首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of neurotensin, 7.5 or 30 micrograms, on concentrations of DA, DOPAC, (HVA), serotonin 5-HT and 5-HIAA were measured in 8 regions of the rat brain either 5 or 30 min following intracerebroventricular administration. Regions examined include the frontal cortex, striatum, nucleus accumbens, amygdala, septum, hypothalamus, ventral tegmentum and substantia nigra. Results indicate that both doses of neurotensin significantly elevated concentrations of dopamine in the striatum and amygdala 5 min following injection. The effects of the peptide on DOPAC and HVA were more pervasive and enduring, with significant increases in metabolite levels occurring in both mesolimbic and nigrostriatal terminal regions. In order to assess effects on turnover of dopamine, the ratios of each metabolic to dopamine concentrations were examined. Results indicate that, while the DOPAC/DA ratio was elevated in many regions, the HVA/DA ratio was increased in all regions examined. The effects of neurotensin on serotoninergic parameters were less pervasive and more variable, with both increases and decreases in 5-HT and 5-HIAA concentrations being observed. The effects of the peptide on 5-HIAA/5-HT were limited to the nucleus accumbens, where this ratio was increased, and the ventral tegmentum, where 5-HIAA/5-HT was decreased. These findings reveal that the effects of the neurotensin on dopaminergic transmission are more widespread than previously reported in that all major dopamine pathways are affected by the peptide. Also, the observed changes in the ratios of both DOPAC and HVA to DA suggest that neurotensin enhances the turnover of this transmitter.  相似文献   

2.
Levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethyleneglycol (DHPG) were determined by high-performance liquid chromatography in different brain areas of scrapie-infected rats, 8.5 months after intracerebral inoculation of a rat-adapted strain from mice brain (C 506). At this time, rats developed early clinical signs of the disease. Scrapie-infected rats showed a reduction in the levels of 5-HT and 5-HIAA (frontal cortex, hippocampus, mesolimbic structure). Concentrations of DHPG decreased in the frontal and parietal cortices but remained unchanged in the hippocampus. DOPAC levels decreased in the striatum but not in the mesolimbic structure. These results confirm that the serotonergic, noradrenergic and dopaminergic systems are altered in the brain of scrapie-infected rats. They can partly account for clinical signs of scrapie and are in agreement with the scarce data provided by the postmortem analysis of Creutzfeldt-Jakob disease brains.  相似文献   

3.
The effects of ketamine on the levels of dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT, serotonin) and their metabolites were examined in discrete brain regions in mice. A high dose of ketamine (150 mg/kg, i.p.) did not change DA metabolism in the frontal cortex, nucleus accumbens, striatum and hippocampus, but did decrease it in the brainstem during anesthesia. In contrast, during recovery from the ketamine anesthesia, the high dose increased the level of homovanillic acid (HVA) in all brain regions. A low subanesthetic dose of ketamine (30 mg/kg, i.p.) increased the concentrations of both 3,4-dihydroxyphenylacetic acid (DOPAC) and HVA only in the nucleus accumbens. The DA level was not affected by any ketamine treatment. During ketamine anesthesia, the content of 3-methoxy-4-hydroxy-phenylglycol (MHPG) was decreased in the brainstem, whereas during recovery from anesthesia, the MHPG level was increased in the frontal cortex, nucleus accumbens and brainstem. The NE content was not altered in any region by ketamine treatment. The concentration of 5-hydroxyindoleacetic acid (5-HIAA) was reduced in the frontal cortex, striatum, hippocampus and brainstem during ketamine anesthesia. The 5-HT level was unaltered in all regions except the brainstem where it was reduced. In contrast, after anesthesia, the concentrations of both 5-HT and 5-HIAA were increased in the striatum. During the subanesthetic phase, however, the levels of NE, 5-HT and their metabolites were unchanged. These neurochemical results are consistent with the electrophysiological findings that a high dose of ketamine does not change the basal firing rates of nigrostriatal DA neurons during anesthesia, while low subanesthetic doses significantly increase those of ventral tegmental DA neurons.  相似文献   

