首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial diseases   总被引:4,自引:0,他引:4  
Vu TH  Hirano M  DiMauro S 《Neurologic Clinics》2002,20(3):809-39, vii-viii
Since the first reports of disorders associated with mitochondrial DNA (mtDNA) defects more than a decade ago, the small mtDNA circle has been a Pandora's box of pathogenic mutations associated with human diseases. The "morbidity map" of mtDNA has gone from one point mutation and a few deletions in 1988 to more than 110 point mutations as of September, 2001. Nuclear DNA defects affecting mitochondrial function and mtDNA replication and integrity have also been identified in the past few years and more are expected. As a result, human "mitochondrial" diseases have evolved beyond the novelty diagnoses of a decade ago into an important area of medicine, and thus, the diagnostic principles of these disorders ought to be familiar to the clinician. In this article, the authors, we summarize the principles of mitochondrial genetics and discuss the common phenotypes, general diagnostic approach, and possible therapeutic venues for these fascinating disorders.  相似文献   

2.
Mitochondrial encephalomyopathies   总被引:4,自引:0,他引:4  
Mitochondrial encephalomyopathies are diseases caused by defective oxidative phosphorylation (OXPHOS), and affect the nervous system and/or skeletal muscle. They have emerged as a major entity among the neurometabolic diseases of childhood with an incidence of 1 in 11,000 children, and also have a high prevalence in adults. The first pathogenic mutation of human mitochondrial DNA (mtDNA) was discovered in 1988. Since then more than 100 mutations of mtDNA have been reported, including point mutations of genes encoding transfer RNA, ribosomal RNA, and proteins, as well as large-scale deletions. The first nuclear-DNA gene mutation causing OXPHOS disease was described in 1995. Mutations in nuclear genes may affect the respiratory chain by various mechanisms. Pathogenic mutations of nuclear-DNA-encoded subunits of complex I and II have been demonstrated as have mutations of respiratory chain assembly proteins. Several nuclear genes associated with mtDNA maintenance have been found to be associated with mitochondrial disorders since mutations in these genes predispose to multiple mtDNA deletions and/or reduced copy number of mtDNA. The genotype-phenotype correlation is not yet entirely clear, but new animal models will enhance our ability to study the pathophysiology of OXPHOS disorders.  相似文献   

3.
Mitochondrial encephalomyopathies: an update   总被引:7,自引:0,他引:7  
A genetic classification of the mitochondrial encephalomyopathies includes disorders due to defects of mitochondrial DNA (mtDNA) and disorders due to defects of nuclear DNA (nDNA). Recent progress in mtDNA-related diseases includes: (i) new pathogenic mutations in protein-coding genes, especially those encoding subunits of complex I (ND genes); (ii) the pathogenic nature of homoplasmic mutations, whose expression is regulated by environmental and genetic factors; (iii) increasing interest in the functional and pathophysiological role of haplotypes. Advances in mendelian mitochondrial diseases include: (i) new mutations in genes for complex I subunits; (ii) identification of new mutant ancillary proteins associated with complex IV and complex V deficiencies; (iii) better molecular understanding of disorders due to faulty intergenomic communication, which are associated with multiple mtDNA deletions, mtDNA depletion, or defects of mtDNA translation; (iv) the pathogenic role of alterations of the inner mitochondrial membrane phospholipid components, especially cardiolipin; (v) the emerging importance of defects in mitochondrial motility, fission, or fusion.  相似文献   

4.
An increasing number of case reports on Leber's hereditary optic neuropathy (LHON) associated mitochondrial (mt)DNA point mutations in patients with multiple sclerosis (MS) raised the possibility that mitochondrial determinants may contribute to genetic susceptibility to MS. These observations prompted many laboratories including ours to perform comprehensive sequencing or large scale screening of the mtDNA in MS patients. Here we review the available data arguing for or against a mitochondrial hypothesis for MS. We conclude that pathogenic mtDNA point mutations are not associated with typical forms of this disease. A very small subgroup of MS patients, usually with prominent optic neuritis (PON), may carry pathogenic LHON mutations. This partial overlap between the two diseases may be related to the association of MS with a mtDNA haplotype (a set of mtDNA polymorphisms) within which pathogenic LHON mutations preferentially occur.  相似文献   

