首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study aimed to evaluate the influence of structure (type and material) on thermal properties (thermal conductivity, diffusivity) and surface resistance of composites used for explosion-proof enclosures of electrical devices. The matrix was a graphite-modified flame retard vinyl ester resin. As part of the work, 4 structures of composites reinforced with glass fabric, glass mat, and carbon fabric were tested. The composites were prepared by hand lamination with a vacuum. A methodology for indirectly determining the thermal conductivity coefficient was developed, taking into account the geometry of the explosion-proof enclosures. Thermal diffusivity, surface resistivity, flexural, and inter-layer shear strength were tested. The specific strength of the composites was determined. The highest properties were shown by the composite with carbon reinforcement, but for economic reasons, the enclosure was made with glass fabric. In the final stage, the model of the composite explosion-proof enclosure was designed and manufactured, followed by quality verification using pressure tests. The presented results are the next stage of work, the aim of which is to design and manufacture explosion-proof enclosures for electrical devices made of polymer composites. Based on the obtained results and economic factors, a composite with an S1 structure was selected for the preparation of the enclosure. It was found that the combination of graphite-modified vinyl ester resin and triaxal 550 g/m2 glass fabric allows for high internal pressure resistance. (8 bar). The proposed solution will allow for reducing the weight of explosion-proof enclosures while meeting the assumed operational requirements.  相似文献   

2.
Highly-aligned flake graphite (FG) reinforced Cu matrix composites with high thermal conductivity and adaptive coefficient of thermal expansion were successfully prepared via the collaborative process of tape-casting and hot-pressing sintering. To overcome the problem of fragile interface, Zr-Cu alloy powder was introduced instead of pure Zr powder to enhance the interfacial strength, ascribed to the physical-chemical bonding at the Cu-FG interface. The results indicate that the synthetic ZrC as interfacial phase affects the properties of FG/Cu composites. The thermal conductivity reaches the maximum value of 608.7 W/m∙K (52% higher than pure Cu) with 0.5 wt % Zr. Surprisingly, the negative coefficient of thermal expansion (CTE) in the Z direction is acquired from −7.61 × 10−6 to −1.1 × 10−6/K with 0 to 2 wt % Zr due to the physical mechanism of strain-engineering of the thermal expansion. Moreover, the CTE in X-Y plane with Zr addition is 8~10 × 10−6/K, meeting the requirements of semiconductor materials. Furthermore, the bending strength of the FG/Cu-2 wt % Zr composite is 42% higher than the FG/Cu composite. Combining excellent thermal conductivity with ultralow thermal expansion make the FG/Cu-Zr composites be a highly promising candidate in the electronic packaging field.  相似文献   

3.
The objective of this work was to obtain cement composites with low percolation thresholds, which would reduce the cost of graphite and maintain good mechanical properties. For this purpose, exfoliated graphite was used as a conductive additive, which was obtained by exfoliating the expanded graphite via ultrasonic irradiation in a water bath with surfactant. To obtain evenly distributed graphite particles, the exfoliated graphite was incorporated with the remaining surfactant into the matrix. This study is limited to investigating the influence of exfoliated graphite on the electrical and mechanical properties of cement mortars. The electrical conductivity of the composites was investigated to determine the percolation threshold. The flexural and compressive strength was tested to assess the mechanical properties. In terms of the practical applications of these composites, the piezoresistive, temperature–resistivity, and thermoelectric properties were studied. The results showed that the incorporation of exfoliated graphite with surfactant is an effective way to obtain a composite with a percolation threshold as low as 0.96% (total volume of the composite). In addition, the mechanical properties of the composites are satisfactory for practical application. These composites also have good properties in terms of practical applications. As a result, the exfoliated graphite used can significantly facilitate the practical use of smart composites.  相似文献   

