首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orexin containing neurons in the lateral hypothalamic area (LHA) produce orexin-A (hypocretin-1) and orexin-B (hypocretin-2) and send their axons to the hippocampus, which predominantly expresses orexin 1 receptors (OX1Rs) showing a higher affinity to orexin-A. Recent studies have shown that central administration of orexin-A has an effect on learning and memory but literature concerning the role of orexinergic system in cognition remains controversial. Therefore, we examined the effect of pre-training, post-training and pre-probe trial intrahippocampal CA1 administration of a selective OX1R the orexin 1 receptor antagonist SB-334867-A (1.5, 3, 6 microg/0.5 microl) on acquisition, consolidation and retrieval in a single-day testing version of Morris water maze (MWM) task. Our results show that, SB-334867-A impaired acquisition, consolidation and retrieval of MWM task as compared with the control group. This drug had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous orexins, especially orexin-A, play an important role in spatial learning and memory in the rat.  相似文献   

2.
Orexin A and B are hypothalamic peptides known to modulate arousal, feeding, and reward via OX1 and OX2 receptors. Orexins are also antinociceptive in the brain, but their mechanism(s) of action remain unclear. Here, we investigated the antinociceptive mechanism of orexin A in the rat ventrolateral periaqueductal gray (vlPAG), a midbrain region crucial for initiating descending pain inhibition. In vlPAG slices, orexin A (30-300 nm) depressed GABAergic evoked IPSCs. This effect was blocked by an OX1 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB 334867)], but not OX2 [N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (compound 29)], antagonist. Orexin A increased the paired-pulse ratio of paired IPSCs and decreased the frequency, but not amplitude, of miniature IPSCs. Orexin A-induced IPSC depression was mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a cannabinoid 1 (CB1) receptor agonist. 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM 251), a CB1 antagonist, reversed depressant effects by both agonists. Orexin A-induced IPSC depression was prevented by 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and tetrahydrolipstatin, inhibitors of phospholipase C (PLC) and diacylglycerol lipase (DAGL), respectively, and enhanced by cyclohexyl[1,1'-biphenyl]-3-ylcarbamate (URB602), which inhibits enzymatic degradation of 2-arachidonoylglycerol (2-AG). Moderate DAGLα, but not DAGLβ, immunoreactivity was observed in the vlPAG. Orexin A produced an overall excitatory effect on evoked postsynaptic potentials and hence increased vlPAG neuronal activity. Intra-vlPAG microinjection of orexin A reduced hot-plate nociceptive responses in rats in a manner blocked by SB 334867 and AM 251. Therefore, orexin A may produce antinociception by activating postsynaptic OX1 receptors, stimulating synthesis of 2-AG, an endocannabinoid, through a Gq-protein-mediated PLC-DAGLα enzymatic cascade culminating in retrograde inhibition of GABA release (disinhibition) in the vlPAG.  相似文献   

3.
The hippocampal formation plays an essential role in associative learning like passive avoidance (PA) learning. It has been shown; orexin-containing terminals and orexin receptors densely are distributed in the hippocampal formation. We have previously demonstrated that antagonization of orexin 1 receptor (OX1R) in CA1 region of hippocampus and dentate gyrus (DG) impaired spatial memory processing. Although, there are few studies concerning function of orexinergic system on memory processing in PA task, but there is no study about physiological function of OX1R on this process. To address this, the OX1R antagonist, SB-334867-A, was injected into DG or CA1 regions of hippocampus and evaluated the influence of OX1R antagonization on acquisition, consolidation and retrieval in PA task. Our results show that, SB-334867-A administration into CA1 region impaired memory retrieval but not PA acquisition and consolidation. However, SB-334867-A administration into DG region impaired acquisition and consolidation but not PA memory retrieval. Therefore, it seems that endogenous orexins play an important role in learning and memory in the rat through OX1Rs.  相似文献   