4.
Concentrations of monoamines (dopamine, DA; serotonin, 5-HT) and their major metabolites (homovanillic acid — HVA; dihydroxyphenylacetic acid — DOPAC; 5-hydroxyindolacetic acid — 5-HIAA) were measured in selected brain areas of chronically gonadectomized, steroid- or oil-treated male and female rats. Concentrations of DOPAC and HVA were markedly increased in the hypothalamus (male, female), striatum (male, female) and brainstem (male) following gonadectomy, whereas the levels of DA remained unaltered in most of the brain areas examined. Most of the changes were reversed or attenuated by chronic estradiol (EB) substitution. In contrast, chronic treatment with physiological concentrations of testosterone (TP) reduced indexes of DA turnover only in the striatum of ovariectomized (OVX) and brainstem of orchidectomized (ORDX) rats. ORDX-related increases in striatal levels of DOPAC and HVA were not reversed by either EB or TP. ORDX increased the levels of 5-HIAA (hypothalamus, striatum) and decreased those of 5-HT (hypothalamus, hippocampus). These changes were reversed by chronic treatment with either TP or EB. Brain metabolism of 5-HT remained unaltered following OVX.

Gonadectomy and chronic steroid replacement therapy appear to alter brain monoamine metabolism in a brain region and sex-dependent manner. Our data demonstrate that gonadectomy-related increases in the activity of brain monoaminergic neurons in both male and female rats was attenuated more effectively with physiological concentrations of estradiol than with testosterone. Insensitivity of monoaminergic neurons in a number of brain areas (e.g., hypothalamus, striatum) to the action of testosterone was evident in both sexes.  相似文献   


5.
In a model of an experimental anxiodepressive state induced by postnatal administration of an inhibitor of dipeptidyl peptidase 4 (DPP-4), we studied peculiarities of the turnover of dopamine (DA), noradrenaline (NA), and serotonin (5-HT) in the brain structures of rats at ages of 1, 3, and 7 months. In males, the major changes in the functional activity of the DA system, which are related to a decrease in DA turnover according to the HVA/DA ratio, were observed in the striatum. In males at an age of 7 months, we found an increase in the NA level in the hypothalamus. In females, changes in the state of the DA system included a decrease in the level of DA and its metabolites in the nucleus accumbens (1 and 3 months), the level of DOPAC in the hypothalamus (3 months), and the level of DA in the striatum (7 months). At all ages, in the hippocampus of females, we found an increase in the functional activity of 5-HT, according to the 5-HIAA/5-HT and 5-HIAA level. In the frontal cortex of females at an age of 3 months we found a decrease in the 5-HIAA/5-HT ratio and an increase in the DOPAC/DA ratio, while at the age of 7 months, we observed an increase in 5-HT. These changes in the activity of the central monoaminergic systems may reflect specific features of the functioning of the pathological system of the anxiodepressive state in the CNS that determine the character of the formation and dynamics of emotional behavioral disturbances of male and female rats.  相似文献   

6.
After pargyline treatment the turnover rates of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-hydroxytryptamine (5-HT) and 5-hydroxy-3-indolacetic acid (5-HIAA) has been measured in control and aged hippocampus of the rats. In addition, the tyrosine hydroxylase (TH) activity and monoamine oxidase-A and monoamine oxidase-B activities have also been studied. The TH activity did not change in aged hippocampus as compared to controls. The monoamine oxidase-B:monoamine oxidase-A ratio increased in 26-month-old rats compared with controls. The turnover of DA, DOPAC and NA did not show significant changes while 5-HT synthesis, 5-HT accumulation rate and 5-HIAA turnover increased in aged rats. Serotonin fibers showed morphological dissimilarities between the hippocampus of young and aged rats using immunocytochemistry techniques. In aged rats aberrant serotoninergic fibers mainly appear in the molecular layer of the dentate gyrus and moleculare of the hippocampal CA1. It is suggested that the aberrant morphology of 5-HT fibers may reflect the local degeneration of serotoninergic hippocampal afferents during aging. Increase of 5-HT turnover in aged might be a signal of degeneration.  相似文献   

