首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In gastrointestinal smooth muscle, cGMP levels in response to relaxant agonists are regulated by activation of phosphodiesterase 5 and inhibition of soluble guanylyl cyclase (sGC) in a feedback mechanism via cGMP-dependent protein kinase. The aim of the present study was to determine whether contractile agonists modulate cGMP levels by cross-regulating sGC activity. In gastric muscle cells, acetylcholine (ACh) stimulated Src activity and induced sGC phosphorylation. Concurrent stimulation of cells with ACh attenuated sGC activity and cGMP formation in response to the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). The effect of ACh on Src activity, sGC phosphorylation, and on GSNO-stimulated sGC activity and cGMP formation were blocked by the m2 receptor antagonist (methoctramine), pertussis toxin, and by inhibitors of phosphatidylinositol 3 kinase, LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], or Src kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, in dispersed muscle cells and in cells expressing Galpha(i) minigene or Gbetagamma-scavenging peptide, whereas the m3 receptor antagonist, N-(2-chloroethyl)-4-piperidinyl diphenylacetate, or expression of the Galpha(q) minigene had no effect. ACh also attenuated sGC activity and cGMP formation in response to the NO-independent activator, YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzylindazole]. The pattern implied that phosphorylation of sGC by c-Src kinase inhibits NO-sensitive sGC activity, and the inhibition was not due to a decrease in the binding of NO but probably due to decrease in catalytic activity. We conclude that cGMP levels are cross-regulated by contractile agonists via a mechanism that involves c-Src-dependent phosphorylation of sGC, leading to inhibition of sGC activity and cGMP formation. The finding highlights a novel mechanism for attenuation of the NO/sGC/cGMP signal by G(i)-coupled contractile agonists, in addition to their inhibitory effect on adenylyl cyclase and cAMP formation.  相似文献   

2.
Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol. Membrane cholesterol depletion impairs acetylcholine (ACh)-induced relaxation due to alteration in caveolar structure. Given the nature of NO to be more soluble in a hydrophobic environment than in water, and assuming that colocalization of components in a signal transduction cascade seems to be a critical determinant of signaling efficiency by eNOS activation, we hypothesize that sGC, PKA, and PKG activation may occur at the plasma membrane caveolae. In endothelium-intact rat aortic rings, the relaxation induced by ACh, by the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), and by 8-bromo-cGMP was impaired in the presence of methyl-beta-cyclodextrin, a drug that disassembles caveolae by sequestering cholesterol from the membrane. sGC, PKG, and PKA were colocalized with caveolin-1 in aortic endothelium, and this colocalization was abolished by methyl-beta-cyclodextrin. Methyl-beta-cyclodextrin efficiently disassembled caveolae in endothelium. In summary, our results provide evidence of compartmentalization of sGC, PKG, and PKA in endothelial caveolae contributing to NO signaling cascade, giving new insights by which the endothelium mediates vascular smooth muscle relaxation.  相似文献   

3.
By measurements of NO2-/NO3- (NOx) production and Northern blot analysis, we studied the effects of a membrane-permeable cAMP derivative, 8-bromo-cAMP, on the expression of inducible nitric oxide synthase (iNOS) gene and the synthesis of NOx in cultured rat vascular smooth muscle cells (VSMCs). 8-bromo-cAMP stimulated NOx production and increased steady-state levels of iNOS mRNA in rat VSMC in a time- and dose-dependent manner. NG-monomethyl-L-arginine, a NOS inhibitor, completely blocked the 8-bromo-cAMP-induced NOx production, whose effect was partially, but significantly reversed by an excess L-arginine, but not by D-arginine. Compounds that increase intracellular cAMP levels (cholera toxin, forskolin, and 3-isobutyl-1-methylxanthine), all stimulated NOx production. Dexamethasone inhibited the stimulated NOx production, as well as the induction of iNOS mRNA by cAMP. Both actinomycin D and cycloheximide completely blocked the stimulated NOx production by cAMP. Actinomycin D abolished the cAMP-induced iNOS mRNA, whereas cycloheximide remarkably increased iNOS mRNA levels in the presence and absence of 8-bromo-cAMP (superinduction). Actinomycin D, but not dexamethasone, completely abolished the cycloheximide-induced iNOS mRNA. The half-life of cAMP-induced iNOS mRNA was approximately 2 h, whereas no decay in the cycloheximide-induced iNOS mRNA was observed during 12 h. These results demonstrate that iNOS gene is upregulated by cAMP and the superinduction of iNOS mRNA is attributable to increased mRNA stability in rat VSMC.  相似文献   