4.
Orexin A in the nucleus accumbens stimulates feeding and locomotor activity   总被引:5,自引:0,他引:5  
Thorpe AJ  Kotz CM 《Brain research》2005,1050(1-2):156-162
Due to the nature of processing within the accumbens shell (AccSh) and the presence of orexin receptors and varicosities within the AccSh, we hypothesized that orexin A may partly regulate feeding behavior and locomotor activity via signaling in this site. To test this hypothesis, male Sprague-Dawley rats were implanted with guide cannulae directed to the medial portion of the AccSh. Orexin A (0, 100, 500, and 1000 pmol, in 0.5 microl artificial cerebrospinal fluid) was infused into the AccSh and feeding behavior and locomotor activity were monitored. The effect of pretreatment with an orexin 1 receptor antagonist (SB334867A) on orexin A-induced feeding and locomotor activity was assessed. Orexin A augmented feeding in the 0-1 h and 1-2 h post-infusion interval (P = 0.0058 and P = 0.025, respectively) and stimulated locomotor activity in the 30-60 min, 60-90 min, and 90-120 min post-infusion intervals (P 相似文献   

5.
Different types of trigeminal pains are frequently associated with psychophysiological concerns. Orexin-A and orexin 1 receptor (OX1R) are involved in modulation of both trigeminal pain and anxiety responses. Ventrolateral periaqueductal gray matter (vlPAG), a controlling site for nociception and emotion, receives orexinergic inputs. Here, the role of vlPAG OX1Rs and their interaction with cannabinoid 1 (CB1) receptor was evaluated in anxiety-like behavior following capsaicin-induced dental pulp pain. Rats were cannulated in the vlPAG and orexin-A was injected at the doses of 0.17, 0.35 and 0.51 μg/rat prior to the induction of pain. The elevated plus maze (EPM) and open field (OF) tests were used for assessing the anxiety responses. In addition, the induction of c-fos, in the vlPAG, was investigated using immunofluorescence microscopy. Capsaicin-treated rats displayed significantly higher anxiogenic behavior on EPM and OF tests. Pretreatment with orexin-A (0.51 μg/rat) attenuated capsaicin-mediated nociception, while exaggerated anxiogenic responses (p < 0.05). In addition, orexin-A effects were diminished by the administration of OX1R (SB-334867, 12 μg/rat) and cannabinoid 1 (AM251, 4 μg/rat) receptor antagonists. Intradental capsaicin induced a significant increase in c-fos expression in the vlPAG that was exaggerated by orexin-A (0.51 μg/rat). Blockage of OX1R and CB1 receptors attenuated the effect of orexin-A on c-fos expression in capsaicin-treated rats. In conclusion, the data suggest that manipulation of OX1R and CB1 receptors in the vlPAG alters capsaicin-evoked anxiety like behaviors and c-fos induction in rats.  相似文献   

6.
Acute systemic treatment with the selective orexin-1 (OX1R) antagonist SB-334867 reduces food intake in rats, an effect associated with an acceleration in behavioural satiety and unrelated to gross behavioural disruption, alterations in palatability, or toxicity. However, as enhanced satiety is behaviourally indexed by an earlier-than-normal transition from eating to resting, and since orexin-A has been implicated in mechanisms of arousal, it remains possible that sedation contributes to the anorectic effect of acute OX1R blockade. Previous work has shown that, when treated with SB-334867 (30 mg/kg, i.p.) 30 min before a 1h test with palatable food, rats begin to show appreciable levels of resting 10-15 min earlier than under control conditions (i.e. around 20 min versus 30-35 min into the session). The present results demonstrate that a 20 min increase in the injection-test interval (i.e. 50 min) had no significant impact on the anorectic, behavioural or weight gain effects of SB-334867 in non-deprived male rats. Most importantly, this altered treatment regimen led to a temporal profile of resting virtually identical to that previously observed with the more conventional 30 min injection-test interval. Although parallel studies indicated that the OX1R antagonist accelerated the onset of resting (and suppressed most active behaviours) even in the absence of food, an equianorectic dose of the natural satiety-related signal cholescystokinin octapeptide (CCK-8S; 5 microg/kg, i.p.) also produced very similar behavioural effects regardless of the presence of food. Together with evidence that SB-334867 preserves the structural integrity of natural feeding behaviour, does not induce nausea/illness or alter taste/palatability and fails to influence EEG measures of arousal/sleep, the present findings are consistent with the view that acute OX1R antagonism selectively enhances satiety. However, unlike the immediate short-circuiting of the satiety sequence induced by CCK-8S, the slower response to SB-334867 implies a more indirect mechanism of action.  相似文献   

