首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Activin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER) stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cere-bral ischemia and neurodegenerative diseases.Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention. Our results showed that Activin A significantly inhibited morphological changes in thapsigargin-induced apoptotic cells, and the expres-sion of apoptosis-associated proteins [cleaved-caspase-12, C/EBP homologous protein (CHOP) and cleaved-caspase-3] and biomarkers of autophagy (Beclin-1 and light chain 3), and downregulated the expression of thapsigargin-induced ER stress-associated proteins [inositol requiring enzyme-1 (IRE1), tumor necrosis factor receptor-associated factor 2 (TRAF2), apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and p38].The inhibition of thapsigargin-induced cell death was concentration-dependent.These findings suggest that administration of Activin A protects PC12 cells against ER stress-mediated apoptotic and autophagic cell death by inhibiting the acti-vation of the IRE1-TRAF2-ASK1-JNK/p38 cascade.  相似文献   

2.
Our previous research showed that octacosanol exerted its protective effects in 6-hydroxydopamine-induced Parkinsonian rats. The goal of this study was to investigate whether octacosanol would attenuate neurotoxicity in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated C57BL/6N mice and its potential mechanism. Behavioral tests, tyrosine hydroxylase immunohistochemistry and western blot were used to investigate the effects of octacosanol in a mouse model of Parkinson’s disease. Oral administration of octacosanol (100 mg/kg) significantly improved behavioral impairments in mice treated by MPTP and markedly ameliorated morphological appearances of tyrosine hydroxylase-positive neuronal cells in the substantia nigra. Furthermore, octacosanol blocked MPTP-induced phosphorylation of p38MAPK and JNK, but not ERK1/2. These findings implicated that the protective effects afforded by octacosanol might be mediated by blocking the phosphorylation of p38MAPK and JNK on the signal transduction in vivo. Considering its excellent tolerability, octacosanol might be considered as a candidate agent for clinical application in treating Parkinson’s disease.  相似文献   

3.
目的:观察大鼠局灶性脑缺血再灌注模型磷酸化c-Jun氨基末端激酶(p-JNK)和蛋白丝裂原活化蛋白激酶磷酸酶1(MKP-1)的变化,探索p-JNK和MKP-1在脑缺血再灌注损伤中的作用。方法:雄性Wistar大鼠,随机分成假手术组,缺血2h再灌注4h、24h、48h和72h组。应用“线栓法”实现大鼠右侧大脑中动脉闭塞,2h后拔出线栓进行再灌注,并在相应时间点处死大鼠。利用免疫组化法观察p-JNK和MKP-1蛋白表达水平的变化。结果:与假手术组相比,缺血再灌注组大鼠梗死灶周围区皮质p-JNK和MKP-1蛋白表达水平明显升高(P〈0.05),开始于再灌注后4,48h达到高峰,72h开始下降。结论:P-JNK和MKP-1相互作用,参与了脑缺血再灌注损伤的形成。  相似文献   

4.
5.
6.
7.
Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.  相似文献   

8.
Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum poly-saccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased ex-pression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuropro-tective effects.  相似文献   

9.
A rat model of diabetes mellitus was induced by a high fat diet,followed by focal brain ischemia induced using the thread method after 0.5 month.Immunohistochemistry showed that expression of receptor for advanced glycation end-products was higher in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia.Western blot assay revealed increased phosphorylated c-Jun N-terminal kinase expression,and unchanged phosphorylated extracellular signal-regulated protein kinase protein expression in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia.Additionally,phosphorylated p38 mitogen-activated protein kinase protein was not detected in any rats in the two groups.Severity of limb hemiplegia was worse in diabetic rats with brain ischemia compared with ischemia alone rats.The results suggest that increased expression of receptor for advanced glycation end-products can further activate the c-Jun N-terminal kinase pathway in mitogen-activated protein kinase,thereby worsening brain injury associated with focal brain ischemia in diabetic rats.  相似文献   