4.
Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure-related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.  相似文献   

5.
Endothelium-derived nitric oxide (NO) causes vasodilatation by activating soluble guanylate cyclase, and glomerular mesangial cells respond to NO with elevations of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). We explored whether mesangial cells can be stimulated to produce NO and whether NO modulates mesangial cell function in an autocrine or paracrine fashion. Tumor necrosis factor alpha (TNF-alpha) raised mesangial cell cGMP levels in a time- and concentration-dependent manner (threshold dose 1 ng/ml, IC50 13.8 ng/ml, maximal response 100 ng/ml). TNF-alpha-induced increases in mesangial cGMP content were evident at 8 h and maximal at 18-24 h. The TNF-alpha-induced stimulation of mesangial cell cGMP production was abrogated by actinomycin D or cycloheximide suggesting dependence on new RNA or protein synthesis. Hemoglobin and methylene blue, both known to inhibit NO action, dramatically reduced TNF-alpha-induced mesangial cell cGMP production. Superoxide dismutase, known to potentiate NO action, augmented the TNF-alpha-induced effect. Ng-monomethyl-L-arginine (L-NMMA) decreased cGMP levels in TNF-alpha-treated, but not vehicle-treated mesangial cells in a concentration-dependent manner (IC50 53 microM). L-arginine had no effect on cGMP levels in control or TNF-alpha-treated mesangial cells but reversed L-NMMA-induced inhibition. Interleukin 1 beta and lipopolysaccharide (LPS), but not interferon gamma, also increased mesangial cell cGMP content. Transforming growth factor beta 1 blunted the mesangial cell response to TNF-alpha. TNF-alpha-induced L-arginine-dependent increases in cGMP were also evident in bovine renal artery vascular smooth muscle cells, COS-1 cells, and 1502 human fibroblasts. These findings suggest that TNF-alpha induces expression in mesangial cell of an enzyme(s) involved in the formation of L-arginine-derived NO. Moreover, the data indicate that NO acts in an autocrine and paracrine fashion to activate mesangial cell soluble guanylate cyclase. Cytokine-induced formation of NO in mesangial and vascular smooth muscle cells may be implicated in the pathogenesis of septic shock.  相似文献   

6.
Recent reports have suggested that cyclic guanosine 3', 5'-monophosphate (cGMP) may mediate drug-induced vascular smooth muscle relaxation. This hypothesis was examined by correlating increases in cGMP formation with vascular smooth muscle relaxation after sensitivities to nitroglycerin and nitroprusside were altered. Both nitroglycerin and nitroprusside produced a concentration-dependent increase in rat aortic cGMP levels, which preceded relaxation. A specific inhibition of nitroglycerin relaxation was accomplished by pretreating helical rat aortic strips with 5.5 X 10(-4) M nitroglycerin for 1 hr (in vitro nitroglycerin tolerance). Both nitroglycerin and nitroprusside were inhibited by pretreating tissues with 10(-5) M methylene blue for 1 hr. Whenever nitroglycerin or nitroprusside relaxation was inhibited, there was a corresponding inability to generate cGMP. Vascular tissues derived from nitroglycerin-tolerant animals (in vivo tolerance) exhibited a profile of cGMP reduction that closely resembled that of the in vitro model. Vascular smooth muscle relaxation induced by 8-bromoguanosine-3', 5'-monophosphoric acid was not inhibited by either in vitro nitroglycerin tolerance or methylene blue, suggesting that the subsequent action of cGMP, once formed, is not impaired. The results of this study support the contention that cGMP generation may be an important step in the promotion of vascular smooth muscle relaxation by nitroglycerin and nitroprusside.  相似文献   