4.
The aim of this paper is to analyze the influence of hybrid fiber reinforcement on the properties of a lightweight fly ash-based geopolymer. The matrix includes the ratio of fly ash and microspheres at 1:1. Carbon and steel fibers have been chosen due to their high mechanical properties as reinforcement. Short steel fibers (SFs) and/or carbon fibers (CFs) were used as reinforcement in the following proportions: 2.0% wt. CFs, 1.5% wt. CFs and 0.5% wt. SFs, 1.0% wt. CFs and 1.0% wt. SFs, 0.5% wt. CFs and 1.5% wt. SFs and 2.0% wt. SFs. Hybrid reinforcement of geopolymer composites was used to obtain optimal strength properties, i.e., compressive strength due to steel fiber and bending strength due to carbon fibers. Additionally, reference samples consisting of the geopolymer matrix material itself. After the production of geopolymer composites, their density was examined, and the structure (using scanning electron microscopy) and mechanical properties (i.e., bending and compressive strength) in relation to the type and amount of reinforcement. In addition, to determine the thermal insulation properties of the geopolymer matrix, its thermal conductivity coefficient was determined. The results show that the addition of fiber improved compressive and bending strength. The best compressive strength is obtained for a steel fiber-reinforced composite (2.0% wt.). The best bending strength is obtained for the hybrid reinforced composite: 1.5% wt. CFs and 0.5% wt. SFs. The geopolymer composite is characterized by low thermal conductivity (0.18–0.22 W/m ∙ K) at low density (0.89–0.93 g/cm3).  相似文献   

5.
In the present study, graphite blocks were fabricated using synthetic graphite scrap and phenolic resin, and the effect of the heating rate during carbonization on their mechanical and electrical characteristics was examined. While varying the heating rate from 1, 3, 5, and 7 to 9 °C/min, the microstructure, density, porosity, flexural strength, compressive strength, and electrical resistivity of the fabricated graphite blocks were measured. As the heating rate increased, the pores in the graphite blocks increased in size, and the shape of the gas release paths became more irregular. Overall, it was found that increases in the heating rate led to the degradation of the graphite blocks’ mechanical and electrical properties.  相似文献   

6.
In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.  相似文献   

7.
Common sensors in many applications are in the form of rigid devices that can react according to external stimuli. However, a magnetorheological plastomer (MRP) can offer a new type of sensing capability, as it is flexible in shape, soft, and responsive to an external magnetic field. In this study, graphite (Gr) particles are introduced into an MRP as an additive, to investigate the advantages of its electrical properties in MRPs, such as conductivity, which is absolutely required in a potential sensor. As a first step to achieve this, MRP samples containing carbonyl iron particles (CIPs) and various amounts of of Gr, from 0 to 10 wt.%, are prepared, and their magnetic-field-dependent electrical properties are experimentally evaluated. After the morphological aspect of Gr–MRP is characterized using environmental scanning electron microscopy (ESEM), the magnetic properties of MRP and Gr–MRP are evaluated via a vibrating sample magnetometer (VSM). The resistivities of the Gr–MRP samples are then tested under various applied magnetic flux densities, showing that the resistivity of Gr–MRP decreases with increasing of Gr content up to 10 wt.%. In addition, the electrical conductivity is tested using a test rig, showing that the conductivity increases as the amount of Gr additive increases, up to 10 wt.%. The conductivity of 10 wt.% Gr–MRP is found to be highest, at 178.06% higher than the Gr–MRP with 6 wt.%, for a magnetic flux density of 400 mT. It is observed that with the addition of Gr, the conductivity properties are improved with increases in the magnetic flux density, which could contribute to the potential usefulness of these materials as sensing detection devices.  相似文献   

8.
An investigation into the addition of different weight percentages of Fe3O4 nanoparticles to find the optimum wt.% and its effect on the microstructure, thermal, magnetic, and electrical properties of aluminum matrix composite was conducted using the powder metallurgy method. The purpose of this research was to develop magnetic properties in aluminum. Based on the obtained results, the value of density, hardness, and saturation magnetization (Ms) from 2.33 g/cm3, 43 HV and 2.49 emu/g for Al-10 Fe3O4 reached a maximum value of 3.29 g/cm3, 47 HV and 13.06 emu/g for the Al-35 Fe3O4 which showed an improvement of 41.2%, 9.3%, and 424.5%, respectively. The maximum and minimum coercivity (Hc) was 231.87 G for Al-10 Fe3O4 and 142.34 G for Al-35 Fe3O4. Moreover, the thermal conductivity and electrical resistivity at a high weight percentage (35wt.%) were 159 w/mK, 9.9 × 10−4 Ω·m, and the highest compressive strength was 133 Mpa.  相似文献   