5.
Wong LJ 《Muscle & nerve》2007,36(3):279-293
More than 200 disease-related mitochondrial DNA (mtDNA) point mutations have been reported in the Mitomap (http://www.mitomap.org) database. These mutations can be divided into two groups: mutations affecting mitochondrial protein synthesis, including mutations in tRNA and rRNA genes; and mutations in protein-encoding genes (mRNAs). This review focuses on mutations in mitochondrial genes that encode proteins. These mutations are involved in a broad spectrum of human diseases, including a variety of multisystem disorders as well as more tissue-specific diseases such as isolated myopathy and Leber hereditary optic neuropathy (LHON). Because the mitochondrial genome contains a large number of apparently neutral polymorphisms that have little pathogenic significance, along with secondary homoplasmic mutations that do not have primary disease-causing effect, the pathogenic role of all newly discovered mutations must be rigorously established. A scoring system has been applied to evaluate the pathogenicity of the mutations in mtDNA protein-encoding genes and to review the predominant clinical features and the molecular characteristics of mutations in each mtDNA-encoded respiratory chain complex.  相似文献   

6.
7.
The most relevant contribution to the elucidation of the molecular basis of mitochondrial disorders has come from the discovery of an impressive and ever expanding number of mutations of mitochondrial DNA. However, known mutations of mtDNA only account for a fraction of all the mitochondrial disorders in both infants and adults. A number of recent clinical and molecular observations indicate that many syndromes are caused by abnormalities in nuclear genes related to oxidative phosphorylation. Nuclear genes encode hundreds of proteins involved in mitochondrial biogenesis and oxidative phosphorylation. Nevertheless, the identification of the nuclear genes responsible for oxidative phosphorylation-related disorders has proceeded at a much slower pace, compared with the discovery and characterization of mtDNA mutations. The reasons for such a gap are numerous, including the rarity of the syndromes, their genetic heterogeneity, and our ignorance of this nuclear gene repertoire in humans. This scenario is rapidly changing, thanks to the discovery of several oxidative phosphorylation-related human genes, and to the identification in some of them of mutations responsible for different clinical syndromes. In addition, animal models have recently been generated, which will offer the opportunity to understand better the pathogenesis of specific oxidative phosphorylation defects, and to test in a rational and controlled fashion therapeutic strategies for the treatment of these disorders.  相似文献   

8.
Mitochondrial DNA (mtDNA) mutations are an important cause of human diseases. mtDNA could be considered a candidate modifying factor in neurodegenerative disorders. A homoplasmic A8296G mutation was detected in a 24-year-old patient with idiopathic generalized epilepsy. The A8296G mutation in the mitochondrial DNA MT-TK gene has been associated with severe mitochondrial diseases. The pathogenicity of this mutation or its association with a specific disease is unclear. This mutation has already been reported exclusively as well as together with other mutations during trials of mtDNA. As in this case, the mutation was homoplasmic and there were no clinical findings in other family members. We suggest that this mutation is a rare polymorphism or may be a pathogenic mutation in combination with other mutations outside of the MT-TK gene.  相似文献   

