首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combustion synthesis method has been developed for synthesis of Eu2+ doped CaAlSiN3 phosphor and its photoluminescence properties were investigated. Ca, Al, Si, and Eu2O3 powders were used as the Ca, Al, Si and Eu sources. The addition of NaN3, NH4Cl and Si3N4 powders was found to increase significantly the product yield. These powders were mixed and pressed into a compact, which was then wrapped up with an igniting agent (i.e., Mg+Fe3O4). The compact was ignited by electrical heating under a N2 pressure of ≤1.0 MPa. Effects of these experimental parameters on the product yield were investigated and a reaction mechanism was proposed. The synthesized CaAlSiN3:Eu2+ phosphor absorbs light in the region of 200–600 nm and shows a broad band emission in the region of 500–800 nm due to the 4f65d1 → 4f7 transition of Eu2+. The sample doped with Eu2+ at the optimized molar ratio of 0.04 is efficiently excited by the blue light (460 nm) and generates emission peaking at ~650 nm with peak emission intensity ~106% of a commercially available phosphor, YAG:Ce3+(P46-Y3).The internal quantum efficiency of the synthesized phosphor was measured to be 71%, compared to 69% of the YAG:Ce3+ (P46-Y3).  相似文献   

2.
Developing rare-earth doped oxysulfide phosphors with diverse morphologies has significant value in many research fields such as in displays, medical diagnosis, and information storage. All of the time, phosphors with spherical morphology have been developed in most of the related literatures. Herein, by simply adjusting the pH values of the reaction solution, Gd2O2S:Tb3+ phosphors with various morphologies (sphere-like, sheet-like, cuboid-like, flat square-like, rod-like) were synthesized. The XRD patterns showed that phosphors with all morphologies are pure hexagonal phase of Gd2O2S. The atomic resolution structural analysis by transmission electron microscopy revealed the crystal growth model of the phosphors with different morphology. With the morphological change, the band gap energy of Gd2O2S:Tb3+ crystal changed from 3.76 eV to 4.28 eV, followed by different luminescence performance. The samples with sphere-like and cuboid-like microstructures exhibit stronger cathodoluminescence intensity than commercial product by comparison. Moreover, luminescence of Gd2O2S:Tb3+ phosphors have different emission performance excited by UV light radiation and an electron beam, which when excited by UV light is biased towards yellow, and while excited by an electron beam is biased towards cyan. This finding provides a simple but effective method to achieve rare-earth doped oxysulfide phosphors with diversified and tunable luminescence properties through morphology control.  相似文献   

3.
In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photoluminescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm, which match well with commercial UV and blue light-emitting diode (LED) chips. When excited by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+ phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide color gamut of 127.56% NTSC (National Television Standard Committee). The results show that red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and display backlight.  相似文献   

4.
This paper deals with broadband near-infrared luminescence properties of lead germanate glass triply doped with Yb3+/Er3+/Tm3+. Samples were excited at 800 nm and 975 nm. Their emission intensities and lifetimes depend significantly on Er3+ and Tm3+ concentrations. For samples excited at 800 nm, broadband emissions corresponding to the overlapped 3H43F4 (Tm3+) and 4I13/24I15/2 (Er3+) transitions centered at 1.45 µm and 1.5 µm was identified. Measurements of decay curves confirm reduction of 3H4 (Tm3+), 2F5/2 (Yb3+) and 4I13/2 (Er3+) luminescence lifetimes and the presence of energy-transfer processes. The maximal spectral bandwidth equal to 269 nm for the 3F43H6 transition of Tm3+ suggests that our glass co-doped with Yb3+/Er3+/Tm3+ is a good candidate for broadband near-infrared emission. The energy transfer from 4I13/2 (Er3+) to 3F4 (Tm3+) and cross-relaxation processes are responsible for the enhancement of broadband luminescence near 1.8 µm attributed to the 3F43H6 transition of thulium ions in lead germanate glass under excitation of Yb3+ ions at 975 nm.  相似文献   

