首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Although antibody levels progressively decrease following SARS-CoV-2 infection, the immune memory persists for months. Thus, individuals who naturally contracted SARS-CoV-2 are expected to develop a more rapid and sustained response to COVID-19 vaccines than naïve individuals. In this study, we analyzed the dynamics of the antibody response to the BNT162b2 mRNA COVID-19 vaccine in six healthcare workers who contracted SARS-CoV-2 in March 2020, in comparison to nine control subjects without a previous infection. The vaccine was well tolerated by both groups, with no significant difference in the frequency of vaccine-associated side effects, with the exception of local pain, which was more common in previously infected subjects. Overall, the titers of neutralizing antibodies were markedly higher in response to the vaccine than after natural infection. In all subjects with pre-existing immunity, a rapid increase in anti-spike receptor-binding domain (RBD) IgG antibodies and neutralizing antibody titers was observed one week after the first dose, which seemed to act as a booster. Notably, in previously infected individuals, neutralizing antibody titers 7 days after the first vaccine dose were not significantly different from those observed in naïve subjects 7 days after the second vaccine dose. These results suggest that, in previously infected people, a single dose of the vaccine might be sufficient to induce an effective response.  相似文献   

2.
The Delta variant raised concern regarding its ability to evade SARS-CoV-2 vaccines. We evaluated a serum neutralizing response of 172 Italian healthcare workers, three months after complete Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer) vaccination, testing their sera against viral isolates of Alpha, Gamma and Delta variants, including 36 subjects with a previous SARS-CoV-2 infection. We assessed whether IgG anti-spike TRIM levels and serum neutralizing activity by seroneutralization assay were associated. Concerning Gamma variant, a two-fold reduction in neutralizing titres compared to the Alpha variant was observed, while a four-fold reduction of Delta virus compared to Alpha was found. A gender difference was observed in neutralizing titres only for the Gamma variant. The serum samples of 36 previously infected SARS-CoV-2 individuals neutralized Alpha, Gamma and Delta variants, demonstrating respectively a nearly three-fold and a five-fold reduction in neutralizing titres compared to Alpha variant. IgG anti-spike TRIM levels were positively correlated with serum neutralizing titres against the three variants. The Comirnaty vaccine provides sustained neutralizing antibody activity towards the Alpha variant, but it is less effective against Gamma and even less against Delta variants.  相似文献   

3.
In Japan, healthcare workers (HCWs) are vaccinated against measles, rubella, chickenpox, mumps, and hepatitis B to prevent nosocomial infection; however, some do not produce sufficient antibodies (“suboptimal responders”). This study compared immune responses to a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 mRNA) vaccine among HCWs with normal and suboptimal responses to conventional vaccines. In this prospective cohort study, 50 HCWs received two doses of BNT162b2 mRNA vaccine 3 weeks apart. SARS-CoV-2 anti-spike antibodies were measured 11 times, starting before the first vaccination and ending 5 months after the second vaccination. Antibody titers of four suboptimal and 46 normal responders were compared. SARS-CoV-2 neutralizing antibody activity was measured twice in suboptimal responders, 1 week/1 month and 5 months after the second vaccination. The SARS-CoV-2 anti-spike antibody was detectable in the samples from suboptimal and normal responders at each timepoint after vaccination. Suboptimal responders exhibited SARS-CoV-2 neutralizing antibody activity 1 week/1 month as well as 5 months after the second vaccination; however, activity was slightly reduced at 5 months. Our findings show that suboptimal responders do acquire adequate SARS-CoV-2 anti-spike and SARS-CoV-2 neutralizing antibodies from vaccination to prevent SARS-CoV-2. SARS-CoV-2 mRNA vaccines should thus be recommended for both normal and suboptimal responders to conventional vaccines.  相似文献   

4.
A 52-year-old man with mantle cell lymphoma treated with bendamustine and rituximab developed prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite elevated titers of anti-spike IgG antibody, protracted pancytopenia persisted for more than six months. Finally, the anti-SARS CoV-2 vaccine, BNT162b2, was administered, which improved his blood cell count and eliminated the virus. The increased anti-spike IgG titer and lymphocyte count after vaccination suggested that both humoral and cellular immunity acted in coordination to eliminate the virus.  相似文献   