9.
This paper presents a study of Al2O3–ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide composite was revealed. Graphene oxide was obtained using a modified Hummers method. Well-dispersed ZTA-GO nanopowders were produced using the colloidal processing method. Using spark plasma sintering technology (SPS), theoretically dense composites were obtained, which also reduced GO during SPS. The microstructure, phase composition, and physico-mechanical properties of the sintered composites were studied. The sintered ZTA composite with an in situ reduced graphene content of 0.28 wt.% after the characterization showed improved mechanical properties: bending strength was 876 ± 43 MPa, fracture toughness—6.8 ± 0.3 MPa·m1/2 and hardness—17.6 ± 0.3 GPa. Microstructure studies showed a uniform zirconia distribution in the ZTA ceramics. The study of the electrical conductivity of reduced graphene oxide-containing composites showed electrical conductivity above the percolation threshold with a small content of graphene oxide (0.28 wt.%). This electrical conductivity makes it possible to produce sintered ceramics by electrical discharge machining (EDM), which significantly reduces the cost of manufacturing complex-shaped products. Besides improved mechanical properties and EDM machinability, 0.28 wt.% rGO composites demonstrated high resistance to hydrothermal degradation.  相似文献   

10.
Cement mortar can be colored using color additive technology to give colorful facades to the surfaces of buildings, and to beautify the environment. In this study, weight ratios of color powder/cement at 1:80, 1:40, and 1:27, and polyacrylic emulsion/cement at a ratio of 1:5 were added as pigments to cement mortar; the fresh properties, slump, slump flow, hardened properties, compressive strength, flexural strength, ultrasonic pulse velocity, durability, surface electrical resistivity and thermal conductivity of the colored cement mortar were then examined. The results showed that adding color powder/cement at 1:80 and polyacrylic emulsion/cement at 1:5 gives the best water/cement (W/C) ratio, which equals 0.5; this can effectively improve the hardness and durability of colored cement mortar. At 28 days of aging, the strength of the various colored cement mortars was maintained at 33.1–36.8 MPa. The acrylic-based emulsion significantly improved the flexural strength of the specimen. At 91 days of aging, all of the cement mortars exceeded the control group, with an anti-bay strength of 19.9–21.7 MPa, and the strength increased with aging. Adding appropriate amounts of inorganic color powder and mixing water can effectively enhance the fresh and hardened properties and durability of the colored cement mortar, while polyacrylic emulsion may significantly improve the test pieces and flexural strength, which increases with age. Moreover, natural α-Fe2O3 (rust layer) is formed on the surface of the colored cement mortar samples through the addition of inorganic color powder that contains Fe(III) ion; this prevents the intrusion of noxious ions and thus increases the durability. All of the test pieces of colored cement mortar in this study had a surface resistance of over 20 kΩ-cm on the seventh day of the test period, meaning good surface compactness. In addition, because the thermal conductivity of the added inorganic color powder was higher than that of cement, the thermal conductivity was significantly improved.  相似文献   

11.
Graphite/Al composites had attracted significant attention for thermal management applications due to their excellent thermal properties. However, the improvement of thermal properties was restricted by the insufficient wettability between graphite and Al. In this study, silicon carbide and titanium carbide coatings have been uniformly coated on the graphite by the reactive sputtering method, and Graphite/Al laminate composites were fabricated by a hot isostatic pressing process to investigate the influence on thermal conductivity and mechanical properties. The results show that carbide coating can effectively improve the interfacial thermal conductance of SiC@Graphite/Al and TiC@Graphite/Al composites by 9.8 times and 3.4 times, respectively. After surface modification, the in-plane thermal conductivity (TC) of the composites with different volume fractions are all exceeding the 90% of the predictions. In comparison, SiC is more conducive to improving the thermal conductivity of composite materials, since the thermal conductivity of the 28.7 vol.% SiC@Graphite/Al reached the highest value of 499 W/m·K, while TiC is favorable for improving the mechanical properties. The finding is beneficial to the understanding of carbide coating engineering in the Graphite/Al composites.  相似文献   

