首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The article presents laboratory tests on the impact of the mixing water content used in the preparation of fresh mortar on the flexural and compressive strength of one of the dry-mix mortars produced by a leading European producer and dedicated to bricklaying with clinker elements. The development of these parameters in relation to curing time was also analyzed. The mortar samples were prepared from a factory-made mortar mix using 4.0 L (the value recommended by the mortar manufacturer), 4.5 L, and 5 L of water per 25 kg bag of ready-made, pre-mixed dry mortar mix. All samples were tested in five series after 5, 9, 14, 21, and 28 days of sample curing. The results of these tests showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected the basic mechanical parameters of the tested mortar. Moreover, it was found that the highest compressive strength values were obtained after 21 days of curing and not after 28 days as usual. It was also found that hardening time and higher than recommended water content adversely affected the bending strength of the mortar.  相似文献   

2.
Bentonite-based drilling fluids are used for drilling, where inhibitive fluids are not required. The rheological and the density properties of the drilling fluids are highly affected by high temperature and pressure. Due to high temperature, the clay particles stick together, and the fluid system becomes more flocculated. Poorly designed drilling fluid may cause undesired operational issues such as poor hole cleaning, drill strings sticking, high torque and drag. In this study, the 80 °C thermally stable Herschel Bulkley’s and Bingham plastic yield stresses drilling fluids were formulated based on lignosulfonate-treated bentonite drilling fluid. Further, the impact of a MoS2 nanoparticle solution on the properties of the thermally stable base fluid was characterized. Results at room temperature and pressure showed that the blending of 0.26 wt.% MoS2 increased the lubricity of thermally stable base fluid by 27% and enhanced the thermal and electrical conductivities by 7.2% and 8.8%, respectively.  相似文献   

3.
In the hydration process of inorganic cements, the analysis of calorimetric measurements is one of the possible ways to better understand hydration processes and to keep these processes under control. This study contains data from the study of thermokinetic processes in alkali-activated blast-furnace slag cements compared to ordinary Portland cement (OPC). The obtained results show that, in contrast to OPC, the heat release values cannot be considered as a characteristic of the activity of alkali-activated blast-furnace slag cements. In addition, it is concluded that in the case of OPC cements, cumulative heat release is a criterion for the selection of effective curing parameters, while in the case of alkali-activated blast-furnace slag cements, a higher heat rate (which increases sharply with increasing temperature from 20 to 40 °C) is a criterion. From the point of views of thermokinetics, the rate of heat release at temperatures up to 40 °C can be a qualitative criterion that allows to choose the parameters of heat curing of alkali-activated cement concretes. By introducing a crystallo-chemical hardening accelerator, such as Portland cement clinker, into the composition of alkali-activated blast-furnace slag cements, it is possible to accelerate the processes not only in the condensation-crystallization structure formation stage, but also in the dispersion-coagulation structure formation stage. Portland cement clinker increased the efficiency of thermal curing at relatively non-high temperatures.  相似文献   

4.
Si single crystal was implanted with 230 keV He+ ions to a fluence of 5 × 1016/cm2 at 600 °C. The structural defects in Si implanted with He at 600 °C and then annealed at 1000 °C were investigated by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The microstructure of an as-implanted sample is provided for comparison. After annealing, rod-like defects were diminished, while tangled dislocations and large dislocation loops appeared. Dislocation lines trapped by cavities were directly observed. The cavities remained stable except for a transition of shape, from octahedron to tetrakaidecahedron. Stacking-fault tetrahedrons were found simultaneously. Cavity growth was independent of dislocations. The evolution of observed lattice defects is discussed.  相似文献   

