首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND: Local failure is the one of the most frequent cause of tumor related death in locally advanced non-small cell lung cancer (LAD-NSCLC). Dose escalation has the promise of increased loco-regional tumor control but is limited by the tolerances of critical organs. PATIENTS AND METHODS: To evaluate the potential of IMRT in comparison to conventional three-dimensional conformal planning (3DCRT) dose constraints were defined: Maximum dose (D(max)) to spinal cord < 48 Gy, mean lung dose 70 Gy in not more than 5 cm of the total length. For ten patients two plans were compared: (1) 3DCRT with 5 weekly fractions (SD) of 2 Gy to a total dose (TD) of 50 Gy to the planning target volume of second order (PTV2). If the tolerance of the critical organs was not exceeded, patients get a boost plan with a higher TD to the PTV1. (2) IMRT: concomitant boost with 5 weekly SD of 2 Gy (PTV1) and 1.5 Gy to a partial (p)PTV (pPTV=PTV2 profile of a line PTV1) to a TD of 51 Gy to the pPTV and 68 Gy to the PTV1. If possible, patients get a boost plan to the PTV1 with 5 weekly SD of 2 Gy to the highest possibly TD. RESULTS: Using 3DCRT, 3/10 patients could not be treated with TD > 50 Gy, but 9/10 patients get higher TD by IMRT. TD to the PTV1 could be escalated by 16% on average. The use of non-coplanar fields in IMRT lead to a reduction of the irradiated lung volume. There is a strong correlation between physical and biological mean lung doses. CONCLUSION: IMRT gives the possibility of further dose escalation without an increasing mean lung dose especially in patients with large tumors.  相似文献   

3.
IMRT to Escalate the Dose to the Prostate while Treating the Pelvic Nodes   总被引:1,自引:0,他引:1  
Background and Purpose: To assess and quantify the benefit of introducing intensity–modulated radiotherapy (IMRT) over conventional approaches to cover the pelvic nodes while escalating the dose to the prostate gland.Material and Methods: The pelvic lymphatics were planned to receive 50 Gy at 2 Gy per fraction by four–field box (4FB) technique and standard field blocks drawn on digitally reconstructed radiographs (DRR), 4FB with field blocks according to the position of pelvic nodes as contoured on serial planning CT slices, or IMRT. The lateral fields included three different variations of field blocks to assess the role of various degrees of rectal shielding. The boost consisted in 26 Gy in 13 fractions delivered via six–field three–dimensional conformal radiotherapy (3DCRT) or IMRT. By the combination of a pelvic treatment and boost, several plans were obtained for each patient, all normalized to be isoeffective with regard to prostate–planning target volume (PTV–P) coverage. Plans were compared with respect to dose–volume histogram (DVH) of pelvic nodes/seminal vesicles–PTV (PTV–PN/SV), rectum, bladder and intestinal cavity. Reported are the results obtained in eight patients.Results: Pelvic IMRT with a conformal boost provided superior sparing of both bladder and rectum over any of the 4FB plans with the same boost. For the rectum the advantage was around 10% at V70 and even larger for lower doses. Coverage of the pelvic nodes was adequate with initial IMRT with about 98% of the volume receiving 100% of the prescribed dose. An IMRT boost provided a gain in rectal sparing as compared to a conformal boost. However, the benefit was always greater with pelvic IMRT followed by a conformal boost as compared to 4FB with IMRT boost. Finally, the effect of utilizing an IMRT boost with initial pelvic IMRT was greater for the bladder than for the rectum (at V70, about 9% and 3% for the bladder and rectum, respectively).Conclusion: IMRT to pelvic nodes with a conformal boost allows dose escalation to the prostate while respecting current dose objectives in the majority of patients and it is dosimetrically superior to 4FB. An IMRT boost should be considered for patients who fail to meet bladder dose objectives.  相似文献   