5.
In the present work, LaNi0.5Ti0.5O3 and La2NiTiO6 nanoparticles were synthesized by the modified Pechini method. LaNi0.5Ti0.5O3 was calcined at 1073 K for 17 h or 100 h, while La2NiTiO6 was calcined at 1273 K for 135 h. The double perovskite calcined at 1073 K for 17 h presented orthorhombic symmetry with Pbnm space group, mean particle size was 31.9 ± 1 nm, random ordering of Ni2+ and Ti4+ cations, Néel temperature close to 15 K, and magnetic moment of 1.29 μB. By increasing the calcination time, this material showed the same symmetry and space group, a mean particle size of 50.7 ± 2 nm, short-range ordering of Ni2+ and Ti4+ cations, Néel temperature around 12 K, and magnetic moment of 0.96 μB. La2NiTiO6 presented a monoclinic crystal structure, with P21/n space group, mean particle size of 80.0 ± 5 nm, rock salt ordering of Ni2+ and Ti4+, Néel temperature of approximately 23 K, and magnetic moment of 2.75 μB.  相似文献   

6.
Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.  相似文献   

7.
A novel Ba(II)/TiO2–MCM-41 composite was synthesized using binary mixtures with Ba2+/TiO2 and MCM-41, and Ba2+ as a doping ion of TiO2. The specific surface area and pore structure characterizations confirm that a mesoporous structure with a surface area of 341.2 m2/g and a narrow pore size distribution ranging from 2 to 4 nm was achieved using Ba(II)/TiO2–MCM-41. Ba(II)/TiO2 particles were synthesized into 10–15 nm particles and were well dispersed onto MCM-41. The diffraction peaks in the XRD patterns of TiO2–MCM-41 and Ba(II)/TiO2–MCM-41 were all attributed to anatase TiO2. By taking advantage of MCM-41 and Ba2+, the photocatalytic performance of Ba(II)/TiO2–MCM-41 was remarkably enhanced by suppressing its rutile phase, by lowering the band gap energy, and by facilitating the dispersion of TiO2. Therefore, the photodegradation efficiencies of p-nitrobenzoic acid (4 × 10−4 mol/L) by various photocatalysts (60 min) under UV light irradiation are arranged in the following order: Ba(II)/TiO2–MCM-41 (91.7%) > P25 (86.3%) > TiO2–MCM-41 (80.6%) > Ba(II)/TiO2 (55.7%) > TiO2 (53.9%). The Ba(II)/TiO2–MCM-41 composite was reused for five cycles and maintained a high catalytic activity (73%).  相似文献   

8.
Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated “spindle-like” clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet–visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+–Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.  相似文献   

9.
Divalent europium doped barium orthosilicate is a very important phosphor for the production of light emitting diodes (LEDs), generally associated to the green emission color of micron-sized crystals synthesized by means of solid-state reactions. This work presents the combustion synthesis as an energy and time-saving preparation method for very small nano-sized Ba2SiO4 particles, flexibly doped to acquire different emission energies. The size of the resulting spherical nanoparticles (NPs) of the green emitting Ba2SiO4:Eu2+ was estimated to about 35 nm applying the Scherrer equation and further characterized with aid of atomic force microscopy (AFM) as well as scanning electron microscopy (SEM). This phosphor is able to build homogeneous luminescent suspensions and was successfully down-sized without changing the optical properties in comparison to the bulk phosphors. Besides the X-ray diffraction (XRD) analysis and the different types of microscopy, the samples were characterized by luminescence spectroscopy. Undoped Ba2SiO4 NPs are not luminescent, but show characteristic red emission of the 5D07FJ (J = 0–4) electronic transitions when doped with Eu3+ ions. Moreover, these orthosilicate nanoparticles generate blue light at low temperatures due to impurity-trapped excitons, introduced by the partial substitution of the Ba2+ with Sr2+ ions in the Ba2SiO4 lattice causing a substantial distortion. A model for the temperature behavior of the defect luminescence as well as for their nature is provided, based on temperature-dependent luminescence spectra and lifetime measurements.  相似文献   