5.
HR3C (25Cr-20Ni-Nb-N) is a key material used in heat exchangers in supercritical power plants. Its creep properties and microstructural evolution has been extensively studied at or below 650 °C. The precipitation evolution in HR3C steel after creep rupture at elevated temperatures of 700 °C and 750 °C with a stress range of 70~180 MPa is characterized in this paper. The threshold strength at 700 °C and 750 °C were determined by extrapolation method to be σ105700= 57.1 MPa and σ105750=37.5 MPa, respectively. A corresponding microstructure investigation indicated that the main precipitates precipitated during creep exposure are Z-phase (NbCrN), M23C6, and σ phase. The dense Z-phase precipitated dispersively in the austenite matrix along dislocation lines, and remained stable (both size and fraction) during long-term creep exposure. M23C6 preferentially precipitated at grain boundaries, and coarsening was observed in all creep specimens with some continuous precipitation of granular M23C6 in the matrix. The brittle σ phase formed during a relatively long-term creep, whose size and fraction increased significantly at high temperature. Moreover, the σ phases, grown and connected to form a large “island” at triple junctions of grain boundaries, appear to serve as nucleation sites for high stress concentration and creep cavities, weakening the grain boundary strength and increasing the sensitivity to intergranular fracture.  相似文献   

6.
A reactive sintering technique with a small addition of carbon (up to 1.9 wt.%) has been used for tungsten powder consolidation. The process allowed procurement of the nonporous and fully densified material at 1300 °C and 30 MPa in 12 min. The SEM and EDX analysis showed that the milling of 5 μm tungsten powder with 0.6, 1.3, and 1.9 wt.% of carbon in a planetary mill led to the formation of the nanostructured mix, which appears to be W-C nanopowder surrounding tungsten grains. X-Ray Diffractometry data indicated tungsten hemicarbide (W2C) nucleation during the hot pressing of the milled powders. The exothermic reaction 2W + C → W2C occurs during the sintering process and promotes charge densification. The Vickers hardness and indentation toughness of W-1.3 wt.%C composition reached 5.7 GPa and 12.6 MPa∙m1/2, respectively. High toughness and high material densification allow proposing the W-WC2 for use as a plasma-facing material in fusion applications.  相似文献   

7.
Increased cyclic loading of components and materials in future thermal energy conversion systems necessitates novel materials of increased fatigue resistance. The widely used 9–12% Cr steels were developed for high creep strength and thus base load application at temperatures below 620 °C. At higher temperature, these materials present unstable grain structure, prone to polygonization under thermomechanical fatigue loading and limited resistance to steam oxidation. This seminal study compares thermomechanical fatigue resistance and long crack propagation of the advanced ferritic-martensitic steel grade 92 and Crofer® 22H, a fully ferritic, high chromium (22 wt. %) stainless steel, strengthened by Laves phase precipitation. Crofer® 22H features increased resistance to fatigue and steam oxidation resistance up to 650 °C. Both thermomechanical fatigue (crack initiation) and residual (crack propagation) lifetime of Crofer® 22H exceeded that of grade 92. The main mechanisms for improved performance of Crofer® 22H were increased stability of grain structure and “dynamic precipitation strengthening” (DPS). DPS, i.e., thermomechanically triggered precipitation of Laves phase particles and crack deflection at Laves phase-covered sub-grain boundaries, formed in front of crack tips, actively obstructed crack propagation in Crofer® 22H. In addition, it is hypothesized that local strengthening may occur near the crack tip because of grain refinement, which in turn may be impacted by testing frequency.  相似文献   

8.
The alloy 304 stainless steel is used in a wide variety of industrial applications. It is frequently applied in tough environments, such as those involving high temperatures, low temperatures, and corrosive environments. Hence, research on the flow stress behavior of the alloy during deformation under tough environments is critically important to achieving the maximum effectiveness in the application of the alloy. This research presents a study on the flow stress of 304 stainless steel during hot deformation at the temperatures of 700 °C–900 °C under the strain rates ranging from 0.0002/s–0.02/s. For this study, hot tensile experiments are conducted, and the flow stress variations of the alloy are studied with respect to the variations in the strain rate and temperature. Next, the stress behavior was modeled by the traditional Arrhenius-type constitutive equation and random forest algorithm. Then, the flow stresses predicted by different methods were studied by comparing errors. The results showed that the flow stress was modeled more accurately by the random forest algorithm.  相似文献   

