首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
In this study, the corrosion performance of AA2014 aluminum alloy was enhanced by coating the alloy with a layer containing silica (SiC) that was formed by the plasma electrolytic oxidation (PEO) process. The PEO process was performed with different electrical parameters (frequency, current mode, and duty ratio) and both with and without SiC to investigate the microstructural and electrochemical differences in the coated samples produced from the process. The microstructure and composition of the PEO coatings were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). A potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical behavior of the AA2014-PEO-coated samples. The potentiodynamic polarization showed that the SiC-PEO-coated samples had a significantly decreased corrosion rate (99.8%) compared with the uncoated AA2014 Al alloy. Our results showed that the coats containing SiC possessed a much higher corrosion resistance than both the uncoated AA2014 Al alloy (8,344,673%) and the SiC-free coatings, which possess low corrosion resistance, because of their higher chemical stability and more compact microstructure.  相似文献   

2.
Phosphate and aluminate electrolytes were used to prepare plasma electrolytic oxidation (PEO) coatings on 6061 aluminum alloy. The surface and cross-section microstructure, element distribution, and phase composition of the PEO coatings were characterized by SEM, EDS, XPS, and XRD. The friction and wear properties were evaluated by pin-on-disk sliding tests under dry conditions. The corrosion resistance of PEO coatings was investigated by electrochemical corrosion and salt spray tests in acidic environments. It was found that the PEO coatings prepared from both phosphate and aluminate electrolytes were mainly composed of α-Al2O3 and γ-Al2O3. The results demonstrate that a bi-layer coating is formed in the phosphate electrolyte, and a single-layered dense alumina coating with a hardness of 1300 HV is realizable in the aluminate electrolyte. The aluminate PEO coating had a lower wear rate than the phosphate PEO coating. However, the phosphate PEO coating showed a better corrosion resistance in acidic environment, which is mainly attributed to the presence of an amorphous P element at the substrate/coating interface.  相似文献   

3.
The plasma electrolytic method is one of the techniques which can be used to form an oxide layer on the substrate material surface. This technique employs ion exchange by developing an electrolytic arc between the cathode and the anode. The strong bond at high temperatures promotes the formation of an oxide layer on the metal surface. The electrolyte composition has a strong influence on the metal surface characteristics. Hence, the addition of certain nanoparticles in an adequate amount can improve the surface properties like wear and corrosion resistance. In this study, a plasma electrolytic technique based on using a direct current and voltage approach is investigated. The plasma electrolytic technique is utilized to develop an oxide layer on the Al 6061 alloy substrate surface using a DC voltage input on a silicate-based electrolyte. The substrate surface is then investigated for the thickness of the oxide layer formed and the amount of carbon element absorbed, using the SEM and XRD analysis. The experimentation and the study of the results confirmed the presence of a substantial oxide layer on the surface. The influence of the process on the output parameters-direct voltage and electrode distance is studied with the significant changes obtained in the weight percentage of elements like C, Al, Si, and O as supported by SEM and EDAX analysis. Most changes occurred when using a 197 V and in the current range of 0.3 A to 1 A. This can be useful further to improve the mechanical properties of the metal alloy using the plasma arc oxidation method.  相似文献   

4.
The plasma electrolytic oxidation (PEO) of a titanium alloy, Ti-15V-3Cr-3Sn-3Al, was performed to develop mechanical applications by improving the tribological characteristics. The behaviors of micro-arcs, bubbles, and coating growth during the PEO process were investigated under three different operating conditions, constant voltage (CV) operation, constant current operation (CC), and short treatment time (ST) operation, to control the surface structure and function by the PEO process. A low friction coefficient was achieved by CV operation at 500 V and by CC operation at 3.0 kA/m2. The maximum coating thickness of 6.88 μm was achieved by CV operation at 500 V and 60 s. From the observation of micro-arcs, bubbles, and discharge craters by ST operation, the minimum discharge diameter of the micro-arc was 8 μm, and the discharge craters had a discharge pore size of 0.3 μm in diameter in the center with a petal-shaped burr around the discharge pore. During the PEO process, no bubble bursts around the micro-arcs and no backfilling of the discharge pores by the ejected materials were observed. Thus, the discharge pores remain a porous structure in the PEO coating for Ti. The utilization efficiency of the total charge density by CV operation above 300 V was lower than that by the conventional anodization process. The utilization efficiency of total charge density by CC operation was higher than that by the conventional anodization process.  相似文献   

5.
In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques—namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.  相似文献   