5.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has a major impact on transplant recipients, with mortality rates up to 20%. Therefore, the effect of established messenger RNA (mRNA)-based SARS-CoV-2 vaccines have to be evaluated for solid organ transplant patients (SOT) since they are known to have poor responses after vaccination. We investigated the SARS-CoV-2 immune response via SARS-CoV-2 IgG detection in 23 renal transplant recipients after two doses of the mRNA-based SARS-CoV-2 vaccine BNT162b2 following the standard protocol. The antibody response was evaluated once with an anti-SARS-CoV-2 IgG CLIA 15.8 +/− 3.0 days after the second dose. As a control, SARS-CoV-2 IgG was determined in 23 healthcare workers (HCW) and compared to the patient cohort. Only 5 of 23 (22%) renal transplant recipients were tested positive for SARS-CoV-2 IgG antibodies after the second dose of vaccine. In contrast, all 23 (100%) HCWs were tested positive for antibodies after the second dose. Thus, the humoral response of renal transplant recipients after two doses of the mRNA-based vaccine BNT162b2 (Pfizer-BioNTech, Kronach, Germany) is impaired and significantly lower compared to healthy controls (22% vs. 100%; p = 0.0001). Individual vaccination strategies might be beneficial in these vulnerable patients.  相似文献   

6.
The aim of this study was to characterize the antibody response induced by SARS-CoV-2 mRNA vaccines in a cohort of healthcare workers. A total of 2247 serum samples were analyzed using the Elecsys® Anti-SARS-CoV-2 S-test (Roche Diagnostics International Ltd., Rotkreuz, Switzerland). Sex, age, body mass index (BMI), arterial hypertension, smoking and time between infection and/or vaccination and serology were considered the confounding factors. Regarding the medians, subjects previously infected with SARS-CoV-2 who preserved their response to the nucleocapsid (N) protein showed higher humoral immunogenicity (BNT162b2: 6456.0 U/mL median; mRNA-1273: 2505.0 U/mL) compared with non-infected (BNT162b2: 867.0 U/mL; mRNA-1273: 2300.5 U/mL) and infected subjects with a lost response to N protein (BNT162b2: 2992.0 U/mL). After controlling for the confounders, a higher response was still observed for mRNA-1273 compared with BNT162b2 in uninfected individuals (FC = 2.35, p < 0.0001) but not in previously infected subjects (1.11 FC, p = 0.1862). The lowest levels of antibodies were detected in previously infected non-vaccinated individuals (39.4 U/mL). Clinical variables previously linked to poor prognoses regarding SARS-CoV-2 infection, such as age, BMI and arterial hypertension, were positively associated with increasing levels of anti-S protein antibody exclusively in infected subjects. The mRNA-1273 vaccine generated a higher antibody response to the S protein than BNT162b2 in non-infected subjects only.  相似文献   

7.
Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer–BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.  相似文献   

8.
Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.  相似文献   

9.
Objective We evaluated the change in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers from three to six months after the administration of the BNT162b2 vaccine among healthcare workers. Methods A total of 337 healthcare workers who received 2 doses of the BNT162b2 vaccine were included in this study. Factors associated with SARS-CoV-2 antibody titers at three and six months and the change in SARS-CoV-2 antibody titers between three and six months after vaccine administration were analyzed using a logistic regression analysis. Results The SARS-CoV-2 antibody titer at 3 months was 4,812.1±3,762.9 AU/mL in all subjects and was lower in older workers than in younger ones. The SARS-CoV-2 antibody titer at 6 months was 1,368.9±1,412.3 AU/mL in all subjects. The SARS-CoV-2 antibody titers that were found to be high at three months were also high at six months. The change in SARS-CoV-2 antibody titers from 3 to 6 months was -68.9%±16.1%. The higher SARS-CoV-2 antibody titers at three months showed a more marked decrease from three to six months than lower titers. Conclusion This study demonstrates that SARS-CoV-2 antibody titers at three months decreased with age and were associated with the antibody titers at six months and the change in titer from three to six months. Older individuals in particular need to be aware of the declining SARS-CoV-2 antibody titers at six months after the BNT162b2 vaccine. The results of this study may provide insight into COVID-19 vaccine booster strategies.  相似文献   

