首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  相似文献   

2.
Summary The pharmacology of synaptic transmission was studied in slices of rat piriform cortex using the selective non-NMDA glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) and the selective NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5). DNQX produced a dose-dependent blockade of synaptic transmission at both lateral olfactory tract and associational system synapses with half-maximal effects at about 2.5 M. D-AP5 had no significant effects on field potentials recorded in medium containing 2.5 mM Mg++. However in low Mg++ (100–200 M) medium, D-AP5 did reduce a slow component of postsynaptic responses in both synaptic systems. In Mg++-free medium, 20 M DNQX did not completely block transmission; the remaining response components were blocked by D-AP5. These results suggest that normal synaptic transmission in the two main inputs to the superficial layers of piriform cortex is mediated by non-NMDA receptors but that NMDA receptors can also participate under conditions where the Mg++ block of the NMDA channel is alleviated.  相似文献   

3.
Respiratory disturbance, including apnea, can be induced by microinjection of glutamate into the intertrigeminal region (ITR) of the lateral pons, a region that is anatomically coupled to both the dorsal and ventral respiratory groups of the medulla. We showed that the ITR plays a functional role in regulating both vagal reflex apnea and spontaneous sleep-related apnea in rats, but the mechanisms have not been determined. This study shows that functional NMDA receptors are expressed in the ITR since the blockade of these receptors by AP5, a specific NMDA receptor antagonist, was fully effective in blocking apnea induced by glutamate injection within this region. Selective blockade of ITR NMDA receptors had no effect on the immediate apnea evoked by an intravenous 5-HT bolus, whereas the nonspecific glutamate receptor antagonist kynurenic acid significantly increased the duration of this vagal reflex apnea. These findings are of interest because pontine NMDA receptors participate in inspiratory off-switch mechanisms and have been implicated in various short- and long-term potentiation and depression phenomena. These data support the involvement of ITR non-NMDA receptors in modulation of reflex apnea per se, whereas NMDA receptors play a role in damping respiratory responses to transient disturbances.  相似文献   

4.
The relative role of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in synaptic responses of neurons in caudal nucleus tractus solitarii (cNTS) was delineated by immunohistochemical and electrophysiologic experiments in rats. Double immunohistochemical staining in in vivo experiments revealed that approximately 80% of cNTS neurons that showed Fos-like immunoreactivity induced by baroreceptor activation were generally also immunoreactive to non-NMDA receptor subunits GluR1 or GluR2. On the other hand, only 20% of Fos-labeled cNTS neurons showed immunoreactivity to NMDA receptor subunits NMDAR1 or NMDAR2. Stimulation of the ipsilateral solitary tract at suprathreshold intensity in slice preparations induced Fos expression in the cNTS and evoked either a single action potential or a complex synaptic response consisting of an initial action potential followed by a secondary slow depolarization. In a majority (70%) of cNTS neurons that exhibited the complex synaptic response, both the initial and secondary components were eliminated reversibly by 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). This non-NMDA antagonist also inhibited the single action potential manifested by the other population of cNTS neurons. On the other hand, only the secondary slow depolarization was blocked by D(-)-2-amino-5-phosphonopentanoic acid (250 microM) or potentiated by NMDA (1.7 microM). Our results suggested that NMDA and non-NMDA receptors are involved differentially in the synaptic responses of cNTS neurons. Non-NMDA receptors may be distributed predominantly on a majority of the second-order cNTS neurons that may receive primary baroreceptor afferent inputs. On the other hand, NMDA receptors are located primarily on higher-order neurons, which may be connected reciprocally with the second-order cNTS neurons.  相似文献   

5.
The relay of information at the retinogeniculate synapse, the connection between retina and visual thalamus, begins days before eye opening and is thought to play an important role in the maturation of neural circuits in the thalamus and visual cortex. Remarkably, during this period of development, the retinogeniculate synapse is immature, with single retinal ganglion cell inputs evoking an average peak excitatory postsynaptic current (EPSC) of only about 40 pA compared with 800 pA in mature synapses. Yet, at the mature synapse, EPSCs >400 pA are needed to drive relay neuron firing. This raises the question of how small-amplitude EPSCs can drive transmission at the immature retinogeniculate synapse. Here we find that several features of the immature synapse, compared with the mature synapse, contribute to synaptic transmission. First, although the peak amplitude of EPSC is small, the decay time course of both alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) currents is significantly slower. The prolonged time course of NMDAR currents is a result of the presence of both NR2B and NR2C/D subunits. In addition, the extended presence of neurotransmitter released prolongs the synaptic current time course. Second, reduced sensitivity to magnesium block results in significantly greater synaptic charge transfer through NMDAR. Third, AMPAR currents contribute to the spike latency, but not to temporal precision, at the immature synapse. Furthermore, intrinsic excitability is greater. These properties enable immature synapses with predominantly NMDARs and little or no AMPARs to contribute to the relay of information from retina to visual cortex.  相似文献   