7.
Orexins play an important role on the central nervous system to modulate gastric acid secretion. The orexin receptors are distributed within the hypothalamus, and expression of orexin-1 receptors (OX1R) is greatest in the anterior hypothalamus and ventromedial nucleus. Therefore, we hypothesised that ventromedial hypothalamic OX1R may be involved in the control of gastric acid secretion. To address this question, we examined the effects of orexin-A and a selective OX1R antagonist, SB-3345867, on gastric acid secretion in pyloric-ligated conscious rats. Intraventromedial injection of orexin-A (0.5–2 μg/μl) stimulated gastric acid secretion in a dose-dependent manner. This stimulatory effect of orexin-A persisted over 3 h. In some experiments, SB-3345867 (10 mg/kg i.p.) was administered 30 min before orexin-A or saline injections. We found that i.p. injection of SB-334867 suppressed stimulated gastric acid secretion induced by orexin-A (2 μg/μl). Atropine (5 mg/kg) also inhibited the stimulatory effect of central injection of orexin-A on acid secretion. In conclusion, the present study suggests that endogenous orexin-A acts on the ventromedial hypothalamus to stimulates acid secretion. This stimulatory effect is probably mediated through OX1R.  相似文献   

8.
The orexin/hypocretin system is involved in several addiction-related behaviors. In the present experiments, we examined the involvement of orexin in heroin reinforcement and relapse by administering the orexin 1 receptor antagonist SB-334867 prior to heroin self-administration or prior to cue-induced or heroin-induced reinstatement of extinguished heroin seeking in male Sprague Dawley rats. SB-334867 (30 mg/kg, intraperitoneal) reduced heroin intake during self-administration under fixed ratio-1 and progressive ratio schedules. SB-334867 also attenuated reinstatement of heroin seeking elicited by cues, but not reinstatement elicited by a heroin prime. These results indicate that orexin antagonism reduces heroin self-administration, and they support a role for orexin in cue-triggered drug relapse.  相似文献   

9.
Background Orexin‐A is a novel peptide that appears to play a role in regulation of gastric acid secretion. However, little is known about sites of its action. In addition, evidences suggest that some of orexin‐A neurons respond to glucose. In this study, we address the hypothesis which demonstrates that orexin‐A and glucose act in the hypothalamic paraventricular nucleus (PVN) to increase gastric acid secretion and juice volume in pyloric‐ligated conscious rats. Methods Male Wistar rats were implanted with guide canula directed to the PVN. Orexin‐A (3–10 μg), glucose (350–750 ng) SB334867 (6–20 μg) were microinjected. The effect of pretreatment with an orexin‐1 receptor antagonist, SB334867, on orexin‐A and D‐glucose induced acid secretion was assessed. Gastric acid secretion was measured using the pylorus‐ligation method, and the amount of gastric acid was determined by titration with 0.01 N NaOH to a pH of 7.0. Key Results Intraparaventricular injection of orexin‐A or D‐glucose stimulated gastric acid secretion in a dose‐dependent manner. The PVN injections of orexin‐A receptor antagonist, SB334867, were associated with gastric acid secretion decrease and inhibited effects of PVN‐injected orexin‐A. Orexin‐stimulated gastric acid secretion was decreased (~40%) after PVN lesions. Glucose‐stimulated gastric acid secretion was also suppressed by intraperitoneal (IP) injection of SB334867. In addition, it was observed that co‐injection of orexin‐A and glucose at ineffective doses increased gastric secretion significantly. Conclusions & Inferences We suggest that orexin‐A and glucose effects on the PVN stimulate gastric acid secretion. This stimulatory effect is probably mediated by orexin‐1 receptors.  相似文献   