10.
(1) Background: High immunosuppressive regimen in lung transplant recipients (LTRs) hampers the immune response to vaccination. We prospectively investigated the immunogenicity of heterologous ChAdOx1 nCoV-19-BNT162b2 mRNA vaccination in an LTR cohort. (2) Methods: Forty-nine COVID-19 naïve LTRs received a two-dose regimen ChAdOx1 nCoV-19 vaccine. A subset of 32 patients received a booster dose of BNT162b2 mRNA vaccine 18 weeks after the second dose. (3) Results: Two-doses of ChAdOx1 nCoV-19 induced poor immunogenicity with 7.2% seropositivity at day 180 and low neutralizing capacities. The BNT162b2 mRNA vaccine induced significant increases in IgG titers with means of 197.8 binding antibody units per milliliter (BAU/mL) (95% CI 0–491.4) and neutralizing antibodies, with means of 76.6 AU/mL (95% CI 0–159.6). At day 238, 32.2% of LTRs seroconverted after the booster dose. Seroneutralization capacities against Delta and Omicron variants were found in only 13 and 9 LTRs, respectively. Mycophenolate mofetil and high-dose corticosteroids were associated with a weak serological response. (4) Conclusions: The immunogenicity of a two-dose ChAdOx1 nCoV-19 vaccine regimen was very poor in LTRs, but was significantly enhanced after the booster dose in one-third of LTRs. In immunocompromised individuals, the administration of a fourth dose may be considered to increase the immune response against SARS-CoV-2.  相似文献   

11.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly, leading to viral lineages characterized by multiple mutations in the spike protein, which could potentially confer to the virus the ability to avoid the vaccine-induced immune response, making the vaccines less effective or ineffective. Here, we initially evaluated the neutralization capabilities in vitro by serum neutralization (SN) of six serum samples collected from recipients of the BNT162b2 vaccine against 11 SARS-CoV-2 isolates belonging to the major SARS-CoV-2 lineages that had been circulating in Italy. Then, we considered 30 additional serum samples by SN assay against the dominant B.1.617.2 (Delta) variant. A B.1 lineage isolate was used as a reference. In the first analysis, significant differences when compared with the reference strain (p > 0.05) were not evidenced; instead, when the panel of 30 sera was tested against the B.1.617.2 (Delta) variant, a significant (p = 0.0015) 2.38-fold reduction in neutralizing titres compared with the reference after the first vaccine dose was demonstrated. After the second vaccine dose, the reduction was not significant (p = 0.1835). This study highlights that the BNT162b2 vaccine stimulates a humoral response able to neutralize all tested SARS-CoV-2 variants, thus suggesting a prominent role in mitigating the impact of the SARS-CoV-2 pandemic in real-world conditions. Long-term follow-up is currently ongoing.  相似文献   

12.
(1) Background: Our aim is the evaluation of the neutralizing activity of BNT162b2 mRNA vaccine-induced antibodies in different in vitro cellular models, as this still represents one of the surrogates of protection against SARS-CoV-2 viral variants. (2) Methods: The entry mechanisms of SARS-CoV-2 in three cell lines (Vero E6, Vero E6/TMPRSS2 and Calu-3) were evaluated with both pseudoviruses and whole virus particles. The neutralizing capability of sera collected from vaccinated subjects was characterized through cytopathic effects and Real-Time RT PCR. (3) Results: In contrast to Vero E6 and Vero E6/TMPRSS2, Calu-3 allowed the evaluation of both viral entry mechanisms, resembling what occurs during natural infection. The choice of an appropriate cellular model can decisively influence the determination of the neutralizing activity of antibodies against SARS-CoV-2 variants. Indeed, the lack of correlation between neutralizing data in Calu-3 and Vero E6 demonstrated that testing the antibody inhibitory activity by using a single cell model possibly results in an inaccurate characterization. (4) Conclusions: Cellular systems allowing only one of the two viral entry pathways may not fully reflect the neutralizing activity of vaccine-induced antibodies moving increasingly further away from possible correlates of protection from SARS-CoV-2 infection.  相似文献   