9.
The brain has the highest mitochondrial energy demand of any organ. Therefore, subtle changes in mitochondrial energy production will preferentially affect the brain. Considerable biochemical evidence has accumulated revealing mitochondrial defects associated with neuropsychiatric diseases. Moreover, the mitochondrial genome encompasses over a thousand nuclear DNA genes plus hundreds to thousands of copies of the maternally inherited mitochondrial DNA (mtDNA). Therefore, partial defects in either the nuclear DNA or mtDNA genes or combinations of the two can be sufficient to cause neuropsychiatric disorders. Inherited and acquired mtDNA mutations have recently been associated with autism spectrum disorder, which parallels previous evidence of mtDNA variation in other neurological diseases. Therefore, mitochondrial dysfunction may be central to the etiology of a wide spectrum of neurological diseases. The mitochondria and the nucleus communicate to coordinate energy production and utilization, providing the potential for therapeutics by manipulating nuclear regulation of mitochondrial gene expression.  相似文献   

10.
Mitochondrial Cytopathies   总被引:6,自引:0,他引:6  
Mitochondrial cytopathies represent a heterogeneous group of multisystem disorders which preferentially affect the muscle and nervous systems. They are caused either by mutations in the maternally inherited mitochondrial genome, or by nuclear DNA-mutations. Today, approximately 200 different disease causing mutations of mitochondrial DNA (mtDNA) are known, and due to the increased knowledge about nuclear genetics during the last few years, more and more nuclear mutations are being described. Owing to the non-uniform distribution of mitochondria in tissues and the co-existence of mutated and wildtype mtDNA (heteroplasmy) in these organelles, these disorders may present with a huge variety of symptoms, even if the same mutation is involved. Diagnostic investigations should include the measurement of serum and CSF lactate, neuroradiological tests and a muscle biopsy to show the characteristic ragged-red fibres and cytochrome c oxidase deficient cells and also to provide material for genetic analysis. To date, the treatment of these diseases remains supportive and should focus on typical complications such as cardiac dysrhythmia and endocrinopathy. Received: 16 September 2002, Accepted: 30 September 2002 Correspondence to Janet Schmiedel, MD  相似文献   

11.

Background

The etiology of autism spectrum disorders (ASD) is very heterogeneous. Mitochondrial dysfunction has been described in ASD; however, primary mitochondrial disease has been genetically proven in a small subset of patients. The main goal of the present study was to investigate correlations between mitochondrial DNA (mtDNA) changes and alterations of genes associated with mtDNA maintenance or ASD.

Methods

Sixty patients with ASD and sixty healthy individuals were screened for common mtDNA mutations. Next generation sequencing was performed on patients with major mtDNA deletions (mtdel-ASD) using two gene panels to investigate nuclear genes that are associated with ASD or are responsible for mtDNA maintenance. Cohorts of healthy controls, ASD patients without mtDNA alterations, and patients with mitochondrial disorders (non-ASD) harbouring mtDNA deletions served as comparison groups.

Results

MtDNA deletions were confirmed in 16.6% (10/60) of patients with ASD (mtdel-ASD). In 90% of this mtdel-ASD children we found rare SNVs in ASD-associated genes (one of those was pathogenic). In the intergenomic panel of this cohort one likely pathogenic variant was present. In patients with mitochondrial disease in genes responsible for mtDNA maintenance pathogenic mutations and variants of uncertain significance (VUS) were detected more frequently than those found in patients from the mtdel-ASD or other comparison groups. In healthy controls and in patients without a mtDNA deletion, only VUS were detected in both panel.

Conclusions

MtDNA alterations are more common in patients with ASD than in control individuals. MtDNA deletions are not isolated genetic alterations found in ASD; they coexist either with other ASD-associated genetic risk factors or with alterations in genes responsible for intergenomic communication. These findings indicate that mitochondrial dysfunction is not rare in ASD. The occurring mtDNA deletions in ASD may be mostly a consequence of the alterations of the causative culprit genes for autism or genes responsible for mtDNA maintenance, or because of the harmful effect of environmental factors.
  相似文献   

12.
The molecular aetiology of many patients with motor neuron disease (MND) remains unknown. Recent evidence of mitochondrial dysfunction, in particular the finding of histochemical abnormalities and pathogenic mitochondrial DNA (mtDNA) mutations, has prompted us to investigate further the role of mtDNA abnormalities in a cohort of thirteen patients with atypical MND presentations by whole mitochondrial genome sequencing. No pathogenic mutations were detected suggesting that inherited mtDNA mutations are not a common cause of atypical MND presentations.  相似文献   