6.
We examined whether the NMDA class of excitatory amino acid receptors contribute to synaptic transmission in the pathway connecting the medial geniculate body (MGB) with the lateral nucleus of the amygdala (LA) using extracellular single unit recordings and microiontophoresis. Cells were identified in LA on the basis of responsivity to electrical stimulation of the MGB. For each cell, a level of current was found for the iontophoretic ejection of the NMDA antagonist AP5 that blocked responses elicited by iontophoresis of NMDA, but had no effect on responses elicited by AMPA. Iontophoresis of AP5 with this level of current blocked the excitatory response elicited by MGB stimulation in most cells tested. Microinfusion of AP5 (25, 50, or 100 M) also blocked the responses. Additional studies tested individual cells with both AP5 and the AMPA antagonist CNQX and showed that blockade of either NMDA or AMPA receptors interferes with synaptic transmission. Finally, iontophoretic ejection of either AP5 or CNQX blocked short-latency (<25 ms) responses elicited in LA by peripheral auditory stimulation. Together, these results suggest that the synaptic evocation of action potentials in the thalamo-amygdala pathway depends on both NMDA and non-NMDA receptors. We hypothesize that non-NMDA receptors are most likely required to depolarize the cell sufficiently to remove the blockade of NMDA channels by magnesium and NMDA receptors are required to further depolarize the membrane to the level required for action potential generation.  相似文献   

7.
8.
Conventional intracellular recordings were made from regular-spiking cells located in layers II-IV to examine the involvement of excitatory amino acid receptors in synaptic transmission in epileptogenic human neocortical slices maintained in vitro. Extracellular stimuli that were below the threshold for generating action potentials evoked an excitatory postsynaptic potential (EPSP) with short latency to onset (0.8-4 ms). When suprathreshold stimuli were delivered, 95% of the neurons fired a single action potential. In 5% of the population, however, an all-or-none bursting discharge was observed. The EPSP and the bursting discharge were tested with the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP, 5 microM) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 4 microM). In the presence of CNQX the peak amplitude of the EPSP was reduced by 85% and the bursting discharge was abolished completely. By contrast, CPP reduced the peak amplitude of the EPSP by 52%, attenuated the late phase of the bursting discharge and increased its threshold. These results indicate that excitatory amino acids function as excitatory transmitters in the human brain. While the involvement of non-NMDA receptors in the EPSP is in line with data from normal neocortical slices of other mammals, the participation of NMDA-mediated conductances to the EPSP appears peculiar to the epileptogenic human neocortex. This evidence, together with the contribution of NMDA and non-NMDA receptors to the all-or-none bursting discharge suggests that excitatory amino acid-mediated transmission might be modified in the epileptogenic human neocortex.  相似文献   