10.
c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.  相似文献   

11.
Our previous experiments have discovered that Claudin-15 was up-regulated in Schwann cells of the distal nerve stumps of rat models of sciatic nerve injury.However,how Claudin-15 affects Schwann cell function is still unknown.This study aimed to identify the effects of Claudin-15 on proliferation and apoptosis of Schwann cells cultured in vitro and explore the underlying mechanisms.Primary Schwann cells were obtained from rats.Claudin-15 in Schwann cells was knocked down using siRNA(siRNA-1 group)compared with the negative control siRNA transfection group(negative control group).Claudin-15 in Schwann cells was overexpressed using pGV230-Claudin-15 plasmid(pGV230-Claudin-15 group).The pGV230 transfection group(pGV230 group)acted as the control of the pGV230-Claudin-15 group.Cell proliferation was analyzed with EdU assay.Cell apoptosis was analyzed with flow cytometric analysis.Cell migration was analyzed with Transwell inserts.The mRNA and protein expressions were analyzed with quantitative polymerase chain reaction assay and western blot assay.The results showed that compared with the negative control group,cell proliferation rate was up-regulated;p-AKT/AKT ratio,apoptotic rate,p-c-Jun/c-Jun ratio,mRNA expression of protein kinase C alpha,Bcl-2 and Bax were down-regulated;and mRNA expression of neurotrophins basic fibroblast growth factor and neurotrophin-3 were increased in the siRNA-1 group.No significant difference was found in cell migration between the negative control and siRNA-1 groups.Compared with the pGV230 group,the cell proliferation rate was down-regulated;apoptotic rate,p-c-Jun/c-Jun ratio and c-Fos protein expression increased;mRNA expression of protein kinase C alpha and Bax decreased;and mRNA expressions of neurotrophins basic fibroblast growth factor and neurotrophin-3 were up-regulated in the pGV230-Claudin-15 group.The above results demonstrated that overexpression of Claudin-15 inhibited Schwann cell proliferation and promoted Schwann cell apoptosis in vitro.Silencing of Claudin-15 had the reverse effect and provided neuroprotective effect.This study was approved by the Experimental Animal Ethics Committee of Jilin University of China(approval No.2016-nsfc001)on March 5,2016.  相似文献   

12.
Luteolin (3’,4’,5,7-tetrahydroxyflavone) has powerful anti-apoptotic and antioxidant properties. This study aimed to investigate the effects of luteolin on hyperglycemia-mediated apoptosis in the hippocampi of rats with streptozotocin-induced diabetic encephalopathy after injection into the tail veins, and the molecular mechanisms involved. Biochemistry and terminal deoxynucleotidyl transferase mediated dUTP nick end labelling detection results showed that luteolin treatment (given twice daily for 15 days) significantly inhibited hyperglycemia-mediated apoptosis, decreased malondialdehyde levels and increased glutathione levels in the hippocampi of streptozotocin-induced diabetic rats. Western blot analysis revealed that luteolin also inhibited the expression of apoptosis-related factors and cytochrome c release from mitochondria. Luteolin also improved the learning and memory abilities of rats with diabetic encephalopathy in a water maze test. Further western blot analysis revealed that luteolin treatment facilitated neuronal cell survival through activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, an extracellular signal pathway involved in the suppression of cell apoptosis and promotion of cell survival. These experimental findings indicate that luteolin can inhibit apoptosis of hippocampal nerve cells in rats with diabetic encephalopathy, and that this effect is mediated by an indirect antioxidative effect, the inhibition of activation of apoptosis-related factors and the activation of phosphatidylinositol 3-kinase/Akt signal pathway.  相似文献   