7.
ROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme. This sGC variant represents what we believe to be a novel cGMP signaling entity that is unresponsive to NO and prone to degradation. Whereas high-affinity ligands for the unoccupied heme pocket of sGC such as zinc-protoporphyrin IX and the novel NO-independent sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]acid (BAY 58-2667) stabilized the enzyme, only the latter activated the NO-insensitive sGC variant. Importantly, in isolated cells, in blood vessels, and in vivo, BAY 58-2667 was more effective and potentiated under pathophysiological and oxidative stress conditions. This therapeutic principle preferentially dilates diseased versus normal blood vessels and may have far-reaching implications for the currently investigated clinical use of BAY 58-2667 as a unique diagnostic tool and highly innovative vascular therapy.  相似文献   

8.
KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri).On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.  相似文献   

9.
The majority of nitric oxide (NO) effects in the respiratory system are caused by stimulation of soluble guanylyl cyclase (sGC) with subsequent increase of cyclic guanosine monophosphate (cGMP) production. The importance of this mechanism of NO action in airway hyperreactivity (AHR) pathogenesis is unknown. Therefore, the aim of our experiment was to examine the changes of airway reactivity enhanced by toluene vapor exposure in the presence or inhibition of sGC activity in guinea pigs. Animals were treated with a nonspecific sGC inhibitor, methylene blue, in a dose of 50 or 100 mg/kg body weight, administered by intraperitoneal injection 30 min before or after exposure to toluene vapors. The toluene exposure lasted 2 hr in each of 3 consecutive days under in vivo conditions. Thereafter, the tracheal and lung tissue smooth muscle response to cumulative doses of mediators (histamine or acetylcholine) was recorded under in vitro conditions. The exposure to toluene vapors significantly increased the airway reactivity to both mediators in comparison with the healthy animal group. The administration of methylene blue decreased the amplitude of airway smooth muscle contraction in toluene-induced hyperreactivity. The decreases were dependent on the inhibitor doses, on a regimen of administration (before or after toluene inhalation), the level of the respiratory system (trachea, lung), and the bronchoconstrictor mediators. Our results suggest that the interaction between NO and sGC may be important for airway reactivity changes, but other mechanisms of NO action are important in AHR pathogenesis, too.  相似文献   

10.
Cytosolic guanylyl cyclases (GTP pyrophosphate-lyase [cyclizing; EC 4.6.1.2]), primary receptors for nitric oxide (NO) generated by NO synthases, are obligate heterodimers consisting of an alpha and a beta subunit. The alpha1/beta1 form of guanylyl cyclase has the greatest activity and is considered the universal form. An isomer of the beta1 subunit, i.e., beta2, has been detected in the liver and kidney, however, its role is not known. In this study, we investigated the function of beta2. Immunoprecipitation experiments showed that the beta2 subunit forms a heterodimer with the alpha1 subunit. NO-stimulated cGMP formation in COS 7 cells cotransfected with the alpha1 and beta2 subunits was approximately 1/3 of that when alpha1 and beta1 subunits were cotransfected. The beta2 subunit inhibited NO-stimulated activity of the alpha1/beta1 form of guanylyl cyclase and NO-stimulated cGMP formation in cultured smooth muscle cells. Our results provide the first evidence that the beta2 subunit can regulate NO sensitivity of the alpha1/beta1 form of guanylyl cyclase. Northern analysis for guanylyl cyclase subunits was performed on RNA from kidneys of Dahl salt-sensitive rats, which have been shown to have decreased renal sensitivity to NO. Compared to the Dahl salt-resistant rat, message for beta2 was increased, beta1 was decreased, and alpha1 was unchanged. These results suggest a molecular basis for decreased renal guanylyl cyclase activity, i.e. , an increase in the alpha1/beta2 heterodimer, and decrease in the alpha1/beta1 heterodimer.  相似文献   