4.
The purpose of this study was to compare 2 adaptive radiotherapy strategies with helical tomotherapy. A patient having mesothelioma with mediastinal nodes was treated using helical tomotherapy with pretreatment megavoltage CT (MVCT) imaging. Gross tumor volumes (GTVs) were outlined on every MVCT study. Two alternatives for adapting the treatment were investigated: (1) keeping the prescribed dose to the targets while reducing the dose to the OARs and (2) escalating the target dose while maintaining the original level of healthy tissue sparing. Intensity modulated radiotherapy (step-and-shoot IMRT) and 3D conformal radiotherapy (3DCRT) plans for the patient were generated and compared. The primary lesion and nodal mass regressed by 16.2% and 32.5%, respectively. Adapted GTVs and reduced planning target volume (PTV) margins of 4 mm after 22 fractions decrease the planned mean lung dose by 19.4%. For dose escalation, the planned prescribed doses may be increased from 50.0 to 58.7 Gy in PTV1 and from 60.0 to 70.5 Gy in PTV2. The step-and-shoot IMRT plan was better in sparing healthy tissue but did not provide target coverage as well as the helical tomotherapy plan. The 3DCRT plan resulted in a prohibitively high planned dose to the spinal cord. MVCT studies provide information both for setup correction and plan adaptation. Improved healthy tissue sparing and/or dose escalation can be achieved by adaptive planning.  相似文献   

5.
When treating prostate patients having a metallic prosthesis with radiation, a 3D conformal radiotherapy (3DCRT) treatment plan is commonly created using only those fields that avoid the prosthesis in the beam’s-eye view (BEV). With a limited number of portals, the resulting plan may compromise the dose sparing of the rectum and bladder. In this work, we investigate the feasibility of using intensity-modulated radiotherapy (IMRT) to treat prostate patients having a metallic prosthesis. Three patients, each with a single metallic prosthesis, who were previously treated at the University of Chicago Medical Center for prostate cancer, were selected for this study. Clinical target volumes (CTV = prostate + seminal vesicles), bladder, and rectum volumes were identified on CT slices. Planning target volumes (PTV) were generated in 3D by a 1-cm expansion of the CTVs. For these comparative studies, treatment plans were generated from CT data using 3DCRT and IMRT treatment planning systems. The IMRT plans used 9 equally-spaced 6-MV coplanar fields, with each field avoiding the prosthesis. The 3DCRT plans used 5 coplanar 18-MV fields, with each field avoiding the prosthesis. A 1-cm margin around the PTV was used for the blocks. Each of the 9-field IMRT plans spared the bladder and rectum better than the corresponding 3DCRT plan. In the IMRT, plans, a bladder volume receiving 80% or greater dose decreased by 20–77 cc, and a volume rectal volume receiving 80% or greater dose decreased by 24–40 cc. One negative feature of the IMRT plans was the homogeneity across the target, which ranged from 95% to 115%.  相似文献   