6.
In this study, corrosion and wear behavior of three kinds of coatings by two processes, namely, plasma electrolytic oxidation (PEO) coatings (Ti/TiO2), gas nitriding coating (Ti/TiN), and the duplex coating (Ti/TiO2-N) by combination of PEO and gas nitriding methods were systematically investigated. X-ray diffraction tests, field-emission scanning electron microscopy, and adhesion tests are employed for the coating characterization, along with the wear and electrochemical test for evaluating the corrosion and tribological properties. The morphology and structure of the coating consist of micro-cavities known as the pancake structure on the surface. The electrolytic plasma oxidation process produces a typical annealing behavior with a low friction coefficient based on the wear test. The coating consists of nitride and nitrate/oxides titanium for nitrided samples. The surface morphology of nitrided oxide titanium coating shows a slight change in the size of the crystals and the diameter of the cavities due to the influence of nitrogen in the titanium oxide coating. The tribological behavior of the coatings showed that the wear resistance of the duplex coating (Ti/TiO2-N) and Ti/TiO2 coatings is significantly higher compared to Ti/TiN coatings and uncoated Ti samples. The polarization resistance of the Ti/TiO2-N and Ti/TiO2 coatings was 632.2 and 1451.9 kΩ cm2, respectively. These values are considerably greater than that of the uncoated Ti (135.9 kΩ cm2). Likewise, impedance showed that the Ti/TiO2-N and Ti/TiO2 coatings demonstrate higher charge transfer resistance than that of other samples due to better insulating behavior and denser structure.  相似文献   

7.
This paper reports on hybrid, bioactive ceramic Ca-P-based coating formation on a Ti-6Al-7Nb alloy substrate to enhance the osseointegration process. The Ti alloy was anodized in a Ca3(PO4)2 suspension and then the additional layer was formed by the sol-gel technique to obtain a mixture of the calcium phosphate compounds. The oxide layer was porous and additional ceramic particles were formed after sol-gel treatment (scanning electron microscopy analysis coupled with energy-dispersive x-ray spectroscopy). The ceramic particles were formed on some parts of the oxide layer and did not completely fill the pores. The layer thickness of the anodized Ti alloy was comprised between 3.01 and 5.03 µm and increased to 7.52–12.30 µm after the formation of an additional layer. Post-treatment of the anodized Ti alloys caused a decrease in surface roughness, and the layer became strongly hydrophilic. Crystalline phase analysis (X-ray diffraction, XRD) showed that the hybrid layer was composed of TiO2 (anatase), Ca3(PO4)2, Ca10(PO4)6(OH)2 and a partially amorphous phase; thus, the layer was also analyzed by Raman spectroscopy. The hybrid layer showed worse adhesion to the substrate than the anodized layer only; however, the coating was not brittle, and the first delamination of the layer was determined at 1.84 ± 0.11 N during scratch-test measurement. The hybrid coating was favorable for collagen type I and lactoferrin adsorption, strongly influencing the proliferation of osteoblast-like MG-63 cells. The coatings were cytocompatible and may find applications in formation of the functional layers on long-term implants’ surface after.  相似文献   

8.
The MoSi2-ZrB2 coatings were prepared on Nb-Si based alloy by atmospheric plasma spraying with the spraying power 40, 43 and 45 kW. The effect of spraying power on the microstructure and oxidation resistance of MoSi2-ZrB2 coating at 1250 °C were studied. The results showed that the main constituent phases of coatings were MoSi2 at all spraying power. The coating became more compact as the spraying power increased. The coating prepared at 45 kW was dense and uniform, which exhibited the best oxidation resistance due to the formation of a dense and uniform glass layer consisting of SiO2 and ZrSiO4.  相似文献   

9.
The effects of Zn and Cu addition on the microstructure and mechanical properties of the extruded Mg-3Sn-1Ca alloy were systematically studied. The effects of the grain size, texture, type and distribution of the second phase on the mechanical properties of the alloy were analyzed. The mechanical test results show that the addition of Zn and Cu elements can significantly improve the mechanical properties of the alloy. The as-extruded Mg-3Sn-1Ca-1Zn-1Cu alloy has the best comprehensive mechanical properties, and the UTS, YS and EL are 244 MPa, 159 MPa and 13.4%, respectively. Compared with the Mg-3Sn-1Ca alloy, the UTS and EL of the Mg-3Sn-1Ca-1Zn alloy are increased by 50 MPa and 132%, respectively. However, the UTS of the TXC311 alloy is increased by 55 MPa, but the ductility of the Mg-3Sn-1Ca-1Cu alloy is far less than that of the Mg-3Sn-1Ca-1Zn alloy, which is mainly attributed to the presence of a large amount of hard and brittle Mg2Cu phase in the alloy. Interestingly, the addition of Zn to Mg-3Sn-1Ca-1Cu alloy can improve the elongation of the alloy, which is due to the solid solution strengthening caused by the Zn element and the formation of small MgZnCu phase with Zn element and the consumption of Mg2Cu phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号