10.
The orexins are hypothalamic neuropeptides and their role in reward processing and drug addiction has been demonstrated. The extent of involvement of each orexin receptor in the acquisition and expression of conditioned place preference (CPP) for morphine is still a matter of controversy. We investigated the functional differences between orexin-1 and -2 receptor blockade in the ventral tegmental area (VTA) on the acquisition and expression of morphine CPP. A total of 86 adult male Wistar rats weighing 250 ± 30 g (age 7–8 weeks) received intra-VTA microinjection of either SB334867 (0.1, 1 and 10 nM), a selective orexin-1 receptor (OX1R) antagonist, or TCS-OX2-29 (1, 5 and 25 nM), a selective orexin-2 receptor (OX2R) antagonist. To measure the acquisition, the animals received each antagonist (SB334867 or TCS-OX2-29) 5 min prior to subcutaneous injection of morphine (5 mg/kg) during the conditioning phase. To measure the CPP expression, the animals received each antagonist on the post-conditioning phase. The CPP conditioning score was recorded by Ethovision software. Data showed that intra-VTA microinjection of OX1-R antagonist significantly attenuated morphine CPP acquisition, during the conditioning phase, and expression, during the post-conditioning phase. Intra-VTA microinjection of OX2-R antagonist also significantly attenuated morphine CPP acquisition and expression in the mentioned phases. Our results showed the orexin role in learning and memory and indicate that orexin receptors (OX1R and OX2R) function in the VTA is essential for both acquisition and expression of morphine reward in rats in the CPP model.  相似文献   

11.
Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expression coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation(frequency, 30 Hz; current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1(OX1R) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expression reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1 R expression were decreased, compared with that of the stimulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OX1R expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.  相似文献   

12.
The orexinergic system supposedly plays a role in stress circuits for arousing behaviors during anxiety, suggesting that it may play a role also in neural circuits mediating the compulsive behavior characteristic of obsessive-compulsive disorder (OCD). This study aims to investigate the roles of the orexinergic system in the development of OCD behaviors, using as preparation the induction of compulsive checking by chronic treatment with the D2/D3 agonist, quinpirole. Repeated injections of quinpirole (0.5 mg/kg, twice per week for a total of 10 injections) were used to induce compulsive checking. In separate groups of rats, OX1R (SB334867-A; 10 μg i.c.v) and OX2R (TCS-OX2-29; 10 μg i.c.v) receptor antagonists were co-administered together with quinpirole. Checking behavior in a large open field was measured after the first, fifth, and tenth injections of the drugs. SB334867-A attenuated checking behavior and the level of anxiety. TCS-OX2-29 administration ameliorated anxiety but did not block the development of compulsive checking. Orexin 1 receptors seem to play a more critical role than orexin 2 receptors in the induction of compulsive checking. Considering that the quinpirole sensitization model of OCD involves activation of dopamine systems and sensitization to quinpirole, it is suggested that neural interaction between orexigenic and dopamine systems may be important in the pathogenesis of OCD.  相似文献   

13.
14.
Orexins influence various physiological processes associated with feeding behaviour, endocrine functions and wakefulness. One component of mammalian circadian timing systems, intergeniculate leaflet (IGL) of the lateral geniculate nucleus, is thought to contribute to circadian entrainment by processing photic and non‐photic/arousal‐related signals. Because the IGL is possibly innervated by the orexinergic system, using in vitro extracellular recording techniques we evaluated the influence of orexin A (OXA) and orexin B (OXB) on the rate and pattern of neuronal firing in this structure. Significant increases in the activity of 33 and 28% of IGL cells were observed after locally applied OXA (1 μm ) and OXB (1 μm ), respectively. In the great majority of neurons responses to OXA were maintained in the presence of orexin‐1 receptor OX1R antagonist, SB 334867 (10 μm ). Additionally, 75% of the OXB‐responsive neurons were also sensitive to an orexin‐2 receptor (OX2R)‐selective agonist, [Ala11, D‐Leu15]‐OXB (1 μm ). Immunohistochemical stainings showed putative synaptic contacts between OXA‐ and OXB‐immunoreactive fibres and neuropeptide Y, and enkephalin‐positive neurons in the investigated area. The outcome of our experiments reinforces previous reports indicating the possible linkage between the orexinergic and circadian systems. To our knowledge the presented findings are the first showing the direct influence of orexins on the IGL activity, mostly through activation of OX2R.  相似文献   