6.
Background: Local failure is the one of the most frequent cause of tumor related death in locally advanced non-small cell lung cancer (LAD-NSCLC). Dose escalation has the promise of increased loco-regional tumor control but is limited by the tolerances of critical organs. Patients and Methods: To evaluate the potential of IMRT in comparison to conventional three-dimensional conformal planning (3DCRT) dose constraints were defined: Maximum dose (Dmax) to spinal cord < 48 Gy, mean lung dose h 24 Gy, Dmax esophagus > 70 Gy in not more than 5 cm of the total length. For ten patients two plans were compared: (1) 3DCRT with 5 weekly fractions (SD) of 2 Gy to a total dose (TD) of 50 Gy to the planning target volume of second order (PTV2). If the tolerance of the critical organs was not exceeded, patients get a boost plan with a higher TD to the PTV1. (2) IMRT: concomitant boost with 5 weekly SD of 2 Gy (PTV1) and 1.5 Gy to a partial (p)PTV (pPTV=PTV2 š PTV1) to a TD of 51 Gy to the pPTV and 68 Gy to the PTV1. If possible, patients get a boost plan to the PTV1 with 5 weekly SD of 2 Gy to the highest possibly TD. Results: Using 3DCRT, 3/10 patients could not be treated with TD > 50 Gy, but 9/10 patients get higher TD by IMRT. TD to the PTV1 could be escalated by 16% on average. The use of non-coplanar fields in IMRT lead to a reduction of the irradiated lung volume. There is a strong correlation between physical and biological mean lung doses. Conclusion: IMRT gives the possibility of further dose escalation without an increasing mean lung dose especially in patients with large tumors. Hintergrund: Lokale Rezidive sind eine häufige Todesursache bei Patienten mit lokal fortgeschrittenen nichtkleinzelligen Bronchialkarzinomen (LAD-NSCLC). Dosiseskalation verspricht hier eine Verbesserung der lokalen Kontrolle, ist aber limitiert durch die Toleranz der Nachbarstrukturen. Patienten und Methoden: Um das Potential der IMRT im Vergleich zur konventionellen 3-D-Planung herauszuarbeiten, wurden folgende Dosis-Volumen-Vorgaben definiert: Maximale Dosis (Dmax) des Myelons < 48 Gy, mittlere Lungendosis (MLD) h 24 Gy, Dmax des Ösophagus > 70 Gy in h 5 cm der Gesamtlänge. Für zehn Patienten mit LAD-NSCLC wurden verglichen: 1. 3DCRT mit fünf wöchentlichen Einzeldosen (ED) von 2 Gy bis zu einer Gesamtdosis (GD) von 50 Gy für das Planungszielvolumen zweiter Ordnung (PTV2). Wenn die Toleranz der umliegenden Gewebe dies zuließ, erhielten die Patienten einen Boostplan für das PTV1. 2. IMRT: Concomitant Boost mit fünf söchentlichen ED von 2 Gy für das PTV1 und 1,5 Gy für das partielle PTV (pPTV=PTV2 š PTV1) bis zu einer GD von 51 Gy im pPTV und 68 Gy im PTV1. Falls die Belastung des Normalgewebes dies erlaubte, erfolgte ein Boostplan für das PTV1 mit fünf wöchentlichen ED von 2 Gy bis zur höchstmöglichen GD. Ergebnisse: Konventionell konnten 3/10 Patienten mit GD > 50 Gy behandelt werden - mittels IMRT konnten bei 9/10 Patienten höhere Dosen appliziert werden. Im PTV1 konnte im Mittel eine Dosiseskalation von 16% erreicht werden. Besonders Patienten mit großen Tumoren profitierten von der IMRT. Die Verwendung nonkoplanarer Techniken führte zur Verringerung der Dosis innerhalb des kritischen Lungenvolumens. Die physikalischen mittleren Lungendosen waren hoch korreliert mit den biologisch gewichteten mittleren Lungendosen. Schlussfolgerung: Im Vergleich zur 3DCRT ermöglicht die IMRT eine Dosiseskalation in der Behandlung von LAD-NSCLC ohne Erhöhung der mittleren Lungendosis. Von der Technik profitieren insbesondere Patienten mit größeren Tumoren.  相似文献   

7.
This study was designed to assess the feasibility and potential benefit of using intensity-modulated radiotherapy (IMRT) planning for patients newly diagnosed with glioblastoma multiforme (GBM). Five consecutive patients with confirmed histopathologically GBM were entered into the study. These patients were planned and treated with 3-dimensional conformal radiation therapy (3DCRT) using our standard plan of 3 noncoplanar wedged fields. They were then replanned with the IMRT method that included a simultaneous boost to the gross tumor volume (GTV). The dose distributions and dose-volume histograms (DHVs) for the planning treatment volume (PTV), GTV, and the relevant critical structures, as obtained with 3DCRT and IMRT, respectively, were compared. In both the 3DCRT and IMRT plans, 59.4 Gy was delivered to the GTV plus a margin of 2.5 cm, with doses to critical structures below the tolerance threshold. However, with the simultaneous boost in IMRT, a higher tumor dose of 70 Gy could be delivered to the GTV, while still maintaining the uninvolved brain at dose levels of the 3DCRT technique. In addition, our experience indicated that IMRT planning is less labor intensive and time consuming than 3DCRT planning. Our study shows that IMRT planning is feasible and efficient for radiotherapy of GBM. In particular, IMRT can deliver a simultaneous boost to the GTV while better sparing the normal brain and other critical structures.  相似文献   