12.
Copper–graphite composites are promising functional materials exhibiting application potential in electrical equipment and heat exchangers, due to their lower expansion coefficient and high electrical and thermal conductivities. Here, copper–graphite composites with 10–90 vol. % graphite were prepared by hot isostatic pressing, and their microstructure and coefficient of thermal expansion (CTE) were experimentally examined. The CTE decreased with increasing graphite volume fraction, from 17.8 × 10−6 K−1 for HIPed pure copper to 4.9 × 10−6 K−1 for 90 vol. % graphite. In the HIPed pure copper, the presence of cuprous oxide was detected by SEM-EDS. In contrast, Cu–graphite composites contained only a very small amount of oxygen (OHN analysis). There was only one exception, the composite with 90 vol. % graphite contained around 1.8 wt. % water absorbed inside the structure. The internal stresses in the composites were released during the first heating cycle of the CTE measurement. The permanent prolongation and shape of CTE curves were strongly affected by composition. After the release of internal stresses, the CTE curves of composites did not change any further. Finally, the modified Schapery model, including anisotropy and the clustering of graphite, was used to model the dependence of CTE on graphite volume fraction. Modeling suggested that the clustering of graphite via van der Waals bonds (out of hexagonal plane) is the most critical parameter and significantly affects the microstructure and CTE of the Cu–graphite composites when more than 30 vol. % graphite is present.  相似文献   

13.
The suitability of a new type of polyurethane-based composite carbon foam for several possible usages is evaluated and reported. A comparison of the properties of the as-prepared carbon foams was performed with widely available commercial biomass-derived activated carbon. Carbon foams were synthesized from polyurethane foams with different graphite contents through one-step activation using CO2. In this work, a carbon catalyst was synthesized with a moderately active surface (SBET = 554 m2/g), a thermal conductivity of 0.09 W/mK, and a minimum metal ion content of 0.2 wt%, which can be recommended for phosgene production. The composite carbon foams exhibited better thermal stability, as there is a very little weight loss at temperatures below 500 °C, and weight loss is slower at temperatures above 500 °C (phosgene synthesis: 550–700 °C). Owing to the good surface and thermal properties and the negligible metallic impurities, composite carbon foam produced from polyurethane foams are the best alternative to the conventional coconut-based activated carbon catalyst used in phosgene gas production.  相似文献   

14.
The incorporation of MWCNTs in polymer systems up to the percolation range renders them electrically conductive. However, this conductivity is not high enough for heating applications in the low-voltage range (<24 V). The combination of nanoscaled MWCNTs with microscaled short SWCNT fibers that was investigated in this study causes an abrupt rise in the conductivity of the material by more than an order of magnitude. Silicone was used as a flexible and high-temperature-resistant matrix polymer. Conductive silicone coatings and films with SWCF contents of 1.5% to 5% and constant MWCNT contents of 3% and 5% were developed, and their electrical and thermal properties in the voltage range between 6 and 48 V were investigated. The electrical conductivity of 3% MWCNT composite materials rose with a 5% addition of SWCFs. Because of this spike in conductivity, output power of 1260 W/m2 was achieved, for example, for a 100 µm thick composite containing 3% MWCNT and 4% SWCF at 24 V with a line spacing of 20 cm. Thermal measurements show a temperature increase of 69 K under these conditions. These findings support the use of such conductive silicone composites for high-performance coatings and films for challenging and high-quality applications.  相似文献   