10.
Whitlockite has the advantages of a low sintering temperature, high stability, and a low fabrication cost, and it is widely used as the host for luminescent material. In this study, Ca1.8Li0.6La0.6−x(PO4)2:xDy3+ phosphor was prepared by the high-temperature solid-state method, and its structure, composition, and luminescence properties were systematically studied. The results showed that a new whitlockite type matrix was prepared by replacing Ca2+ in whitlockite with monovalent and trivalent cations. The prepared phosphors belonged to a hexagonal crystal system with a particle size in the range of 5–20 μm. Under the excitation of 350 nm UV light, the samples emitted white light, and there were mainly two stronger emission peaks at 481 nm in the blue band and 573 nm in the yellow band, which correspond to the electron transitions at 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The optimal doping concentration of Dy3+ in Ca1.8Li0.6La0.6(PO4)2 matrix was 0.03 (mol%). The main mechanism of concentration quenching in the sample was dipole–dipole energy transfer. When the temperature was 130 °C, the luminescence intensity of the samples was 78.7% of that at 30 °C, and their thermal quenching activation energy was 0.25 eV. The CIE coordinates of the sample at 30 °C were (0.2750, 0.3006), and their luminescent colors do not change with temperature. All the results indicate that Ca1.8Li0.6La0.6−x(PO4)2:xDy3+ phosphor is a luminescent material with good luminescence performance and thermal stability, which shows a promising application in the field of LED display.  相似文献   

11.
The effect of BaF2, MgF2, and AlF3 on the structural and luminescent properties of gallo-germanate glass (BGG) doped with erbium ions was investigated. A detailed analysis of infrared and Raman spectra shows that the local environment of erbium ions in the glass was influenced mainly by [GeO]4 and [GeO]6 units. Moreover, the highest number of non-bridging oxygens was found in the network of the BGG glass modified by MgF2. The 27Al MAS NMR spectrum of BGG glass with AlF3 suggests the presence of aluminum in tetra-, penta-, and octahedral coordination geometry. Therefore, the probability of the 4I13/24I15/2 transition of Er3+ ions increases in the BGG + MgF2 glass system. On the other hand, the luminescence spectra showed that the fluoride modifiers lead to an enhancement in the emission of each analyzed transition when different excitation sources are employed (808 nm and 980 nm). The analysis of energy transfer mechanisms shows that the fluoride compounds promote the emission intensity in different channels. These results represent a strong base for designing glasses with unique luminescent properties.  相似文献   

12.
Herein, the structure, morphology, as well as optical properties of the powder and ceramic samples of Ba2MgWO6 are presented. Powder samples were obtained by high temperature solid-state reaction, while, for the ceramics, the SPS technique under 50-MPa pressure was applied. The morphology of the investigated samples showed some agglomeration and grains with a submicron size of 490–492 µm. The theoretical density and relative density of ceramics were calculated using the Archimedes method. The influence of sample preparation on the position, shape, and character of the host, as well as dopants emission was investigated. Sample sintering enhances regular emission of WO6 groups causing a blue shift of Ba2MgWO6 emission. Nonetheless, under X-ray excitation, only the green emission of inversion WO6 group was detected. For the ceramic doped with Eu3+ ions, the emission of both host and dopant was detected. However, for the powder efficient host to activator energy, the transfer process occurred, and only the magnetic dipole emission of Eu3+ was detected. The intensity of Nd3+ ions of Ba2MgWO6 powder sample is five times higher than for the ceramic. The sintering process reduces inversion defects and creates a highly symmetrical site of neodymium ions. The emission of Ba2MgWO6:Nd3+ consists of transitions from the 4F3/2 excited level to the 4IJ multiplet states with the dominance of the 4F3/24I11/2 one. The spectroscopic quality parameter and branching ratio of Nd3+ emission are presented.  相似文献   