8.
The focus of this work is to evaluate the dosimetric impact of treatment planning for three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) of prostate cancer using Varian/BrainLAB 120-leaf high-definition multileaf collimator (HD120 MLC) with 2.5 mm leaf width and Varian 120-leaf millennium multileaf collimator (M120 MLC) with 5 mm leaf width. We measured the leaf transmission and dosimetric leaf gap (DLG) of two multileaf collimator (MLC) systems using Farmer ionization chamber. The dosimetric impact of treatment planning for 3DCRT and IMRT of prostate cancer for ten clinical cases using two MLC systems was evaluated quantitatively. 3DCRT was divided to 3DCRT(middle) as fitting at middle of leaf tip and 3DCRT(outside) as fitting at outside of leaf tip. The leaf transmission factor and DLG of HD120 MLC for 6 and 10 MV X-ray decreased by 0.2% and 1 mm, respectively, compared to M120 MLC. The mean conformity index of PTV of treatment planning for prostate 3DCRT(middle), 3DCRT(outside) , and IMRT decreased by 0.9%, 6.6%, and 0.9% and the mean homogeneity index increased 2.3%, 13.0%, and 4.2%, respectively. The mean V20, V40, and V65 decreased by 2.4%, 6.6%, and 4.5% for bladder and 3.3%, 6.1%, and 5.9% for rectum, respectively. The results of this work demonstrated that the dose conformity of PTV improved and the dose of bladder and rectum decreased for 3DCRT and IMRT of prostate cancer using HD120 MLC compared to M120 MLC, because of reduction of leaf width, leaf transmission, and rounded leaf end transmission.  相似文献   

9.
This paper investigates the dosimetric benefits of a micro-multileaf (4-mm leaf width) collimator (mMLC) for intensity-modulated radiation therapy (IMRT) treatment planning of the prostate cancer and its potential application for dose escalation and hypofractionation. We compared treatment plans for IMRT delivery using 2 different multileaf collimator (MLC) leaf widths (4 vs. 10 mm) for 10 patients with prostate cancer. Treatment planning was performed on the XknifeRT2 treatment planning system. All beams and optimization parameters were identical for the mMLC and MLC plans. All of the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose (74 Gy). The differences in dose distribution between the 2 groups of plans using the mMLC and the MLC were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. Significant reductions in the volume of rectum receiving medium to higher doses were achieved using the mMLC. The average decrease in the volume of the rectum receiving 40, 50, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p-values less than 0.0001 for V40 and V50 and 0.012 for V60. The mean dose reductions for D17 and D35 for the rectum were 20.0% (p < 0.0001) and 18.3% (p < 0.0002), respectively, when compared to those with the MLC plans. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 32%. In the high-dose range, there was no significant difference in the dose deposited in the "hottest" 1 cc of the rectum between the 2 MLC plans for all cases (p > 0.78). Because of the reduction of rectal volume receiving medium to higher doses, dose to the prostate target can be escalated by about 20 Gy to over 74 Gy, while keeping the rectal dose (either denoted by D17 or D35) the same as those with the use of the MLC. The maximum achievable dose, derived when the rectum is allowed to reach the tolerance level, was found to be in the range of 113-172 Gy (using the tolerance value of D17). We conclude that the use of the mMLC for IMRT of the prostate may facilitate dose hypofractionation due to its dosimetric advantage in significantly improving the DVH parameters of the prostate and critical organs. When used for conventional fractionation scheme, mMLC for IMRT of the prostate may reduce the toxicity to the critical organs.  相似文献   