13.
To investigate the dynamic association among binding and functional antibodies in health-care-workers receiving two doses of BNT162b2 mRNA COVID-19-vaccine, SARS-CoV-2 anti-RBD IgG, anti-Trimeric-S IgG, and neutralizing antibodies (Nabs) were measured in serum samples collected at 2 weeks, 3 months, and 6 months from full vaccination. Despite the high correlation, results for anti-RBD and anti-Trimeric S IgG were numerically different even after recalculation to BAU/mL following WHO standards indications. Moreover, after a peak response at 2 weeks, anti-RBD IgG levels showed a 4.5 and 13 fold decrease at 3 and 6 months, respectively, while the anti-Trimeric S IgG presented a less pronounced decay of 2.8 and 4.7 fold. Further different dynamics were observed for Nabs titers, resulting comparable at 3 and 6 months from vaccination. We also demonstrated that at NAbs titers ≥40, the area under the receiver operating characteristic curve and the optimal cutoff point decreased with time from vaccination for both anti-RBD and anti-Trimeric S IgG. The mutating relation among the anti-RBD IgG, anti-Trimeric S IgG, and neutralizing antibodies are indicative of antibody maturation upon vaccination. The lack of standardized laboratory procedures is one factor interfering with the definition of a correlate of protection from COVID-19.  相似文献   

14.
The COVID-19 pandemic has currently created an unprecedented threat to human society and global health. A rapid mass vaccination to create herd immunity against SARS-CoV-2 is a crucial measure to ease the spread of this disease. Here, we investigated the immunogenicity of a SARS-CoV-2 subunit vaccine candidate, a SARS-CoV-2 spike glycoprotein encapsulated in N,N,N-trimethyl chitosan particles or S-TMC NPs. Upon intraperitoneal immunization, S-TMC NP-immunized mice elicited a stronger systemic antibody response, with neutralizing capacity against SARS-CoV-2, than mice receiving the soluble form of S-glycoprotein. S-TMC NPs were able to stimulate the circulating IgG and IgA as found in SARS-CoV-2-infected patients. In addition, spike-specific T cell responses were drastically activated in S-TMC NP-immunized mice. Surprisingly, administration of S-TMC NPs via the intraperitoneal route also stimulated SARS-CoV-2-specific immune responses in the respiratory tract, which were demonstrated by the presence of high levels of SARS-CoV-2-specific IgG and IgA in the lung homogenates and bronchoalveolar lavages of the immunized mice. We found that peritoneal immunization with spike nanospheres stimulates both systemic and respiratory mucosal immunity.  相似文献   

15.
Neutralising antibodies (NAbs) represent the real source of protection against SARS-CoV-2 infections by preventing the virus from entering target cells. The gold standard in the detection of these antibodies is the plaque reduction neutralization test (PRNT). As these experiments must be done in a very secure environment, other techniques based on pseudoviruses: pseudovirus neutralization test (pVNT) or surrogate virus neutralization test (sVNT) have been developed. Binding assays, on the other hand, measure total antibodies or IgG, IgM, and IgA directed against one epitope of the SARS-CoV-2, independently of their neutralizing capacity. The aim of this study is to compare the performance of six commercial binding assays to the pVNT and sVNT. In this study, we used blood samples from a cohort of 62 RT-PCR confirmed COVID-19 patients. Based on the results of the neutralizing assays, adapted cut-offs for the binding assays were calculated. The use of these adapted cut-offs does not permit to improve the accuracy of the serological assays and we did not find an adapted cut-off able to improve the capacity of these tests to detect NAbs. For a part of the population, a longitudinal follow-up with at least two samples for the same patient was performed. From day 14 to day 291, more than 75% of the samples were positive for NAbs (n = 87/110, 79.1%). Interestingly, 6 months post symptoms onset, the majority of the samples (N = 44/52, 84.6%) were still positive for NAbs. This is in sharp contrast with the results we obtained 6 months post-vaccination in our cohort of healthcare workers who have received the two-dose regimens of BNT162b2. In this cohort of vaccinated subjects, 43% (n = 25/58) of the participants no longer exhibit NAbs activity 180 days after the administration of the first dose of BNT162b2.  相似文献   