15.
Orexin A and orexin B (also known as hypocretins) are closely related peptides synthesized by hypothalamic neurons. They orchestrate diverse central and peripheral processes by stimulation of two G-protein coupled receptors, OX1R and OX2R. Recent studies have demonstrated the ability of orexins to promote a robust apoptosis in different cancer cells in culture and a potent growth reduction of human colon tumors in mice xenografts. Here we report effects of orexins on survival of rat C6 glioma cells, an experimental model for studies on glioblastoma multiforme (GBM). Quantitative real-time PCR demonstrated the expression of both types of orexin receptors in C6 cells. Orexin A and orexin B did not affect rat C6 glioma cell proliferation as assessed by [3H]thymidine incorporation assay. Incubation of the cells with orexin A (0.001–1 μM) resulted in a marked decrease of cell viability. The observed effect was caspase-dependent, as it was blocked by Z-VAD-fmk, a pan caspase inhibitor. In addition to that, a parallel increase in caspase-3 activity was observed. It is suggested that stimulation of orexin receptors induces death of rat C6 glioma cells through activation of caspase pathway.  相似文献   

16.
Orexin‐A (OxA) is synthesized in posterior and lateral regions of the hypothalamus and contributes to homeostatic regulation of body functions including pain modulation. To determine if orexinergic mechanisms contribute to posterior hypothalamus (PH)‐induced modulation of ocular input to subnucleus caudalis/upper cervical (Vc/C1) neurons, the orexin‐1 receptor antagonist SB334867 was applied to the dorsal brainstem surface prior to PH disinhibition, by bicuculline methiodide, in male rats under isoflurane anesthesia. Ocular input to Vc/C1 units by bright light or hypertonic saline was markedly reduced by PH disinhibition and reversed completely by local Vc/C1 application of SB334867. OxA applied to the Vc/C1 surface mimicked the effects of PH disinhibition in a dose‐dependent manner. OxA‐induced inhibition was prevented by co‐application of SB334867, but not by the orexin‐2 receptor antagonist TCS Ox2 29. PH disinhibition and local OxA application also reduced the high threshold convergent cutaneous receptive field area of ocular units, suggesting widespread effects on somatic input to Vc/C1 ocular units. Vc/C1 application of OxA or SB334867 alone did not affect the background discharge of ocular units and suggested that the PH–OxA influence on ocular unit activity was not tonically active. Vc/C1 application of OxA or SB334867 alone also did not alter mean arterial pressure, whereas PH disinhibition evoked prompt and sustained increases. These results suggest that stimulus‐evoked increases in PH outflow acts through OxA and orexin‐1 receptors to alter the encoding properties of trigeminal brainstem neurons responsive to input from the ocular surface and deep tissues of the eye.  相似文献   

17.
The extracellular response of medullary trigeminal neurons to electrical stimulation of the dura was studied in anesthetized cats. Fifty-six medullary trigeminal units were excited by stimulation sites near major dural vessels with an average latency of 11.0 ms. Many units also responded to infraorbital nerve shock and had cutaneous receptive fields that included the ipsilateral periorbital region. These cutaneous responses were either wide dynamic range or nociceptive specific in type. Electrical stimulation of the midbrain periaqueductal gray region suppressed the response of medullary trigeminal units to either dural stimulation or infraorbital nerve shock. Medullary trigeminal neurons that receive convergent inputs from dura and facial skin may provide a physiological substrate for the cutaneous referral of dural sensation.  相似文献   