9.
Lithium niobate (LiNbO3) is known for its high Curie temperature, making it an attractive candidate for high-temperature piezoelectric applications (>200 °C); however, the literature suffers from a paucity of reliable material properties data at high temperatures. This paper therefore provides a complete set of elastic and piezoelectric coefficients, as well as complex dielectric constants and the electrical conductivity, for congruent monocrystalline LiNbO3 from 25 °C to 900 °C at atmospheric pressure. An inverse approach using the electrochemical impedance spectroscopy (EIS) resonance method was used to determine the materials’ coefficients and constants. Single crystal Y-cut and Z-cut samples were used to estimate the twelve coefficients defining the electromechanical coupling of LiNbO3. We employed an analytical model inversion to calculate the coefficients based on a linear superposition of nine different bulk acoustic waves (three longitudinal waves and six shear waves), in addition to considering the thermal expansion of the crystal. The results are reported and compared with those of other studies for which the literature has available values. The dominant piezoelectric stress constant was found to be e15, which remained virtually constant between 25 °C and 600 °C; thereafter, it decreased by approximately 10% between 600 °C and 900 °C. The elastic stiffness coefficients c11E, c12E, and c33E all decreased as the temperature increased. The two dielectric constants ϵ11S and ϵ33S increased exponentially as a function of temperature.  相似文献   

10.
Stainless steels have the advantage of forming a protective surface layer to prevent corrosion. This layer results from phase and structural changes on the steel surface. Stainless steel samples (1.4404, 316L), whose alloying elements include Cr, Ni, Mo, and Mn, were subjected to the study of the surface layer. Prism-shaped samples (25 × 25 × 3) mm3 were made from CL20ES stainless steel powder, using selective laser melting. After sandblasting with corundum powder and annealing at 550 °C for different periods of time (2, 4, 8, 16, 32, 64, 128 h), samples were studied by conversion X-ray Mössbauer spectroscopy (CXMS), conversion electron Mössbauer spectroscopy (CEMS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The main topics of the research were surface morphology and elemental and phase composition. The annealing of stainless steel samples resulted in a new surface layer comprising leaf-shaped crystals made of chromium oxide. The crystals grew, and their number increased as annealing time was extended. The amount of chromium increased in the surface layer at the expense of iron and nickel, and the longer the annealing time was set, the more chromium was observed in the surface layer. Iron compounds (BCC iron, mixed Fe–Cr oxide) were found in the surface layer, in addition to chromium oxide. BCC iron appeared only after annealing for at least 4 h, which is the initial time of austenitic–ferritic transformation. Mixed Fe–Cr oxide was observed in all annealed samples. All phase changes were observed in the surface layer at approximately 0.6 µm depth.  相似文献   

11.
To study the effect of γ′ phase elements on the oxidation behavior of nanocrystalline coatings, two comparable nanocrystalline coating systems were established and prepared by magnetron sputtering. The oxidation experiments of the nanocrystalline coatings on the K38G and N5 superalloys were carried at 1050 °C for 100 h, respectively. The chemical composition of the above coatings is the same as the substrate alloy, including the γ′ elements, such as Al, Ta, and Ti. After serving at a high temperature for certain periods, their oxides participated and then affected the oxidation behavior of the coatings. The Al2O3 scale can be formed on the N5 coating, which cannot be formed on the K38G coating. Tantalum and titanium oxides can be detected on the oxide scale, which ruin its purity and integrity.  相似文献   

12.
Here, 20 Cu-20 Ni-54 NiFe2O4-6 NiO (wt%) cermets were prepared via the powder metallurgy process, and the electrolytic corrosion behavior of the cermets at 880 °C and 960 °C was studied through the microstructure analysis by SEM and EDS. Results show that the ceramic phase is seriously affected by chemical corrosion at 880 °C electrolysis, and it is difficult to form a dense ceramic surface layer. A dense ceramic surface layer is formed on the bottom of the anode electrolyzed at 960 °C, and the dense layer thickens with the extension of the electrolysis time. The formation of the dense surface layer is mainly caused by the oxidation of Ni. The oxidation rate of the metallic phase and the corrosion rate of the ceramic phase have an important effect on the formation of the dense layer. In the corrosion process of NiFe2O4 phase, preferential corrosion of Fe element occurs first, and then NiO phase is precipitated from NiFe2O4 phase. After the NiO is dissolved and corroded, the NiFe2O4 grains collapse and the ceramic phase peels off from the anode.  相似文献   