15.
Dielectric materials with high thermal conductivity and outstanding dielectric properties are highly desirable for advanced electronics. However, simultaneous integration of those superior properties for a material remains a daunting challenge. Here, a multifunctional epoxy composite is fulfilled by incorporation of boron nitride nanosheets (BNNSs) and mesoporous silica coated multi-walled carbon nanotubes (MWCNTs@mSiO2). Owing to the effective establishment of continuous thermal conductive network, the obtained BNNSs/MWCNTs@mSiO2/epoxy composite exhibits a high thermal conductivity of 0.68 W m−1 K−1, which is 187% higher than that of epoxy matrix. In addition, the introducing of mesoporous silica dielectric layer can screen charge movement to shut off leakage current between MWCNTs, which imparts BNNSs/MWCNTs@mSiO2/epoxy composite with high dielectric constant (8.10) and low dielectric loss (<0.01) simultaneously. It is believed that the BNNSs/MWCNTs@mSiO2/epoxy composites with admirable features have potential applications in modern electronics.  相似文献   

16.
Reaching simultaneously high mechanical strength and low electrical resistivity is difficult as both properties are based on similar microstructural mechanisms. In our previous work, a new parameter, the tensile strength-over-electrical resistivity ratio, is proposed to evaluate the matching of the two properties in Cu alloys. A specific ratio of 310 × 108 MPa·Ω−1·m−1, independent of the alloy system and thermal history, is obtained from Cu-Ni-Mo alloys, which actually points to the lower limit of prevailing Cu alloys possessing high strength and low resistivity. The present paper explores the origin of this specific ratio by introducing the dual-phase mechanical model of composite materials, assuming that the precipitate particles are mechanically mixed in the Cu solid solution matrix. The strength and resistivity of an alloy are respectively in series and parallel connections to those of the matrix and the precipitate. After ideally matching the contributions from the matrix and the precipitate, the alloy should at least reach half of the resistivity of pure Cu, i.e., 50%IACS, which is the lower limit for industrially accepted highly conductive Cu alloys. Under this condition, the specific 310 ratio is related to the precipitate-over-matrix ratios for strength and resistivity, which are both two times those of pure Cu.  相似文献   

17.
Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m−1⋅K−1 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