10.
Treatment of glioblastoma results in a median survival of 12 months. Radiation dose escalation trials for high grade gliomas have resulted in modest improvements in survival in selected patients with small peripheral tumors at the expense of normal brain toxicity. Neurotoxicity includes radiation necrosis but it is increasingly recognized that long-term survivors may develop neuro-cognitive deficits. Tumor control probability (TCP) and normal tissue complication probability (NTCP) are radiobiological models used to predict treatment outcomes. This study assesses the impact of radiation dose escalation from 59.6 Gy to 90 Gy on TCP and NTCP in ten patients planned with Three Dimensional Conformal Therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT). No difference in TCP was observed between 3DCRT and IMRT at doses of 59.4 Gy and 90 Gy. However, dose escalation to 90 Gy resulted in about 25% relative TCP increase. Compared to 3DCRT, dose escalation with IMRT significantly reduced NTCP by 70% (10.75% v. 3.75%, respectively). As a result, highly conformal techniques are recommended to obviate radiation exposure of normal brain especially when radiation dose escalation is used. Further understanding of the molecular mechanisms underlying neurotoxicity will allow the development of more precise radiobiological predictive models and of approaches to prevent or treat radiation-induced brain damage.  相似文献   

11.
The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.  相似文献   

12.
Our purpose in this study was to implement three-dimensional (3D) gamma analysis for structures of interest such as the planning target volume (PTV) or clinical target volume (CTV), and organs at risk (OARs) for intensity-modulated radiation therapy (IMRT) dose verification. IMRT dose distributions for prostate and head and neck (HN) cancer patients were calculated with an analytical anisotropic algorithm in an Eclipse (Varian Medical Systems) treatment planning system (TPS) and by Monte Carlo (MC) simulation. The MC dose distributions were calculated with EGSnrc/BEAMnrc and DOSXYZnrc user codes under conditions identical to those for the TPS. The prescribed doses were 76 Gy/38 fractions with five-field IMRT for the prostate and 33 Gy/17 fractions with seven-field IMRT for the HN. TPS dose distributions were verified by the gamma passing rates for the whole calculated volume, PTV or CTV, and OARs by use of 3D gamma analysis with reference to MC dose distributions. The acceptance criteria for the 3D gamma analysis were 3/3 and 2 %/2 mm for a dose difference and a distance to agreement. The gamma passing rates in PTV and OARs for the prostate IMRT plan were close to 100 %. For the HN IMRT plan, the passing rates of 2 %/2 mm in CTV and OARs were substantially lower because inhomogeneous tissues such as bone and air in the HN are included in the calculation area. 3D gamma analysis for individual structures is useful for IMRT dose verification.  相似文献   

13.
Radiation therapy for squamous cell carcinoma of the oral cavity may be curative, but carries a risk of permanent damage to bone, salivary glands, and other soft tissues. We studied the potential of intensity modulated radiotherapy (IMRT) to improve target volume coverage, and normal tissue sparing for advanced oral cavity carcinoma (OCC). Six patients with advanced OCC requiring bilateral irradiation to the oral cavity and neck were studied. Standard 3D conformal radiotherapy (3DCRT) and inverse-planned IMRT dose distributions were compared by using dose-volume histograms. Doses to organs at risk, including spinal cord, parotid glands, and mandible, were assessed as surrogates of radiation toxicity. PTV1 mean dose was 60.8 ± 0.8 Gy for 3DCRT and 59.8 ± 0.1 Gy for IMRT (p = 0.04). PTV1 dose range was 24.7 ± 6 Gy for 3DCRT and 15.3 ± 4 Gy for IMRT (p = 0.001). PTV2 mean dose was 54.5 ± 0.8 Gy for 3DCRT and for IMRT was 54.2 ± 0.2 Gy (p = 0.34). PTV2 dose range was improved by IMRT (7.8 ± 3.2 Gy vs. 30.7 ± 12.8 Gy, p = 0.006). Homogeneity index (HI) values for PTV2 were closer to unity using IMRT (p = 0.0003). Mean parotid doses were 25.6 ± 2.7 Gy for IMRT and 42.0 ± 8.8 Gy with 3DCRT (p = 0.002). The parotid V30 in all IMRT plans was <45%. The mandible V50, V55, and V60 were significantly lower for the IMRT plans. Maximum spinal cord and brain stem doses were similar for the 2 techniques. IMRT provided superior target volume dose homogeneity and sparing of organs at risk. The magnitude of reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with OCC.  相似文献   