7.
The effects of R(+)-8-hydroxy-dipropylaminotetralin (8-OHDPAT) administration into the dorsal raphe nucleus (DRN) or bilaterally into the dorsal hippocampus (HIP) on fear behavior in a modified version of the light-dark transitions test and regional brain monoamines (NA, DA, 5-HT) and their metabolites (MHPG, DOPAC, 5-HIAA) in the hypothalamus, midbrain central gray matter, amygdala, hippocampus and pons were examined. The experiments were performed on 36 male, 3-month old Wistar rats. Administration of 8-OHDPAT (200 ng) into the DRN reduced time out from the illuminated part of the chamber and time of motionless behavior in the illuminated part, increased the number of returns from the dark to illuminated part and number of head dipping from the dark to illuminated part without effect on time of motionless behavior in the dark part and on time of locomotor activity in the illuminated as well as in dark part of the chamber. HPLC analysis showed reduction of 5-HT content in the midbrain and amygdala, reduction of 5-HIAA content in pons, increased 5-HIAA/5-HT ratio in the hippocampus and increased DOPAC/DA ratio in the hypothalamus, midbrain, hippocampus and pons without affecting the MHPG/NA ratio and NA content. The administration of 8-OHDPAT (100 ng per site) into the HIP reduced time out from the illuminated part of chamber, time of locomotor activity in the illuminated part and head dipping from the dark to illuminated part without effect on the number of returns from the dark to illuminated part, time of locomotor activity in the dark part and time of motionless in the illuminated as well as in the dark part of chamber. HPLC analysis showed reduction of NA content in the hypothalamus, amygdala and pons, increased the MHPG content in all the investigated structures, increased MHPG/NA ratio in all the investigated structures except the hypothalamus. Dopamine content decreased in the hypothalamus and amygdala, and DOPAC/DA ratio increased in the amygdala and hippocampus. Concentrations of 5-HT, 5-HIAA and 5-HIAA/5-HT ratio were unchanged. The results obtained indicate that 8-OHDPAT acting on the pre-synaptic 5-HT1A receptors decreases fear behavior and acting on 5-HT1A post-synaptic receptors increases fear behavior in the light-dark transitions test. The neurochemical base of anxiolytic and anxiogenic effects evoked by 8-OHDPAT is being discussed.  相似文献   

8.
A method is described that permits the simultaneous quantitation of norepinephrine (NE), dopamine (DA) serotonin (5-HT) and their respective major metabolites, 3-methoxy-4-hydroxy phenylglycol (MHPG), 3-methoxytyramine (3-MT), dihydroxyphenyl acetic acid (DOPAC) and 5-hydroxyindole acetic acid (5-HIAA) in discrete brain regions. The ratio of MHPG/NE, DOPAC/DA and 5-HIAA/5-HT was used to assess the effects of the chronic administration of the narcotic antagonist, naltrexone, and its withdrawal on the regional activity of neurons that contain NE, DA and 5-HT respectively. Chronic administration of naltrexone (8 days) is associated with a significant increase in the ratio of 5-HIAA/5-HT and DOPAC/DA in the frontal cortex and dorsal hippocampus respectively. Under this condition the thalamic concentration of 3-MT in 4 of 8 animals is also significantly elevated. In contrast, the mesolimbic forebrain exhibited a decrease in the MHPG/NE ratio (4 out of 8 animals). One day following naltrexone pellet removal the above ratios, as well as the mean content of 3-MT in the thalamus, returned to control values. At this time the content of 3-MT in the thalamus (5 of 5 animals) and frontal cortex (3 of 9 rats) was appreciably elevated, while its content in the dorsal hippocampus was significantly reduced (6 of 9 rats). These data suggest that the activity of several central monoaminergic neuronal systems are regulated by an opioid input that is tonically active.  相似文献   

9.
The origin of dopamine (DA) and its metabolite in predominantly noradrenergic brain areas was investigated in rats with a unilateral electrolytic lesion of the locus coeruleus. Using the unlesioned side as a control, levels of DA, noradrenaline (NA), and the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were measured in lateral hippocampus, cerebellum, frontal cortex, occipital cortex, brainstem and striatum. Lesion of the locus coeruleus decreased brain NA levels in those regions innervated by this nucleus, but had no effect on levels of DA and DOPAC in any of the regions studied. It is concluded that even in regions of very low DA concentration, DA and DOPAC probably originate from dopaminergic neurons rather than via NA formation in noradrenergic neurons.  相似文献   