13.
The thermal stability of the Al-Si alloys during the thermal exposure process from 250 °C to 400 °C was systematically investigated. The relationships between the morphological evolution and the mechanical changes of the alloys were determined through the Vickers hardness test and materials characterization method. Initially, the alloys exhibited similar thermal degradation behavior. For example, the exposure process of the alloy at 300 °C can be divided into two stages according to the changes of the alloy hardness and the matrix micro-hardness. In detail, the first stage (0–2 h) exhibited a severe reduction of the alloy hardness while the second stage showed a more leveled hardness during the following 98 h. There are three identified morphological characteristics of Ni-rich phases in the alloy. Furthermore, the differences in both composition and the micro-hardness between these Ni-rich phases were confirmed. The underlying relationships between the morphological transformation of the Ni-rich phases and hardness fluctuation in the alloy were correlated and elucidated. The observed alloy hardness increase when the exposure temperature was 400 °C was unexpected. This behavior was explained from the perspectives of both Ni-rich phases evolution and dispersoid formation.  相似文献   

14.
In-depth analyses of the anti-oxidation behavior and structure of γ-TiAl alloys are of great significant for their maintenance and repair in engineering applications. In this work, fluorine-treated Ti-45Al-8.5Nb alloys and fluorine-treated oxidized specimens with artificial defects were prepared by isothermal oxidation treatment at 1000 °C. Several characterization methods, including SEM, EDS, XRD and TEM, were used to evaluate the surface microstructure of the fluorine-treated Ti-45Al-8.5Nb alloys and fluorine-treated oxidized specimens with artificial defects. The results indicate that the fluorine promoted the formation of an outer protective film of Al2O3, which significantly improved the oxidation resistance. The microcracks of oxidized specimens with the artificial defects provided a rapid diffusion passage for Ti and O elements during the 1000 °C/2 h isothermal oxidation treatment process, resulting in the quick growth of TiO2 toward the outside. The fine Al2O3 constituted a continuous film after the 1000 °C/100 h isothermal oxidation treatment. In particular, Al2O3 particles grew toward the substrate, which was ascribed to the good oxidation resistance and adhesion. These results may provide an approach for the repair of protective oxide film on the surface of blades and turbine disks based on γ-TiAl alloys.  相似文献   

15.
The oxidation behavior of the nickel superalloy Inconel 740H was studied at 750 °C for 100, 250, 500, 1000, and 2000 h in a steam atmosphere. Microstructure observations were performed using scanning electron microscopes and scanning-transmission electron microscope. The phase identification of existing oxidation products was conducted by electron diffraction in transmission electron microscope. The obtained results showed that the microstructure of Inconel 740H was stable during the oxidation process. The kinetic data showed that the superalloy has the ability to form protective oxide layers that are characterized by good adhesion and no tendency to spallation during the test. The oxidation products were mainly composed of external and internal oxides mainly at grain boundaries. The oxides in the external layer were Cr2O3, MnTiO3,, and α-Al2O3 after 2000 h of oxidation. Internal oxides were α-Al2O3 and TiO2. The occurrence of discontinuities in the internal oxidation zone was also observed after 500 h of test. It was found that the thickness of the internal oxidation zone was greater than the thickness of the external oxide layer, which proves the strong tendency of the superalloy to form internal oxides after oxidation in the steam atmosphere.  相似文献   

16.
An alumina-toughened zirconia (ATZ) material, fabricated using a procedure consisting of the common sintering of two different zirconia powders, was tested using the ball-on-disc method in a temperature range between room temperature and 500 °C. Corundum balls were used as a counterpart. The ATZ composite behaviour during tests was compared with that of commonly used α-alumina and tetragonal zirconia sintered samples. At temperatures over 350 °C, a drastic decrease in the wear rate of the material was detected. SEM analyses proved that, in such conditions, nearly the whole surface of the sliding material was covered with a layer of deformed submicrometric grains, which limited contact with the part of material that was not deformed. The mentioned layer was relatively strongly connected with the material, increased its resistance, and decreased its coefficient of friction. As a reference, commonly used materials, namely commercial alumina and tetragonal zirconia, were tested. The wear parameters of the composite were significantly better than those registered for the materials prepared of commercial powders.  相似文献   