14.
This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.  相似文献   

15.
For 11 consecutive prostate cancer patients undergoing three-dimensional conformal radiotherapy (3DCRT) in our institution, penile structures (PNS) were outlined in CT images obtained for treatment planning purposes. Dose-volume histograms (DVHs) were compared in order to study dose-volume relations for three techniques: 4FLD, an axial coplanar, four-field box technique; 6FLD, a six-field coplanar technique; and 4NAX, a coplanar but non-axial, four-field technique. All three techniques delivered equal doses to the planning target volumes (PTV). Our statistical analyses strongly indicate that the three techniques can be ranked as 6FLD better than 4FLD (and 4FLD better than 4NAX) as far as irradiating PNS volume during treatment of prostate cancer (PC) is concerned. For each technique, there is a "spread" owing to differences in patient anatomy and/or target size, position, and extent, but each technique has a similar "profile" or "shape" distinct from other techniques. Whether irradiating smaller volumes of PNS will influence the sexual potency outcome remains to be demonstrated. However, PNS should be considered as another critical structure in addition to rectum, bladder and femoral heads in the radiotherapy (RT) of PC, especially in 3DCRT dose escalation studies. Sexual potency outcomes can be correlated to dose-volume relations in the future and this will help refine radiotherapy techniques further.  相似文献   

16.
RapidArc is a novel technique using arc radiotherapy aiming to achieve intensity-modulated radiotherapy (IMRT)-quality radiotherapy plans with shorter treatment time. This study compared the dosimetric quality and treatment efficiency of single-arc (SA) vs. double-arc (DA) and IMRT in the treatment of prostate cancer. Fourteen patients were included in the analysis. The planning target volume (PTV), which contained the prostate gland and proximal seminal vesicles, received 76 Gy in 38 fractions. Seven-field IMRT, SA, and DA plans were generated for each patient. Dosimetric quality in terms of the minimum PTV dose, PTV hotspot, inhomogeneity, and conformity index; and sparing of rectum, bladder, and femoral heads as measured by V70, V-40, and V20 (% of volume receiving >70 Gy, 40 Gy, and 20 Gy, respectively), treatment efficiency as assessed by monitor units (MU) and treatment time were compared. All plan objectives were met satisfactorily by all techniques. DA achieved the best dosimetric quality with the highest minimum PTV dose, lowest hotspot, and the best homogeneity and conformity. It was also more efficient than IMRT. SA achieved the highest treatment efficiency with the lowest MU and shortest treatment time. The mean treatment time for a 2-Gy fraction was 4.80 min, 2.78 min, and 1.30 min for IMRT, DA, and SA, respectively. However, SA also resulted in the highest rectal dose. DA could improve target volume coverage and reduce treatment time and MU while maintaining equivalent normal tissue sparing when compared with IMRT. SA achieved the greatest treatment efficiency but with the highest rectal dose, which was nonetheless within tolerable limits. For busy units with high patient throughput, SA could be an acceptable option.  相似文献   

17.
We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.  相似文献   

18.
19.
《Medical Dosimetry》2014,39(4):330-336
Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatment planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The volume receiving an 18-Gy (V18) dose for the left and right kidneys was reduced by 10.6% and 12.5%, respectively, for the pancreatic plans. The volume receiving a 45-Gy (V45) dose for the small bowel decreased from 65.3% to 45.5%. For the cases with prostate cancer, the volume receiving a 40-Gy (V40) dose for the bladder and the rectum was reduced significantly by 25.1% and 51.2%, respectively. When compared with the RapidArc technique, the volume receiving a 30-Gy (V30) dose for the left and the right kidneys was lower in the IMRT plans. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. These results clearly demonstrated that the PLDR-IMRT plan was suitable for PLDR pancreatic and prostate cancer treatments in terms of the overall plan quality. A significant reduction in the OAR dose was achieved with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. When compared with the PLDR-3DCRT plan, the PLDR-IMRT plan could provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent pancreatic and prostate cancers. The PLDR-IMRT plan is an effective treatment choice for recurrent cancers in most cancer centers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号