11.
Both nitric oxide (NO) and carbon monoxide (CO) are vessel wall-derived messenger molecules that cause platelet inhibition and vasodilation by activating guanylyl cyclase in target cells. Since vascular smooth muscle cells (SMCs) are exposed to shear and tensile stresses, this study examined the effects of these hemodynamic forces on the enzymes that generate NO and CO in SMCs. Monolayers of cultured rat aortic SMCs were subjected to shear stress using a modified cone and plate viscometer, or cyclic elongational stretch using a compliant silastic culture membrane. Shear stress stimulated time-dependent increases in mRNA and protein for inducible heme oxygenase-1 (HO-1), the enzyme which forms CO as a byproduct of heme degradation. The threshold level of shear necessary to induce HO-1 expression was between 5 and 10 dynes/cm2. In contrast, shear stress did not stimulate inducible NO synthase (iNOS) expression. Cyclic stretch also induced the expression of HO-1 but not of iNOS mRNA. Exposure of vascular SMCs to shear stress stimulated the production and release of CO as demonstrated by the CO-dependent increase in intracellular cGMP levels in coincubated platelets. In addition, ADP-stimulated aggregation was inhibited in platelets exposed to sheared SMCs but not in platelets exposed to untreated control SMCs. Treatment of sheared SMCs with the HO-1 inhibitor, tin protoporphyrin-IX, blocked the antiaggregatory effect of the cells, whereas the iNOS inhibitor, methyl--arginine, had no effect. These results indicate that hemodynamic forces induce HO-1 gene expression and CO production in vascular SMCs, and that SMC-derived CO inhibits platelet aggregation. Thus, CO is a novel endogenous vessel wall-derived messenger molecule that may be selectively induced by hemodynamic forces to inhibit platelet reactivity and preserve blood fluidity at sites of vascular injury.  相似文献   

12.
The aim of this study was to investigate the mechanisms of relaxation to the nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) stimulators 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) in the rat mesenteric artery. In endothelium-intact rings, BAY 41-2272 (0.0001-1 microM) and YC-1 (0.001-30 microM) caused concentration-dependent relaxations (pEC(50) values of 8.21 +/- 0.05 and 6.75 +/- 0.06, respectively), which were shifted to the right by 6-fold in denuded rings. The sGC inhibitor H-[1,2,4]oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ) (10 microM) partially attenuated the maximal responses to BAY 41-2272 and YC-1 and displaced their curves to the right by 9- to 10-fold in intact and 3-fold in denuded vessels. The NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (100 microM) reduced BAY 41-2272 and YC-1 relaxations, whereas the phosphodiesterase type 5 inhibitor sildenafil (0.1 microM) potentiated these responses. The phosphatase inhibitor calyculin A (50 nM) reduced the relaxant responses, and high concentrations of BAY 41-2272 (1 micorM) and YC-1 (10 microM) inhibited Ca(2+)-induced contractions in K(+)-depolarized rings. BAY 41-2272 (0.1 microM) and YC-1 (1 microM) markedly elevated cGMP levels in an ODQ-sensitive manner. Coincubation of BAY 41-2272 or YC-1 with a NO donor resulted in a synergistic inhibition of phenylephrine-induced contractions paralleled by marked increases in cGMP levels. In conclusion, BAY 41-2272 and YC-1 relax the mesenteric artery through cGMP-dependent and -independent mechanisms, including blockade of Ca(2+) influx. The synergistic responses probably reflect the direct effects of NO and NO-independent sGC stimulators on the enzyme, thus representing a potential therapeutic effect by permitting reductions of nitrovasodilator dose.  相似文献   

13.
Phosphodiesterase (PDE) III is an enzyme in vascular smooth muscle that metabolizes cyclic adenosine monophosphate (cAMP). Milrinone inhibits PDE III, increasing the availability of cAMP. Cyclic guanosine monophosphate (cGMP), which is regulated by nitric oxide (NO), also inhibits PDE III. The endothelial NO component of prostacyclin (PGI(2))-mediated vasodilation is reduced in aging. This study investigated if PGI(2)-mediated vasodilation during concomitant inhibition of endothelial NO and smooth muscle PDE III is affected by healthy aging. PDE III was inhibited with milrinone in 10 older subjects and 10 young matched controls while simultaneously infusing NG-monomethyl-L-arginine acetate ( L-NMMA) to remove the confounding inhibitory effects of cGMP on PDE III. Incremental doses of PGI(2) and sodium nitroprusside (SNP) were administered to the brachial artery during separate trials. L-NMMA decreased baseline blood flow similarly, and the addition of milrinone increased baseline blood flow similarly in both groups. The forearm blood flow responses to PGI(2) were similar between groups (younger: 7.62 ± 0.72; older: 6.88 ± 0.81 mL?dL(-1) FAV?min(-1) at the highest dose of PGI(2)). SNP responses were also similar. This study suggests that the vasodilator pathway associated with PDE III function, the bioavailability of cAMP, and the interaction with cGMP may be preserved in healthy aging.  相似文献   