16.
Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.  相似文献   

17.
Patients with chronic lymphocytic leukemia (CLL) have a suboptimal humoral response to vaccination. Recently, BNT162b2, an mRNA COVID-19 vaccine with a high efficacy of 95% in immunocompetent individuals, was introduced. We investigated the safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with CLL from nine medical centers in Israel, Overall 400 patients were included, of whom 373 were found to be eligible for the analysis of antibody response. The vaccine appeared to be safe and only grade 1-2 adverse events were seen in 50% of the patients. Following the second dose, an antibody response was detected in 43% of the cohort. Among these CLL patients, 61% of the treatment-naïve patients responded to the vaccine, while responses developed in only 18% of those with ongoing disease, 37% of those previously treated with a BTK inhibitor and 5% of those recently given an anti-CD20 antibody. Among patients treated with BCL2 as monotherapy or in combination with anti-CD20, 62% and 14%, respectively, developed an immune response. There was a high concordance between neutralizing antibodies and positive serological response to spike protein. Based on our findings we developed a simple seven-factor score including timing of any treatment with anti-CD20, age, treatment status, and IgG, IgA, IgM and hemoglobin levels. The sum of all the above parameters can serve as a possible estimate to predict whether a given CLL patient will develop sufficient antibodies. In conclusion, the BNT162b2 mRNA COVID-19 vaccine was found to be safe in patients with CLL, but its efficacy is limited, particularly in treated patients.  相似文献   

18.
Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.  相似文献   

19.
Current vaccines have greatly diminished the severity of the COVID-19 pandemic, even though they do not entirely prevent infection and transmission, likely due to insufficient immunity in the upper respiratory tract. Here, we compare intramuscular and intranasal administration of a live, replication-deficient modified vaccinia virus Ankara (MVA)–based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (S) vaccine to raise protective immune responses in the K18-hACE2 mouse model. Using a recombinant MVA expressing firefly luciferase for tracking, live imaging revealed luminescence of the respiratory tract of mice within 6 h and persisting for 3 d following intranasal inoculation, whereas luminescence remained at the site of intramuscular vaccination. Intramuscular vaccination induced S-binding–Immunoglobulin G (IgG) and neutralizing antibodies in the lungs, whereas intranasal vaccination also induced Immunoglobulin A (IgA) and higher levels of antigen-specific CD3+CD8+IFN-γ+ T cells. Similarly, IgG and neutralizing antibodies were present in the blood of mice immunized intranasally and intramuscularly, but IgA was detected only after intranasal inoculation. Intranasal boosting increased IgA after intranasal or intramuscular priming. While intramuscular vaccination prevented morbidity and cleared SARS-CoV-2 from the respiratory tract within several days after challenge, intranasal vaccination was more effective as neither infectious virus nor viral messenger (m)RNAs were detected in the nasal turbinates or lungs as early as 2 d after challenge, indicating prevention or rapid elimination of SARS-CoV-2 infection. Additionally, we determined that neutralizing antibody persisted for more than 6 mo and that serum induced to the Wuhan S protein neutralized pseudoviruses expressing the S proteins of variants, although with less potency, particularly for Beta and Omicron.