13.
KMeY(PO4)2:5% Eu3+ phosphates have been synthesized by a novel hydrothermal method. Spectroscopic, structural, and morphological properties of the obtained samples were investigated by X-ray, TEM, Raman, infrared, absorption, and luminescence studies. The microscopic analysis of the obtained samples showed that the mean diameter of synthesized crystals was about 15 nm. The KCaY(PO4)2 and KSrY(PO4)2 compounds were isostructural and they crystallized in a rhabdophane-type hexagonal structure with the unit-cell parameters a = b ≈ 6.90 Å, c ≈ 6.34 Å, and a = b ≈ 7.00 Å, c ≈ 6.42 Å for the Ca and Sr compound, respectively. Spectroscopic investigations showed intense 5D07F4 transitions connected with D2 site symmetry of Eu3+ ions. Furthermore, for the sample annealed at 500 °C, europium ions were located in two optical sites, on the surface of grains and in the bulk. Thermal treatment of powders at high temperature provided better grain crystallinity and only one position of dopant in the crystalline structure. The most intense emission was possessed by the KSrY(PO4)2:5% Eu3+ sample calcinated at 500 °C.  相似文献   

14.
Y2O3:Eu is a promising red-emitting phosphor owing to its high luminance efficiency, chemical stability, and non-toxicity. Although Y2O3:Eu thin films can be prepared by various deposition methods, most of them require high processing temperatures in order to obtain a crystalline structure. In this work, we report on the fabrication of red Y2O3:Eu thin film phosphors and multilayer structure Y2O3:Eu-based electroluminescent devices by atomic layer deposition at 300 °C. The structural and optical properties of the phosphor films were investigated using X-ray diffraction and photoluminescence measurements, respectively, whereas the performance of the fabricated device was evaluated using electroluminescence measurements. X-ray diffraction measurements show a polycrystalline structure of the films whereas photoluminescence shows emission above 570 nm. Red electroluminescent devices with a luminance up to 40 cd/m2 at a driving frequency of 1 kHz and an efficiency of 0.28 Lm/W were achieved.  相似文献   

15.
In this work, the synthesis and characterization of Li2MgGeO4:Ho3+ ceramics were reported. The X-ray diffraction measurements revealed that the studied ceramics belong to the monoclinic Li2MgGeO4. Luminescence properties were analyzed in the visible spectral range. Green and red emission bands correspondent to the 5F4,5S25I8 and 5F55I8 transitions of Ho3+ were observed, and their intensities were significantly dependent on activator concentration. Luminescence spectra were also measured under direct excitation of holmium ions or ceramic matrix. Holmium ions were inserted in crystal lattice Li2MgGeO4, giving broad blue emission and characteristic 4f-4f luminescent transitions of rare earths under the selective excitation of the ceramic matrix. The presence of the energy transfer process between the host lattice and Ho3+ ions was suggested.  相似文献   

16.
A novel g-C3N4/TiO2/hectorite Z-scheme composites with oxygen vacancy (Vo) defects and Ti3+ were synthesized by so-gel method and high temperature solid phase reaction. This composite exhibited high visible photo-catalytic degradation of rhodamine B (RhB). The apparent rate constant of g-C3N4/TiO2/hectorite was 0.01705 min−1, which is approximately 5.38 and 4.88 times that of P25 and g-C3N4, respectively. The enhancement of photo-catalytic efficiency of the composites can be attributed to the great light harvesting ability, high specific surface area and effective separation of electrons(e) and holes(h+). The F element from Hectorite causes the formation of Vo and Ti3+ in TiO2, making it responsive to visible light. The effective separation of e and h+ mainly results from Z-scheme transfer of photo-produced electrons in g-C3N4/TiO2 interface. The composites can be easily recycled and the degradation rate of the RhB still reached 84% after five cycles, indicating its good reusability.  相似文献   