14.
Nitric oxide (NO) donors are believed to exert their vasodilatory action through the activation of soluble guanylate cyclase (sGC), the heme site of which can be specifically inhibited by 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). We examined the vascular relaxation of the rat aorta mediated by eight different NO donors in the presence of ODQ (0.1, 1, or 10 microM), and demonstrated that these NO donors displayed different sensitivities toward ODQ inhibition (ANOVA, P <.05). Among the NO donors studied, S-nitrosothiols such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione exhibited partial resistance toward ODQ inhibition at 0.1 microM ODQ, whereas nitroglycerin (NTG) showed nearly complete inhibition at this concentration of ODQ. Three NO donors representing increasing sensitivity toward ODQ inhibition, SNAP < sodium nitroprusside (SNP) < NTG, were chosen for additional mechanistic studies. ODQ (1 microM) inhibition of vascular relaxation by SNAP and SNP, but not that by NTG, was partially reversed by a sulfhydryl donor, N-acetylpenicillamine (100 microM), and by a phosphodiesterase inhibitor, zaprinast (10 microM), specific for cGMP. Our results strongly indicate that the vascular relaxation mechanism(s) of NO donors is not identical for each. In the rat aorta, NTG appeared to exhibit its vasodilatory effect exclusively through activation of the heme site of sGC. On the other hand, in the intact vascular tissue, SNAP and SNP could bring about vasodilation through a secondary pathway. These results are consistent with the view that SNAP and SNP, but not NTG, can induce vascular relaxation additionally through the activation of the sulfhydryl site of sGC.  相似文献   

15.
Inactivation of endothelial derived relaxing factor by oxidized lipoproteins.   总被引:22,自引:7,他引:22  
Endothelial cell derived relaxing factor (EDRF) mediated relaxation of blood vessels is impaired in vessels exposed to lipoproteins in vitro and in arteries of hyperlipidemic humans and animals. To investigate the mechanism by which lipoproteins impair the effects of EDRF, which is likely nitric oxide (NO) or a related molecule, we have bioassayed EDRF/NO activity by measuring its ability to increase cGMP accumulation in rat fetal lung cultured fibroblasts (RFL-6 cells). Low density lipoprotein modified by oxidation (ox-LDL) induced a concentration-dependent inhibition of EDRF activity that had been released from bovine aortic endothelial cells (BAEC) stimulated with bradykinin or the calcium ionophore A23187. In addition, lipoproteins directly impaired authentic NO-induced stimulation of cGMP accumulation in the detector cells; stimulation by sodium nitroprusside was unaffected. Ox-LDL or oxidized HDL3 were highly potent in blocking NO-stimulated cGMP accumulation with EC50's of approximately 1 microgram/ml. Lipid extracted from ox-LDL blocked NO-stimulated cGMP accumulation to about the same extent as intact ox-LDL, while the protein component of ox-LDL did not inhibit the cGMP response. These results suggest that the lipid component of oxidized lipoproteins inactivate EDRF after its release from endothelial cells.  相似文献   

16.
In liver injury, perisinusoidal cells known as lipocytes (Ito cells) undergo "activation," acquiring smooth muscle-like features and a contractile phenotype. To assess whether contraction of these cells is regulated by nitric oxide (NO), we examined the production of NO by lipocytes and the effect of NO on lipocyte contractility. Cultured lipocytes were exposed to cytokines and/or LPS. Single agents had little or no effect on the level of inducible NO synthase (iNOS) mRNA. However, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), or LPS in combination with interferon-gamma (IFN-gamma) stimulated iNOS mRNA, which was present within 4 h after exposure. iNOS mRNA levels were paralleled by changes in nitrite (a metabolic product of NO). Intraperitoneal administration of IFN-gamma, TNF-alpha, and LPS led to rapid induction of iNOS mRNA in lipocytes, confirming in vivo the culture findings. Ligation of the common hepatic bile duct, which induces periportal-based liver injury, stimulated iNOS mRNA in lipocytes. Transforming growth factor-beta 1 decreased IFN-gamma/TNF-alpha--stimulated iNOS mRNA and nitrite. Finally, the effect of NO on lipocyte contractility was examined. In cells incubated with IFN-gamma and TNF-alpha, the contractile response to either serum or endothelin-1 was blocked. Contraction was restored entirely by an inhibitor of NO synthase, NG-monomethylarginine. Furthermore, 8-bromoguanosine 3':5'-cyclic monophosphate and sodium nitroprusside inhibited lipocyte contractility, consistent with the effect of NO induced by cytokines. We conclude that NO is a potent modulator of lipocyte contractility and may regulate this function by autocrine (or intracrine) mechanisms. Moreover, NO may play an important role in liver injury, countering the effect of contractile agonists on lipocytes.  相似文献   