18.
The orexin/hypocretin system is involved in multiple cocaine addiction processes that involve drug‐associated environmental cues, including cue‐induced reinstatement of extinguished cocaine seeking and expression of conditioned place preference. However, the orexin system does not play a role in several behaviors that are less cue‐dependent, such as cocaine‐primed reinstatement of extinguished cocaine seeking and low‐effort cocaine self‐administration. We hypothesized that cocaine‐associated cues, but not cocaine alone, engage signaling at orexin‐1 receptors (OX1Rs), and this cue‐engaged OX1R signaling increases motivation for cocaine. Motivation for cocaine was measured in Sprague–Dawley rats with behavioral‐economic demand curve analysis after pretreatment with the OX1R antagonist SB‐334867 (SB) or vehicle with and without light + tone cues. Demand for cocaine was higher when cocaine‐associated cues were present, and SB only reduced cocaine demand in the presence of these cues. We then investigated whether cocaine demand was linked to the cued reinstatement of cocaine seeking, as both procedures are partially driven by cocaine‐associated cues in an orexin‐dependent manner. SB blocked cue‐induced reinstatement behavior, and baseline demand predicted SB efficacy with the largest effect in high‐demand animals, i.e. animals with the greatest cue‐dependent behavior. We conclude that OX1R signaling increases the reinforcing efficacy of cocaine‐associated cues but not that of cocaine alone. This supports our view that orexin plays a prominent role in the ability of conditioned cues to activate motivational responses.  相似文献   

19.
Sleep deprivation has been shown to be an activator of seizures in clinical and animal studies. Orexin-A was speculated to be involved in the aggravation of seizures by sleep deprivation through the activation of its receptors: orexin-1 and orexin-2 receptor (OX1R and OX2R, respectively). Therefore, we aimed to investigate the effects of pre-treating sleep-deprived Wistar rats with the OX1R or OX2R antagonists, SB334867 (30 nM/kg) or TCS OX2 29 (30 nM/kg), respectively, followed by a convulsive dose of 50 mg/kg pentylenetetrazol administration (seizure induction), on seizure behavior, and hippocampal neurodegeneration and cellular proliferation. Our results revealed that treatment with SB334867 or TCS OX2 29 significantly prolonged the latency and reduced the duration of seizures, while also lowering the mortality rate in sleep-deprived rats exposed to pentylenetetrazol. In addition, SB334867 or TCS OX2 29 reduced the damage to hippocampal CA3 neurons and the number of bromodeoxyuridine-positive cells in the dentate gyrus (particularly in the hilus). Overall, the effect of TCS OX2 29 was greater than that of SB334867. Taken together, these data suggest that OX1R and OX2R antagonists may alleviate the damage of pentylenetetrazol-induced seizures that are exacerbated by sleep deprivation, and furthermore could be associated with a reduction of neuronal damage in the hippocampus and the inhibition of cellular proliferation in the dentate gyrus.  相似文献   

20.
We have previously shown that the orexin-1 antagonist SB-334867 blocks the electrophysiological effects of haloperidol and olanzapine on the activity of A9 and A10 dopamine neurons. To evaluate if orexin-1 antagonists might block other effects of antipsychotic drugs in animals, we examined the effects of SB-334867 on behavioral, neurochemical, and neuroendocrine effects of antipsychotic drugs. Pretreatment with SB-334867 (0.01-10 mg/kg, intraperitoneal [IP]) significantly decreased the catalepsy produced by the administration of haloperidol (1 mg/kg, subcutaneous [SC]), risperidone (2 mg/kg, SC), and olanzapine (10 mg/kg, SC). Administration of SB-334467 also reversed catalepsy after it had been established in animals pretreated 2 hours earlier with haloperidol. However, pretreatment with SB-334867 (1-10 mg/kg, IP) did not block the decreases in exploratory locomotor activity produced by administration of haloperidol (0.1 mg/kg, SC) or risperidone (0.3 mg/kg, SC). In addition, pretreatment with SB-334867 (1-10 mg/kg, IP) neither blocked the increased levels of dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens or striatum nor the elevation in serum prolactin produced by administration of haloperidol (0.1 mg/kg, SC) and risperidone (1 mg/kg, SC). Administration of SB-334867 alone neither changed locomotor activity and DOPAC or prolactin levels nor produced catalepsy. These results show that orexin-1 antagonists block the catoleptogenic effects of antipsychotics but do not block other locomotor, neurochemical, or neuroendocrine effects of antipsychotics. Because catalepsy is thought to be a good predictor of extrapyramidal symptoms in humans, treatment with orexin-1 antagonists might decrease the occurrence or severity of antipsychotic treatment-emergent extrapyramidal symptoms in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号