were no differences between groups for age, height, weight, smoking history, and American Society of Anesthesiologists physical class. On average, sevoflurane reduced respiratory resistance 15% below baseline, whereas both desflurane (+5%) and thiopental (+10%) did not decrease respiratory resistance. The respiratory resistance changes did not differ in patients with and without a history of smoking during sevoflurane or thiopental. In contrast, administration of desflurane to smokers resulted in the greatest increase in respiratory resistance. CONCLUSIONS: Sevoflurane causes moderate bronchodilation that is not observed with desflurane or sodium thiopental. The bronchoconstriction produced by desflurane was primarily noted in patients who currently smoked. (Key words: Bronchospasm; respiratory resistance; volatile anesthetics.)  相似文献   

18.
BACKGROUND: Halogenated anesthetics potentiate the positive inotropic effects of alpha- and beta-adrenoceptor stimulations, but their interactions with dobutamine remain unknown. METHODS: The effects of halothane, isoflurane, sevoflurane, and desflurane (1 and 2 minimum alveolar concentration) on the inotropic responses induced by dobutamine (10(-8)-10(-4) M) were studied in rat left ventricular papillary muscles in vitro. Inotropic effects were studied under low (isotony) and high (isometry) loads. The authors also studied the lusitropic effects in isotonic (R1) and isometric (R2) conditions. Data are the mean percentage of baseline +/- SD. RESULTS: Dobutamine induced a positive inotropic effect (active isometric force: 185+/-36%, P < 0.001) and a positive lusitropic effect under low load (R1: 78+/-9%, P < 0.001), but not under high load (R2: 95+/-21%, not significant). Halothane, isoflurane, and sevoflurane did not modify the positive inotropic effect of dobutamine. Even in the presence of alpha-adrenoceptor blockade, isoflurane did not potentiate the positive inotropic effect of dobutamine. Desflurane significantly enhanced the positive inotropic effect of dobutamine (active isometric force: 239+/-35%, P < 0.001), but this potentiation was abolished by pretreatment with reserpine. In contrast to halothane, isoflurane, sevoflurane, and desflurane did not significantly modify the lusitropic effects of dobutamine. CONCLUSIONS: Halogenated anesthetics, except desflurane, did not modify the positive inotropic effects of dobutamine. Desflurane enhanced the positive inotropic effect of dobutamine, but this effect was related to the desflurane-induced release in intramyocardial catecholamine stores.  相似文献   

19.
Guinea pig liver slices were used to evaluate the biotransformation and hepatotoxic potential of sevoflurane. Precision-cut liver slices (250-300 microns thick) were incubated in sealed roller vials in buffer at 37 degrees C under 95% O2. Sevoflurane was added to produce 0.9 or 2.1 mM medium concentrations. After incubation (6-24 h), the intracellular K+ content and protein synthesis were determined, along with the defluorination of sevoflurane. Isoflurane was included for comparative purposes. Sevoflurane (2.1 mM) and isoflurane (2.3 mM) had no effect on slice K+ content, but both anesthetics depressed protein synthesis. The biotransformation of sevoflurane was maximal at 95% O2, with threefold more F- produced from sevoflurane than isoflurane. Sevoflurane appears to have a minimal effect on the guinea pig liver slices, which is consistent with in vivo studies in which minimal or no hepatotoxicity has been observed.  相似文献   

20.
Background: The effects of volatile anesthetics on left atrial function in vivo have not been described. The authors tested the hypothesis that desflurane, sevoflurane, and isoflurane alter left atrial mechanics evaluated with invasively derived pressure-volume relations.

Methods: Barbiturate-anesthetized dogs (n = 24) were instrumented for measurement of aortic, left atrial, and left ventricular pressures (micromanometers) and left atrial volume (orthogonal sonomicrometers). Left atrial contractility and chamber stiffness were assessed with end-systolic and end-reservoir pressure-volume relations, respectively, obtained from differentially loaded diagrams. Relaxation was determined from the slope of left atrial pressure decline after contraction. Stroke work and reservoir function were assessed by A and V loop areas, respectively. Left atrial-left ventricular coupling was determined by the ratio of left atrial contractility and left ventricular elastance. Dogs received 0.6, 0.9, and 1.2 minimum alveolar concentration desflurane, sevoflurane, or isoflurane in a random manner, and left atrial function was determined after 20-min equilibration at each dose.

Results: Desflurane, sevoflurane, and isoflurane decreased heart rate, mean arterial pressure, and maximal rate of increase of left ventricular pressure and increased left atrial end-diastolic, end-systolic, and maximum volumes. All three anesthetics caused dose-related reductions in left atrial contractility, relaxation, chamber stiffness, and stroke work. Administration of 0.6 and 0.9 minimum alveolar concentration desflurane, sevoflurane, and isoflurane increased V loop area. All three anesthetics decreased the ratio of stroke work to total left atrial pressure-volume diagram area, increased the ratio of conduit to reservoir volume, and reduced left atrial contractility-left ventricular elastance to equivalent degrees.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号