The geodynamo of Earth’s core is thought to be mainly driven by compositional (chemical) convection associated with the crystallization and light-element release of the inner core as well as thermal convection driven by a superadiabatic heat flow across the core–mantle boundary (CMB). The relative importance of these energy sources to the geodynamo, however, remains uncertain (1). The magnitudes of these energy sources can change throughout the evolution of the planet. The thermal gradient across the CMB can be constrained from both heat flow of the core and mantle, where a subadiabatic heat flow out of the core may hinder thermal convection and cause a thermally stratified layer at the top of the outer core (2). A global nonadiabatic structure at the top of the core has been inferred from seismic observations and geomagnetic fluctuations (3, 4), where the mechanisms for the origin rely on accurate determinations of the CMB heat flow and the core conductivity. Based on seismological observations and high-pressure and -temperature (P-T) mineral physics results, Earth’s outer and inner core are mainly composed of Fe (∼85 wt %) alloyed with Ni (∼5 wt %) and ∼8 to 10 wt % and 4–5 wt % of light elements, respectively, such as Si, O, S, C, and H (510). The effects of the candidate light elements on the electrical resistivity (ρe) and thermal conductivity (κ) of iron and their partitioning between the inner and outer core at relevant P-T conditions are thus of great importance for understanding the thermal state of the core as well as the generation and evolution of Earth’s magnetic field (2, 9, 11, 12). The thermal conductivity of the constituent core alloy controls the heat flow of the core, while the electrical resistivity of the constituent Fe alloy determines the ohmic dissipation rate of the magnetic field.Extensive studies on iron’s transport properties have been conducted via experiments and calculations (e.g., refs. 1321), and recent studies report a thermal conductivity of ∼100 W⋅m−1⋅K−1 at conditions near the CMB (22, 23). Such a high thermal conductivity reduces the amount of heat that can be transported by convective flow (11) and raises a question as to what powered the convection prior to inner core growth over Earth’s history [the so-called new core paradox (24)]. Thus far, several hypotheses have been proposed to reconcile this paradox, including a possible large conductivity reduction due to nickel and light elements (2528), a rapid core cooling rate (29), or exsolution of chemically saturated species from the core to the lowermost mantle, such as MgO, SiO2, or FeO (e.g., refs. 3032). The general consensus is that incorporation of light element(s) depresses high P-T thermal conductivity of iron by impurity scattering (12); this effect was assumed in our previous modeling of the high P-T transport properties of Fe-Ni alloyed with 1.8 wt % Si (25). The lowered thermal conductivity implies that thermal convection is easier to maintain. The rapid core cooling model would imply a young inner core and requires a hidden core heat source, such as radioactivity, which is not supported by geochemical evidence (29). The exsolution mechanism would offer an additional energy source to drive an early compositionally driven geodynamo (32), although some experiments find exsolution to be unlikely (33). The viability of each of these scenarios depends sensitively on the transport properties of iron alloyed with a significant amount of light element(s) (∼8 to 10 wt %) at core P-T conditions. Information on these electrical and thermal transport properties of iron alloys remain uncertain due to the sparsity of experimental and theoretical data.Here we focus on the geodynamic consequences of the transport properties of iron alloyed with 4 to 10 wt % silicon, which is considered to be one of the major light element candidates in the Earth’s core due to its geo- and cosmochemical abundance (5), high solubility in solid and liquid iron (34), and isotopic evidence (35). Fe-Si alloys have been the subject of previous studies focused on understanding the structural and physical properties of the core material, including its high P-T phase diagram (3639), elasticity (4044), melting behavior (36, 45, 46), and transport properties (25, 4749). The observed density discontinuity of ∼4 to 5% across the inner-core boundary (ICB) indicates that excess light elements partition into the outer core during inner-core solidification (6, 50). We should note that the concentration of Si in the core remains uncertain. While some experiments have shown that Fe alloyed with ∼9 wt % Si can satisfy the density profile of the outer core and Fe alloyed with ∼4 wt % Si for the inner core, respectively (37, 40, 41, 51, 52), other studies indicate that a dominant Si light alloying component is unable to reproduce both the density and sound velocity distribution in the outer core (53, 54).High P-T diamond anvil cell (DAC) experiments had been previously conducted to constrain the electrical and thermal conductivity of Fe-Si alloys (28, 47, 55, 56), specifically their T-dependent resistivity and thermal conductivity at core pressures. The thermal conductivity of Fe-8 wt % Si (hereafter Fe-8Si) was measured using a high-P ultrafast optical pump probe and high P-T flash-heating methods (28). The results showed that 8 wt % silicon in solid hexagonal close-packed (hcp) Fe can strongly reduce the conductivity of pure iron by a factor of ∼2, i.e., giving ∼20 W⋅m−1⋅K−1 at ∼132 GPa and 3,000 K. However, the electrical resistivity of solid Fe-6.5Si at ∼99 GPa and 2,000 K was recently measured to be ∼73 µΩ⋅cm (56), which is higher than that of pure iron (22) by ∼60% at comparable conditions. The results imply a thermal conductivity of ∼66 W⋅m−1⋅K−1 using the Wiedemann–Franz law (TL = ρeκ) assuming an ideal Sommerfeld Lorentz number (L = L0: 2.44 × 10−8 W⋅m−1⋅K−2). Meanwhile, another recent study reported a moderate thermal conductivity of 50 to 70 W⋅m−1⋅K−1 for an Fe-5Ni-8Si alloy near CMB P-T conditions (∼140 GPa and 4,000 K) modeled from the measured resistivity of Fe-10Ni and Fe-1.8Si alloys using the four-probe van der Pauw method in laser-heated DACs (25). The results on Fe-10Ni and Fe-1.8Si alloys reveal a linear relationship between resistivity and temperature at a given high pressure, which is very similar to that of hcp Fe (22), over the range of measurements. In contrast, density functional theory (DFT)-based molecular dynamics simulations predict a small negative T dependence of the resistivity at high pressure when liquid Fe is alloyed with a significant amount of light elements (e.g., ∼13 wt % Si) (27). These experimental and computational results raise the possibility that the high P-T thermal transport behavior and its temperature dependence in Fe-Si alloys with a few wt % Si (e.g., 2 wt %) and a larger wt % Si (e.g., 8 to 10 wt %) can be quite different, making it difficult to evaluate the light element effects on the energetics of the core.In this study, we directly measured the electrical resistivities of polycrystalline hcp Fe-4.3 wt % Si (Fe-4.3Si, or Fe0.92Si0.08) and Fe-9 wt % Si (Fe-9Si, or Fe0.84Si0.16) alloys to ∼136 GPa and 3,000 K. We also computed the electrical resistivity and thermal conductivity of these Fe-Si alloys in solid and liquid phases using first-principles molecular dynamics (FPMD) and dynamical mean field theory (DMFT) calculations. The calculations include contributions from scattering off of Si as well as both electron–phonon (e-ph) and electron–electron (e-e) scattering. Our results are used to evaluate the Si impurity effects on the transport properties of Fe-Si alloy at P-T conditions of the topmost outer core. Assuming Si is the sole light element in the core, our results are used to constrain core thermal conductivity, which is in turn used to assess core heat flux, thermal state, and energy sources driving the geodynamo through geodynamical modeling.  相似文献   