17.
Irradiation of Ru(bipy)32+ (bipy = 2,2′-bipyridine) with light below 560 nm results in the formation of a charge-transfer excited state potentially capable of reducing water to dihydrogen with concomitant production of Ru(bipy)33+. The latter may be reduced by hydroxide [Formula: see text] to form dioxygen and regenerate the starting complex. The use of these reactions in a cell designed to bring about the photochemical decomposition of water is proposed.  相似文献   

18.
Red–green–blue phosphors excited by ultraviolet (UV) radiation for white light LEDs have received much attention to improve the efficiency, color rendering index (CRI), and chromatic stability. The spectral conversion of a rare-earth ion-doped nonstoichiometric LaO0.65F1.7 host was explored with structural analysis in this report. The nonstoichiometric structure of a LaO0.65F1.7 compound, synthesized by a solid-state reaction using La2O3 and excess NH4F precursors, was analyzed by synchrotron X-ray powder diffraction. The crystallized LaO0.65F1.7 host, which had a tetragonal space group of P4/nmm, contained 9- and 10-coordinated La3+ sites. Optical materials composed of La1−pqBipTbqO0.65F1.7 (p = 0 and 0.01; q = 0–0.2) were prepared at 1050 °C for 2 h, and the single phase of the obtained phosphors was indexed by X-ray diffraction analysis. The photoluminescence spectra of the energy transfer from Bi3+ to Tb3+ were obtained upon excitation at 286 nm in the nonstoichiometric host lattice. The desired Commission Internationale de l’Eclairage (CIE) values of the phosphors were calculated. The intense green La0.89Bi0.01Tb0.1O0.65F1.7 phosphor with blue and red optical materials was fabricated on a 275 nm UV-LED chip, resulting in white light, and the internal quantum efficiency, CRI, correlated color temperature, and CIE of the pc LED were characterized.  相似文献   

19.
Luminescent organic-inorganic hybrids containing lanthanides (Ln3+) have been prominent for applications such as luminescent bio-probes in biological assays. In this sense, a luminescent hybrid based on dense silica (SiO2) nanospheres decorated with Eu3+ β–diketonate complexes using dibenzoylmethane (Hdbm) as a luminescent antenna was developed by using a hierarchical organization in four steps: (i) anchoring of 3-aminopropyltriethoxysilane (APTES) organosilane on the SiO2 surface, (ii) formation of a carboxylic acid ligand, (iii) coordination of Eu3+ to the carboxylate groups and (iv) coordination of dbm to Eu3+. The hybrid structure was elucidated through the correlation of thermogravimetry, silicon nuclear magnetic resonance and photoluminescence. Results indicate that the carboxylic acid-Eu3+-dbm hybrid was formed on the surface of the particles with no detectable changes on their size or shape after all the four steps (average size of 32 ± 7 nm). A surface charge of −27.8 mV was achieved for the hybrid, assuring a stable suspension in aqueous media. The Eu3+ complex provides intense red luminescence, characteristic of Eu3+ 5D07FJ electronic transitions, with an intrinsic emission quantum yield of 38%, even in an aqueous suspension. Therefore, the correlation of luminescence, structure, particle morphology and fluorescence microscopy images make the hybrid promising for application in bioimaging.  相似文献   

20.
The results of the calculation of the energy band structure and luminescent research of CeF3 crystals are presented. The existence of two 5d1 and 5d2 subbands of the conduction band genetically derived from 5d states of Ce3+ ions with different effective electron masses of 4.9 me and 0.9 me, respectively, is revealed. The large electron effective mass in the 5d1 subband facilitates the localization of electronic excitations forming the 4f-5d cerium Frenkel self-trapped excitons responsible for the CeF3 luminescence. The structure of the excitation spectra of the exciton luminescence peaked at 290 nm, and the defect luminescence at 340 nm confirms the aforementioned calculated features of the conduction band of CeF3 crystals. The peculiarities of the excitation spectra of the luminescence of CaF2:Ce crystals dependent on the cerium concentration are considered with respect to the phase formation possibility of CeF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号