17.
The hot deformation behaviors of the SJTU-1 alloy, the high-throughput scanned casting Nickel-based superalloy, was investigated by compression test in the temperature range of 900 to 1200 °C and strain rate range of 0.1–0.001 s−1. The hot processing map has been constructed with the instability zone. At the beginning of hot deformation, the flow stress moves rapidly to the peak value with the increased strain rates. Meanwhile, the peak stress is decreased with the increased temperature at the same strain rates. However, the peak stress shows the same tendency with the strain rates at the same temperature. The optimum hot deformation condition was determined in the temperature range of 1000–1075 °C, and the strain rate range of 0.005–0.1 s−1. The microstructure investigation indicates the strain rate significantly affects the characteristics of the microstructure. The deformation constitutive equation has also been discussed as well.  相似文献   

18.
(1) Background: The field of medicine requires simple cooling materials. However, there is little knowledge documented about phase change materials (PCM) covering the range of 28 to 40 degrees Celsius, as needed for medical use. Induced mild hypothermia, started within 6 h after birth, is an emerging therapy for reducing death and severe disabilities in asphyxiated infants. Currently, this hypothermia is accomplished with equipment that needs a power source and a liquid supply. Neonatal cooling is more frequent in low-resource settings, where ~1 million deaths are caused by birth-asphyxia. (2) Methods: A simple and safe cooling method suitable for medical application is needed for the 28 to 37.5 °C window. (3) Results: Using empirical experiments in which the ingredients in Glauber salt were changed, we studied the effects of temperature on material in the indicated temperature range. The examination, in a controlled manner, of different mixtures of NaCl, Na2SO4 and water resulted in a better understanding of how the different mixtures act and how to compose salt solutions that can satisfy clinical cooling specifications. (4) Conclusions: Our Glauber salt solution is a clinically suited PCM in the temperature interval needed for the cooling of infants suffering from asphyxia.  相似文献   

19.
The purpose of this work is to quantify the effects of dissolved zinc cations on corrosion and release rates from a pre-filmed Alloy 690 steam generator tubing material that was subsequently exposed to water containing zinc. The corrosion tests were performed in circulating 2 ppm Li and 1000 ppm B water without and with 60 ppb zinc at 330 °C. Gravimetric analyses and oxide characterization revealed that the corrosion rates, release rates, and oxide thicknesses decreased by subsequent exposure of the pre-filmed Alloy 690 to zinc. These benefits are attributed to the formation of a chromium-rich inner oxide layer incorporating zinc.  相似文献   

20.
Yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) deposited on CoNiCrAlY oxidation protective bond coats are commonly required in temperature regimes up to 1200 °C (e.g., hot gas turbine regions) due to their superior thermal behavior and mechanical properties. For temperatures up to around 900 °C, oxidation protection can be alternatively provided by metallic-ceramic Cr-CrxOy coatings. For the present research, Cr-CrxOy atmospheric plasma sprayed (APS) and YSZ-CoNiCrAlY APS-high velocity oxy-fuel TBC coatings were deposited on a NiCr20Co18Ti substrate. The samples were isothermally heat treated at 900 °C for 10 h in an environmental atmosphere and subsequently isothermally oxidized at the same temperature for 1200 h. Investigations of the physical, chemical, and mechanical properties were performed on the as-sprayed, heat-treated, and oxidized samples. The oxidation behavior, microhardness, cohesion, and adhesion of the samples were correlated with the microstructural investigations and compared to the conventional TBC system. It could be shown that heat treating decreased the Cr-CrxOy coatings crack susceptibility and led to the formation of a protective thermally grown Cr oxide layer. The experimental work on the YSZ-CoNiCrAlY system revealed that the phase composition of the bond coat has a direct influence on the oxidation protection of the coating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号