9.
1. We have examined the effects of iontophoresing specific antagonists to excitatory amino acid receptors on the visual responses of cells in lamina A or A1 of the cat's lateral geniculate nucleus (LGN). 2. Cells were classified as On- or Off-center, X or Y, and lagged or nonlagged. The effects of antagonists were studied while cells were stimulated with spots of the appropriate contrast covering the receptive-field center. 3. The N-methyl-D-aspartate (NMDA) receptor antagonists D-2-amino-5-phosphonovaleric acid (D-APV) and 3-(+/-)-2-carboxypiperazin-4-yl)- propyl-1-phosphonic acid (CPP), when iontophoresed at doses that specifically antagonized NMDA-induced responses but not kainate-induced responses, reduced the responses of all cell types in the LGN, including X and Y cells, lagged and nonlagged cells, and On- and Off-center cells. 4. The non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), when applied at doses that specifically antagonized kainate-induced responses but not NMDA-induced responses, also reduced the visual responses of each of the cell types in the LGN. 5. We analyzed quantitatively the effects of D-APV and CNQX on LGN cells. D-APV reduced the responses of lagged cells to a greater extent than the responses of nonlagged cells. CNQX reduced the responses of lagged and nonlagged cells to a similar extent. There was no difference in the effect of D-APV or of CNQX on X and Y cells or on On- and Off-center cells. 6. We analyzed the effects of the antagonists on separate components of responses, including an early component comprising the first 100 ms of response and a late component comprising the next 300 ms of response. D-APV reduced the late component of lagged cell responses to a greater extent than either the early component of the same cells or the early or late component of nonlagged cells. CNQX had nearly equivalent effects on both response components of all cell types. 7. These data indicate that NMDA and non-NMDA receptors make similar contributions to the responses of On- and Off-center and X and Y cells in the LGN. Lagged and nonlagged cells are not differentiated with respect to the contribution of non-NMDA receptors to their visual responses. The greater contribution of NMDA receptors to the responses of lagged cells is consistent with the large contribution made by these receptors to the late response components of lagged cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. The pharmacology of synaptically evoked extracellular alkaline shifts was studied in the CA1 area of rat hippocampal slices. 2. Stimulus-evoked alkalinizations were unaffected by 2-amino-5-phosphonovalerate (APV) (20 microM). 3. 6-Cyano-7-nitro-nitroquinoxaline-2,3-dione (CNQX) (10 microM) inhibited the alkalinizations. In the continued presence of CNQX, an APV-sensitive, picrotoxin-insensitive, alkaline shift was elicited in low Mg2+ media. 4. Antidromic stimulation produced small alkaline shifts in comparison with orthodromic activation. 5. Our results demonstrate that in the hippocampal CA1 region, synaptically evoked alkalinizations can arise through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. These responses cannot be explained by cell firing per se.  相似文献   

11.
Summary Sensory synaptic responses of rat ventrobasal thalamus neurones were challenged with iontophoretic applications of the excitatory amino acid antagonists CNQX and CPP. CNQX, applied with currents which were selective for non-NMDA receptors, antagonised responses of VB neurones to both 10 ms and 2000 ms air jet stimulation of the peripheral receptive field. In contrast, CPP only antagonised the latter type of response. These results suggest a differential involvement of excitatory amino acid receptors in sensory synaptic transmission to the ventrobasal thalamus, with an initial synaptic component being mediated by non-NMDA receptors (including kainate receptors), and a further NMDA receptor-mediated component being manifested upon maintained sensory stimulation. The expression of this latter component appears to be largely dependent upon the integrity of the non-NMDA receptor-mediated component.  相似文献   

12.
In addition to its effects on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) plays an important role in modulating synaptic transmission and plasticity in many brain areas, most notably the neocortex and hippocampus. These effects may underlie a role for BDNF in learning and memory as well as developmental plasticity. Consistent with localization of the tropomyosin-related kinase B receptor to both sides of the synapse, BDNF appears to have pre- and postsynaptic effects, but the underlying cellular mechanisms are unclear and it is not known whether pre- and postsynaptic modulations by BDNF occur simultaneously. To address these issues, we recorded dual-component (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-D-aspartate [NMDA]) miniature excitatory postsynaptic currents (mEPSCs) from cortical and hippocampal pyramidal neurons and dentate gyrus granule cells from acute brain slices. BDNF had no effect on the fast component of mEPSC decay or on the peak amplitude, suggesting that BDNF did not modulate postsynaptic AMPA receptors, although BDNF rapidly modulated NMDA receptors, as seen by an enhancement of the slow component of mEPSC decay that was prevented by blocking postsynaptic NMDA receptors. At the same time, BDNF acted presynaptically to enhance mEPSC frequency. Surprisingly, the effect on frequency was also NMDA receptor dependent, but required activation of presynaptic, not postsynaptic, NMDA receptors. BDNF also enhanced action potential-dependent glutamate release via presynaptic NMDA receptors, an effect that was unmasked when voltage-gated calcium channels were partially inhibited. Our results indicate that BDNF acutely modulates presynaptic release and postsynaptic responsiveness through simultaneous effects on pre- and postsynaptic NMDA receptors.  相似文献   