13.
Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.  相似文献   

14.
A body of evidence suggests that ethanol can lead to damage of neuronal cells. However, the mechanism underlying the ethanol-induced damage of neuronal cells remains unclear. The role of mitogen-activated protein kinases in ethanol-induced damage was investigated in SK-N-SH neuroblastoma cells. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay, DNA fragmentation detection, and flow cytometric analysis showed that ethanol induced apoptotic cell death and cell cycle arrest, characterized by increased caspase-3 activity, DNA fragmentation, nuclear disruption, and G1 arrest of cell cycle of the SK-N-SH neuroblastoma cells. In addition, western blot analysis indicated that ethanol induced a lasting increase in c-Jun N-terminal protein kinase activity and a transient increase in p38 kinase activity of the neuroblastoma cells. c-Jun N-terminal protein kinase or p38 kinase inhibitors significantly reduced the ethanol-induced cell death. Ethanol also increased p53 phosphorylation, followed by an increase in p21 tumor suppressor protein and a decrease in phospho-Rb (retinoblastoma) protein, leading to alterations in the expressions and activity of cyclin dependent protein kinases. Our results suggest that ethanol mediates apoptosis of SK-N-SH neuroblastoma cells by activating p53-related cell cycle arrest possibly through activation of the c-Jun N-terminal protein kinase-related cell death pathway.  相似文献   

15.
The phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway is considered important for cellsurvival and has been shown to mediate various anti-apoptotic biological effects. This ...  相似文献   

16.
Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro- tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer's disease. In this study, we examined the effects of transient axonal glyco- protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep- tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.  相似文献   

17.
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury. To further iden-tify the involved mechanisms, we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase (MAPK) signaling pathway. We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method. At 30 minutes before model establishment, p38 MAPK blocker SB20358 was injected into the left lateral ventricles. At 1.5 hours after model establishment, electroacupuncture was administered at acupoints of Chize (LU5), Hegu (LI4), Zusanli (ST36), and Sanyinjiao (SP6) for 20 minutes in the affected side. Results showed that the combination of EA and SB20358 injec-tion significantly decreased neurologic impairment scores, but no significant differences were determined among different interventional groups. Hematoxylin-eosin staining also showed reduced brain tissue injuries. Compared with the SB20358 group, the cells were regularly arranged, the structures were complete, and the number of viable neurons was higher in the SB20358 + electroacupuncture group. Termi-nal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay showed a decreased apoptotic index in each group, with a significant decrease in the SB20358 + electroacupuncture group. Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group. There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group. These find-ings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway. A time period of 3 days could promote the repair of ischemic cerebral nerves.  相似文献   

18.
DA11 is the first fatty acid binding protein (FABP) for which gene expression has been shown to be upregulated following neuronal injury in the adult peripheral nervous system. To understand better the potential regulatory role(s) of this unique FABP in axonal growth and neuronal differentiation, we undertook a temporal and spatial study of DA11 gene expression in the developing rat central nervous system (CNS). Transient upregulation of DA11 mRNA and protein levels in CNS tissues were quantified by Northern blot hybridization and Western immunoblot analyses at different developmental ages. Homogenates of embryonic and neonatal cerebral cortex, cerebellum, brainstem, and hippocampal tissues contained 100-fold more DA11 mRNA and protein than corresponding adult tissues. Significant increase in DA11 mRNA was observed as early as embryonic day (E) 14 in cerebral cortex and cerebellum and E19 in brain stem and hippocampus. Postnatal levels of DA11 remained elevated through postnatal day (P) 10 in cerebral cortex, P14 in brain stem and hippocampus, and P20 in cerebellum. Localization of DA11-like immunoreactivity to specific CNS tissues, cell types, and intracellular compartments at P9 revealed a spatial pattern of neuronal expression different than that reported for other FABPs. DA11 protein was detected in the nucleus, cytoplasm, axons, and dendrites of differentiating neurons in cerebral cortex, hippocampus, cerebellum, brain stem, spinal cord, and olfactory bulb. The strong association of DA11 gene expression with development throughout the CNS suggests that this unique FABP plays an important role in axonal growth and neuronal differentiation in many different neuronal populations. J. Neurosci. Res. 48:551–562, 1997. © 1997 Wiley-Liss Inc.  相似文献   

19.
Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.  相似文献   

20.
《中国神经再生研究》2016,(12):2018-2024
Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen(BL37), Yanglingquan(GB34), and Weizhong(BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of Three Methods and Three Points, once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1β also decreased. These findings indicate that Three Methods and Three Points promoted morphological recovery and improved behavior of rats with peripheral nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号