17.
18.
Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme carrying a heme prosthetic group that functions as a nitric oxide (NO) sensor. sGC is present in most cells types, including the vascular endothelium, where its biological functions remain largely unexplored. Herein, we have investigated the role of sGC in angiogenesis and angiogenesis-related properties of endothelial cells (EC). Initially, we determined that sGC was present and enzymatically active in the chicken chorioallantoic membrane (CAM) during the days of maximal angiogenesis. In the CAM, inhibition of endogenous sGC inhibited neovascularization, whereas activation promoted neovessel formation. Using zebrafish as a model for vascular development, we did not detect any effect on vasculogenesis upon sGC blockade, but we did observe an abnormal angiogenic response involving the cranial and intersegmental vessels, as well as the posterior cardinal vein. In vitro, pharmacological activation of sGC or adenovirus-mediated sGC gene transfer promoted EC proliferation and migration, whereas sGC inhibition blocked tube-like network formation. In addition, sGC inhibition blocked the migratory response to vascular EC growth factor. Cells infected with sGC-expressing adenoviruses exhibited increased extracellular signal-regulated kinase 1/2 and p38 MAPK activation that was sensitive to sGC inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, suggesting that these mitogen-activated protein kinases are downstream effectors of sGC in EC. A functional role for p38 in cGMP-stimulated migration was demonstrated using SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole]; pharmacological inhibition of p38 attenuated BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine] and sGC overexpression-induced EC mobilization. We conclude that sGC activation promotes the expression of angiogenesis-related properties by EC and that sGC might represent a novel target to modulate neovessel formation.  相似文献   

19.
20.
Summary. Background: Platelet‐derived nitric oxide (NO) has been shown to play conflicting roles in platelet function, although it is accepted that NO mediates its actions through soluble guanylyl cyclase (sGC). This confusion concerning the roles of platelet NO may have arisen because of an uncharacterized mechanism for activation of sGC. Objectives: To examine the ability of the novel platelet agonist globular adiponectin (gAd) to stimulate the NO‐independent cGMP–protein kinase G (PKG) signaling cascade. Methods: We used three independent markers of NO signaling, [3H]l ‐citrulline production, cGMP accrual, and immunoblotting of vasodilator‐stimulated phosphoprotein (VASP), to examine the NO signaling cascade in response to gAd. Results: gAd increased platelet cGMP formation, resulting in a dose‐ and time‐dependent increase in phospho‐VASP157/239. Phosphorylation of VASP in response to gAd was mediated by both protein kinase A and PKG. Importantly, cGMP formation occurred in the absence of NO synthase (NOS) activation and in the presence of NOS inhibitors. Indeed, inhibition of the NOS signaling cascade had no influence on gAd‐mediated platelet aggregation. Exploration of the mechanism demonstrated that NO‐independent cGMP formation, phosphorylation of VASP and association of sGCα1 with heat shock protein‐90 induced by gAd were blocked under conditions that inhibited Src kinases, implying a tyrosine kinase‐dependent mechanism. Indeed, sGCα1 was reversibly tyrosine phosphorylated in response to gAd, collagen, and collagen‐related peptide, an effect that required Src kinases and downstream Ca2+ mobilization. Conclusions: These data demonstrate activation of the platelet cGMP signaling cascade by a novel tyrosine kinase‐dependent mechanism in the absence of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号