13.
Two main subclasses of ionotropic receptors for excitatory amino acids (EAAs), N-methyl-d-aspartate (NMDA) receptors and non-NMDA receptors, are involved in neurotransmission in the cortex of mammals. To examine whether EAAs are transmitters at the cortical taste area (CTA) in rats and to elucidate which types of the two ionotropic receptors operate at these synapses, we studied the effects of microiontophoretic administration of EAA antagonists on the responses of 64 taste cortical neurons to four basic taste stimuli in urethane-anesthetized rats. Both d-2-amino-5-phosphonovalerate (APV), a selective antagonist for NMDA receptors, and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist for non-NMDA receptors, suppressed most of the taste responses. The percentage of neurons suppressed by APV (70.3%) was almost the same as that suppressed by CNQX (64.1%). These suppressive effects were independent of the effects of background discharges during the prestimulus, water-rinsing period. The percentage of neurons suppressed by the antagonists did not differ between any pairs of taste stimuli. The number of neurons possessing both receptors was larger in the granular insular area (area GI), one of the two CTAs, than in the dysgranular insular area (area DI). In addition, taste responses were suppressed by CNQX or by both APV and CNQX in area GI in a significantly larger number of layer V neurons than in area DI. The present results indicate that normal excitatory transmission of taste afferents in the CTA in rats was mediated by both NMDA and non-NMDA receptors. The finding that a large fraction of neurons in the CTA in rats mediated taste information through NMDA receptors in normal transmission might be related to the higher potency of the plasticity observed in the CTA.  相似文献   

14.
Summary Conventional intracellular recording techniques were used to investigate the N-methyl-D-aspartate (NMDA) and non-NMDA mediated synaptic mechanisms underlying the stimulus-induced paroxysmal depolarization shift (PDS) generated by cells in rat neocortical slices treated with bicuculline methiodide (BMI). The NMDA receptor antagonists CPP or MK-801 were ineffective in abolishing the PDS. However, both drugs were able to attenuate the late phase of the PDS and delay its time of onset. In contrast, the non-NMDA receptor blocker CNQX demonstrated potent anticonvulsant property by reducing the PDS into a depolarizing potential that was graded in nature. This CNQX-resistant depolarizing potential was readily blocked by CPP. Voltage-response analysis of the PDS indicated that the entire response (including its NMDA-mediated phase) displayed conventional voltage characteristics reminiscent of an excitatory postsynaptic potential that is mediated by non-NMDA receptors. We conclude that the activation of non-NMDA receptors is necessary and sufficient to induce epileptiform activity in the neocortex when the GABAergic inhibitory mechanism is compromised. The NMDA receptors contribute to the process of PDS amplification by prolonging the duration and reducing the latency of each epileptiform discharge. However, the participation of NMDA receptors is not essential for BMI-induced epileptogenesis, and their partial involvement in the PDS is dependent upon the integrity of the non-NMDA mediated input. The lack of NMDA-like voltage dependency observed in the PDS's late phase might reflect an uneven distribution of NMDA receptors along the cell and/or an association of this excitatory amino acid receptor subtype in the polysynaptic pathways within the neocortex.  相似文献   

15.
Although the synaptic physiology of the amygdala has been studied with single neuron recordings, the properties of the networks between the various nuclei have resisted characterization because of the limitations of field recording in a neuronally diffuse structure. We addressed this issue in the rat amygdala complex in vitro by using a photodiode array coupled with a voltage-sensitive dye. Low-intensity single pulse stimulation of the lateral amygdala nucleus produced a complex multi-phasic potential. This signal propagated to the basolateral nucleus and the amygdalostriatal transition zone but not to the central nucleus. The local potential, which depended on both synaptic responses and activation of voltage-dependent ion channels, was reduced in amplitude by the non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist 6,7-dinitroquinoxaline (DNQX) and reduced to a lesser extent by the NMDA glutamate receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). We next characterized the less complex signals that propagated to more distal regions with or without the addition of the GABA receptor antagonist bicuculline (BIC). BIC alone greatly increased the signal propagation and permitted activation of previously silent areas within the amygdala. DNQX blocked signal propagation to amygdala regions outside of La, even in the presence of BIC, whereas D-APV had minimal effects on these distal signals. These data represent several novel findings: the characterization of the multi-component potential near the site of stimulation, the gating of signal propagation within the amygdala by GABAergic inhibition, the critical role of non-NMDA receptor-mediated depolarization in signal propagation, and the lack of a role for NMDA receptors in maintaining propagation.  相似文献   