13.
mtDNA deletions are pathogenic mutations that remove substantial portions of the mitochondrial genome. mtDNA deletions accumulate with age and have been implicated in various degenerative diseases. There are multiple mtDNA per cell and mtDNA mutations become toxic only if they accumulate to substantial intracellular levels, i.e. exceed so-called “phenotypic threshold”. This is usually achieved via clonal expansion of a single initial mutated molecule. Intracellular mitochondrial genomes are analogous to a population of individuals in that mitochondria are born by division and die by degradation. Clonal expansion within cells is thus analogous to genetic drift within populations and is driven by a combination of random processes and selection. mtDNA mutations occurring early in development are expected to end up spread across tissues, while mutations of late origin are expected to be localized, i.e. limited a single post-mitotic cell or progeny of a single stem cell. We have explored the extent and timing of clonality of mtDNA deletion in human muscle using single-molecule PCR. We analyzed deletions from two nearby locations within the same tissue sample. Altogether we analyzed over 130 mutant molecules, but almost every deletion type detected was represented by several identical mutant molecules, so that altogether there were only 21 different kinds of deletions, implying that essentially all deletions were clonal. At the same time the sets of deletions in the two locations were completely different. This observation implies that all of the clonal expansions spanned very small areas and therefore that the corresponding mutations were likely events of older age. More studies are necessary to further validate these findings in muscle and to explore the other tissues.  相似文献   

14.
The instability of the mitochondrial genome in individuals harboring pathogenic mutations in the catalytic subunit of mitochondrial DNA (mtDNA) polymerase gamma (POLG) is well recognized, but the underlying molecular mechanisms remain to be elucidated. In 5 pediatric patients with severe myoclonic epilepsy and valproic acid-induced liver failure, we identified 1 novel and 4 previously described pathogenic mutations in the linker region of this enzyme. Although muscle biopsies in these patients showed unremarkable histologic features, postmortem liver tissue available from 1 individual exhibited large cytochrome c oxidase-negative areas. These cytochrome c oxidase-negative areas contained 4-fold less mtDNA than cytochrome c oxidase-positive areas. Decreased copy numbers of mtDNA were observed not only in the liver, skeletal muscle, and brain but also in blood samples from all patients. There were also patient-specific patterns of multiple mtDNA deletions in different tissues, and in 2 patients, there were clonally expanded mtDNA point mutations. The low amount of deleted mtDNA molecules makes it unlikely that the deletions contribute significantly to the general biochemical defect. The clonal expansion of a few individual-specific deletions and point mutations indicates an accelerated segregation of early mtDNA mutations that likely are a consequence of low mtDNA copy numbers. Moreover, these results suggest a potential diagnostic approach for identifying mtDNA depletion in patients.  相似文献   

15.
The involvement of mitochondria and of mitochondrial DNA (mtDNA) in the aging process has generated much interest and even more controversy. The mitochondrial theory of aging considers a vicious circle consisting of: (1) accumulation of somatic mtDNA mutations; (2) impairment of respiratory chain function; (3) increased production of reactive oxygen species (ROS) in mitochondria; and (4) further damage to mtDNA. We review the evidence for and against the belief that these steps occur in aging muscle and brain, considering separately morphological, biochemical, and molecular data. The relationship between mitochondrial aging and late-onset neurodegenerative diseases is briefly reviewed. We conclude that mitochondrial dysfunction does play a crucial role in the aging process of both muscle and brain, but it remains unclear whether mitochondria are the culprits or mere accomplices.  相似文献   