18.
This study investigated the effects of microwave sintering on the microstructures and properties of copper-rGO composites. Graphene oxide was coated onto copper particles by wet ball milling, and copper-rGO composites were formed upon microwave sintering in an argon atmosphere. Scanning electron microscopy was then used to observe the mixing in the ball-milled composite powder, and the morphology of the bulk composite after microwave sintering. Raman spectra revealed how graphene oxide changed with ball milling and with microwave sintering. The microhardness, electrical conductivity, and thermal conductivity of the composite were also measured. The results showed that graphene oxide and copper particles were well combined and uniformly distributed after wet ball milling. The overall microhardness of microwave-sintered samples was 81.1 HV, which was 14.2% greater than that of pure copper (71 HV). After microwave sintering, the microhardness of the samples in areas showing copper oxide precipitates with eutectic structures was 89.5 HV, whereas the microhardness of the precipitate-free areas was 70.6 HV. The electrical conductivity of the samples was 87.10 IACS%, and their thermal conductivity was 391.62 W·m−1·K−1.  相似文献   

19.
Electroconductive cement-based composites are modern materials that are commonly used in many industries such as the construction industry, among others. For example, these materials can be used as sensors for monitoring changes in construction, grounding suspension, and resistance heating materials, etc. The aim of the research presented in this article is to monitor the impact of carbon particle character on cement-based electroconductive composites. Four types of graphite were analyzed. Natural and synthetic types of graphite, with different particle sizes and one with improved electrically conductive properties, were tested. For the analysis of the electrical conductivity of powder raw materials, a new methodology was developed based on the experience of working with these materials. Various types of graphite were tested in pure cement paste (80% cement, 20% graphite) as well as in a composite matrix, which consisted of cement (16.8%), a mixture of silica sand 0–4 mm (56.4%), graphite filler (20.0%) ground limestone (6.7%) and super plasticizers (0.1%). The resistivity and physical-mechanical properties of the composite material were determined. Furthermore, the resistivity of the test samples was measured with a gradual decrease in saturation. It may be concluded that graphite fillers featuring very fine particles and high specific surface are most suitable and most effective for creating electrically conductive silicate composites. The amount, shape and, in particular, the fineness of the graphite filler particles thus creates suitable conditions for the creation of an integrated internal electricity-conductive network. In the case of the use of a coarse type of graphite or purely non-conductive fillers, the presence of an electrolyte, for example, in the form of water, is necessary to achieve a low resistivity. Samples with fine types of graphite fillers achieved stable resistivity values when the sample humidity changed. The addition of graphite fillers caused a large decrease in the strength of the samples.  相似文献   

20.
The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 μW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 μW/m·K2) while thermal conductivity κ was reduced about four times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号