16.
Some have postulated that long-term facilitation (LTF), a persistent augmentation of respiratory activity after episodic hypoxia, may play a beneficial role in helping stabilize upper airway patency in obstructive sleep apnea (OSA) patients. However, the neuronal and cellular mechanisms underlying this plasticity of respiratory motor behavior are still poorly understood. The main purpose of this review is to summarize recent findings about serotonin and NMDA receptors involved in both LTF and its enhancement after chronic intermittent hypoxia (CIH). The potential roles of these receptors in the initiation, formation and/or maintenance of LTF, as well as the CIH effect on LTF, will be discussed. As background, different paradigms for the stimulus protocol, different patterns of LTF expression and their mechanistic implications in LTF will also be discussed.  相似文献   

17.
We have suggested that in the lamprey, a medullary region called the paratrigeminal respiratory group (pTRG), is essential for respiratory rhythm generation and could correspond to the pre-Bötzinger complex (pre-BötC), the hypothesized kernel of the inspiratory rhythm-generating network in mammals. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether some functional characteristics of the respiratory network are retained throughout evolution and to get further insights into the recent debated hypotheses on respiratory rhythmogenesis in mammals, such as for instance the “group-pacemaker” hypothesis. Thus, we tried to ascertain the presence and role of neurokinins (NKs) and burst-generating ion currents, such as the persistent Na+ current (INaP) and the Ca2+-activated non-specific cation current (ICAN), described in the pre-Bötzinger complex. Respiratory activity was monitored as vagal motor output. Substance P (SP) as well as NK1, NK2 and NK3 receptor agonists (400–800 nM) applied to the bath induced marked increases in respiratory frequency. Microinjections (0.5–1 nl) of SP as well as the other NK receptor agonists (1 μM) into the pTRG increased the frequency and amplitude of vagal bursts. Riluzole (RIL) and flufenamic acid (FFA) were used to block INaP and ICAN, respectively. Bath application of either RIL or FFA (20–50 μM) depressed, but did not suppress respiratory activity. Coapplication of RIL and FFA at 50 μM abolished the respiratory rhythm that, however, was restarted by SP microinjected into the pTRG. The results show that NKs may have a modulatory role in the lamprey respiratory network through an action on the pTRG and that INaP and ICAN may contribute to vagal burst generation. We suggest that the “group-pacemaker” hypothesis is tenable for the lamprey respiratory rhythm generation since respiratory activity is abolished by blocking both INaP and ICAN, but is restored by enhancing network excitability.  相似文献   

18.
In the present experiments the dorsal root-evoked dorsal root potential (DR-DRP) has been measured in vitro from a mature rat sacrococcygeal preparation. The DR-DRP is an index of presynaptic inhibition since it represents the depolarization of primary afferent terminals by gamma-aminobutyric acid (GABA) released synaptically from interneurones. The present study shows that the synaptic excitation of the GABAergic interneurons contains a large component resistant to the selective N-methyl-D-aspartate (NMDA) receptor antagonists 2-amino-5-phosphonopentanoate (AP5) (100 microM) and 3((+)-2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP) 20-100 microM. This non-NMDA receptor mediated component reflected in the DR-DRP was depressed markedly by the non-selective excitatory amino acid receptor antagonists kynurenate (1-2 mM) and 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) (10-20 microM). Because previous reports show non-cholinergic activation of Renshaw cells to be blocked by NMDA receptor antagonists the present observations suggest that pre- and postsynaptic inhibition in the spinal cord are mediated by different types of excitatory amino acid receptor.  相似文献   

19.
20.
The action of endogenous excitatory amino acids on phrenic motoneurons was studied in anesthetized, vagotomized, paralyzed and artificially ventilated rabbits. The NMDA receptor antagonists APV and ketamine, as well as the non-NMDA receptor antagonists GAMS and DNQX were administered by microinjection into the ventral horn of the spinal segments C3-C5. Injection of each antagonist resulted in a reversible reduction of the phrenic nerve activity. Results suggest an important function of endogenous excitatory amino acids in the excitation of phrenic motneurons. NMDA as well as non-NMDA receptors are involved. The functional role of both receptor types in bulbospinal neurotransmission is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号