16.
Although classical psychopathological studies have shown the presence of an independent diagnostic category, 'atypical psychosis', most psychotic patients are currently classified into two major diagnostic categories, schizophrenia and bipolar disorder, by the Diagnostic and Statistical Manual of Mental Disorders (4th edn; DSM-IV) criteria. 'Atypical psychosis' is characterized by acute confusion without systematic delusion, emotional instability, and psychomotor excitement or stupor. Such clinical features resemble those seen in organic mental syndrome, and differential diagnosis is often difficult. Because patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) sometimes show organic mental disorder, 'atypical psychosis' may be caused by mutations of mitochondrial DNA (mtDNA) in some patients. In the present study whole mtDNA was sequenced for seven patients with various psychotic disorders, who could be categorized as 'atypical psychosis'. None of them had known mtDNA mutations pathogenic for mitochondrial encephalopathy. Two of seven patients belonged to a subhaplogroup F1b1a with low frequency. These results did not support the hypothesis that clinical presentation of some patients with 'atypical psychosis' is a reflection of subclinical mitochondrial encephalopathy. However, the subhaplogroup F1b1a may be a good target for association study of 'atypical psychosis'.  相似文献   

17.
OBJECTIVE: Point mutations in mitochondrial DNA (mtDNA) are one mechanism that could explain the apparent excess maternal transmission of bipolar affective disorder observed in some families. The authors sequenced the mtDNA from probands with bipolar disorder and tested nucleotide variants for association with the disorder. METHOD: The entire 16.5 kilobase mitochondrial genome was sequenced in nine unrelated probands selected from large pedigrees with exclusively maternal transmission of bipolar affective disorder. Compared to a reference sequence, variants were detected at 107 nucleotide positions. Fifteen variants of possible pathogenic significance were selected for further study. These variants were assayed in 93 unrelated probands with bipolar I, bipolar II, or schizoaffective-manic disorder and 63 comparison subjects, all of whom were classified into the major groups comprising the European mtDNA haplotype structure (haplogroups).RESULTS: The major European haplogroups were represented at the expected frequencies among both probands and comparison subjects. There was no significant difference between probands and comparison subjects in the frequency of any variant, although odds ratios >2 or <0.5 were observed for four variants. Frequencies of these four variants were similar in probands and haplogroup-matched comparison subjects. The results of all comparisons were essentially unchanged when probands from families with an apparently paternal transmission pattern were excluded.CONCLUSIONS: The results demonstrate that bipolar affective disorder occurs across all of the major European mtDNA haplogroups but do not reveal any point mutations that explain excess maternal transmission of the disorder.  相似文献   

18.
19.
Pulkes T  Liolitsa D  Nelson IP  Hanna MG 《Neurology》2003,61(8):1144-1147
The authors analyzed the total mitochondrial (mt) genome in 15 patients with classic mitochondrial phenotypes. Novel somatic mtDNA mutations in two patients with chronic progressive external ophthalmoplegia were identified. Total automated mtDNA genome analysis did not reveal other pathogenic mtDNA mutations. The authors conclude that classic mitochondrial phenotypes, including those with adult onset, may occur in the absence of mtDNA mutations. Nuclear gene mutations may be the cause.  相似文献   

20.
Most inherited mitochondrial diseases in infants result from mutations in nuclear genes encoding proteins with specific functions targeted to the mitochondria rather than primary mutations in the mitochondrial DNA (mtDNA) itself. In the past decade, a growing number of syndromes associated with dysfunction resulting from tissue-specific depletion of mtDNA have been reported in infants. MtDNA depletion syndrome is transmitted as an autosomal recessive trait and causes respiratory chain dysfunction with prominent neurological, muscular, and hepatic involvement. Mendelian diseases characterized by defective mitochondrial protein synthesis and combined respiratory chain defects have also been described in infants and are associated with mutations in nuclear genes that encode components of the translational machinery. In the present work, we reviewed current knowledge of clinical phenotypes, their relative frequency, spectrum of mutations, and possible pathogenic mechanisms responsible for infantile disorders of oxidative metabolism involved in correct mtDNA maintenance and protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号