The rapid development of SARS-CoV-2 vaccines was a stunning achievement that is contributing to the control of the COVID-19 pandemic. Several types of vaccines—including mRNA, adenovirus-vectors, recombinant spike (S) protein, and inactivated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—have demonstrated the ability to protect against severe disease. Nevertheless, these vaccines, which are administered systemically, reduce but do not prevent virus infection and transmission, and therefore approaches that provide further immunity are desirable (1). SARS-CoV-2 spreads by droplet and aerosol so that the nasal and oral mucosa are the first barriers to infection. In general, the intranasal (IN) route of vaccination induces greater mucosal immunity compared with the intramuscular (IM) route. An example is the live, attenuated influenza virus vaccine, called LAIV or FluMist, which is approved as a nasal spray in some countries. Unlike inactivated influenza vaccine, LAIV induces nasal Immunoglobulin A (IgA) and CD8+ T cells (2). Similarly, IN administration of adenovirus-vectored SARS-CoV-2 vaccines reduce viral loads in upper and lower respiratory tracts following challenge in several animal models (36) and an aerosolized vaccine appeared safe and immunogenic in a phase I trial (7), although a trial of another adenovirus-based nasal spray vaccine was discontinued because of low immunogenicity (https://ir.altimmune.com/news-releases/news-release-details/altimmune-announces-update-adcovidtm-phase-1-clinical-trial). Studies of IN vaccination with additional vectors are needed.Modified vaccinia virus Ankara (MVA) is a highly attenuated, replication-defective, immunogenic smallpox vaccine strain that is undergoing clinical testing as a vector for multiple pathogens (8) as well as SARS-CoV-2 (www.clinical trials.gov). Although usually administered IM or subcutaneously, several reports have shown that MVA-based vectors induce protective mucosal and systemic immune responses when administered IN to animals (913). In addition, combined IM and IN vaccination of camels with an MVA-based vaccine reduced excretion of Middle East respiratory syndrome (MERS)-CoV, although the efficacy of IN alone was not reported (14).The present study was initiated to extend previous demonstrations of the ability of IM administered MVA-vectored vaccines to protect against SARS-CoV-2 challenge in animal models (1518). We previously reported (15) that IM injection of MVA expressing a modified S protein with mutations that stabilized the prefusion form, inactivated the furin cleavage site, and deleted the endoplasmic retention signal induced a type 1 immune response with neutralizing antibody and CD8+IFN-γ+ T cells, and protected K18-hACE2 transgenic mice from respiratory infection with SARS-CoV-2. In addition, passive transfer of serum from vaccinated mice to unvaccinated mice protected them from lethal SARS-CoV-2 infection. Here, we show persistence of neutralizing antibody and protection of transgenic hACE2 mice for more than 6 mo after one or two IM inoculations with an MVA-based modified S protein vaccine. However, whereas IM vaccination induced Immunoglobulin G (IgG) neutralizing antibodies and cleared infection of the respiratory tract, IN inoculations also induced IgA antibodies in the lungs and blood, and after two IN vaccinations neither SARS-CoV-2 nor subgenomic (sg) mRNAs were detected in the nasal turbinates or lungs at 2 or 5 d after challenge. IN delivery of a live recombinant vaccine has the potential to reduce infection and transmission of SARS-CoV-2.  相似文献   

20.
SARS-CoV-2 variants of concern (VOCs) have caused a significant increase in infections worldwide. Despite high vaccination rates in industrialized countries, the fourth VOC, Omicron, has outpaced the Delta variant and is causing breakthrough infections in individuals with two booster vaccinations. While the magnitude of morbidity and lethality is lower in Omicron, the infection rate and global spread are rapid. Using a specific IgG multipanel-ELISA with the spike protein’s receptor-binding domain (RBD) from recombinant Alpha, Gamma, Delta, and Omicron variants, sera from health-care workers from the Medical University of Vienna were tested pre-pandemic and post-vaccination (BNT162b2; ChAdOx1 nCoV-19). The cohort was continuously monitored by SARS-CoV-2 testing and commercial nucleocapsid IgG ELISA. RBD IgG ELISA showed significantly lower reactivity against the Omicron-RBD compared to the Alpha variant in all individuals (p < 0.001). IgG levels were independent of sex, but were significantly higher in BNT162b2 recipients <45 years of age for Alpha, Gamma, and Delta (p < 0.001; p = 0.040; p = 0.004, respectively). Pre-pandemic cross-reactive anti-Omicron IgG was detected in 31 individuals and was increased 8.78-fold after vaccination, regardless of vaccine type. The low anti-RBD Omicron IgG level could explain the breakthrough infections and their presence could also contribute to a milder COVID-19 course by cross-reactivity and broadening the adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号