10.
Summary The acute and chronic effects of capsaicin (s.c.) on the monoamines in the preoptic region + hypothalamus (RPO-H), spinal cord, substantia nigra and striatum were studied. Levels of DOPA, DA, DOPAC, HVA, 3-MT, NA, Trp, 5-HTP, 5-HT and 5-HIAA were determined by means of liquid chromatography (HPLC-EC). In response to acute capsaicin treatment, the levels of DA, DOPAC and DA synthesis rate (DOPA formation) were increased in a dose-dependent manner in the RPO-H and spinal cord. The disappearance rate of NA was accelerated in both regions. In substantia nigra, increased DOPAC levels were found whereas the levels of 3-MT were decreased in striatum after acute capsaicin treatment. Only minor changes on the levels of 5-HT and 5-HIAA in the regions studied were noted. Neonatal or adult capsaicin treatment failed to affect the levels of NA, DA and 5-HT (measured two months or five weeks after injection, respectively) in the regions studied. A capsaicin injection to rats pretreated with the drug as adults did not affect either the monoamines in the RPO-H and spinal cord or the body temperature. In contrast, in rats pretreated with capsaicin as neonates, a second injection of the drug to adult animals elicited hypothermia and changes in monoamines similar to those observed in naive animals.  相似文献   

11.
Concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), free 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were determined in brain regions of 5-, 20-, and 32-month-old male Brown-Norway rats using high pressure liquid chromatography. In view of the activating effects of sex steroids on peptide and monoamine transmitter systems and the declining plasma testosterone levels with aging, the effects of testosterone supplementation on age-related changes in central monoamine metabolism were also studied. Age-related decreases in monoamine metabolism were observed in nigrostriatal, mesocortical and coeruleohippocampal systems. Marked reductions in DOPAC (35%) and HVA (50%) occurred in the ventral tegmental area between 20 and 32 months of age. 5-HT and 5-HIAA levels showed reductions and increases depending on the brain region. Testosterone administration resulted in elevations of HVA in the substantia nigra and MHPG in the locus coeruleus and hippocampus, which were most pronounced in young animals. It is concluded that there are marked differences in age-related changes between nigrostriatal, mesocortical and coeruleohippocampal systems and that testosterone exerts a stimulatory influence on some aspects of monoamine metabolism in young but not in aged animals.  相似文献   

12.
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.  相似文献   

13.
Summary The effects of acute and chronic administration of nefiracetam, a pyrrolidone derivative, on monoaminergic neurotransmitter systems in the mouse hippocampus, frontal cortex, hypothalamus, and striatum were studied. The levels of monoamines and of their metabolites were measured by high performance liquid chromatography with electrochemical detection on the first, 7th, and 14th days after nefiracetam was given. The neurochemical effects of nefiracetam were compared with those of oxiracetam and indeloxazine.Acute administration of nefiracetam (10 mg/kg, po) and oxiracetam (10 mg/ kg, po) had no effect on the levels of noradrenaline (NA), dopamine (DA), or 5-hydroxytryptamine (5-HT), or on the levels of their metabolites, 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), in any of the regions examined. In contrast, a single dose of indeloxazine (10 mg/kg, po) decreased the levels of MHPG, DOPAC, and 5-HIAA in all regions examined.After chronic administration of nefiracetam (10 mg/kg, po, once daily), the levels of MHPG, DOPAC, and 5-HIAA were higher than control in all regions on the 14 th day only. Oxiracetam (10 mg/kg, po, once daily) similarly increased the levels of MHPG, DOPAC, and 5-HIAA in the hippocampus, frontal cortex, and striatum, but not in the hypothalamus. Conversely, indeloxazine (10 mg/ kg, po, once daily) decreased the levels of MHPG and 5-HIAA in all regions and the levels of DOPAC and HVA in the hippocampus and striatum as measured on the 7 th and 14 th days.These results show that nefiracetam has a delayed effect on brain monoaminergic metabolism, and that its effects are similar to those of oxiracetam, but clearly different from those of indeloxazine.  相似文献   

14.
Using HPLC we studied the effects of new substances with antiparkinsonian activities, viz., himantane and cycloprolylglycine (CPG), on the contents of monoamines and their metabolites in the brain structures of Wistar rats under conditions of the inhibition of tyrosine and tryptophan hydroxylases. It was shown that 70 min after administration himantane induces a significant decrease in the level of noradrenaline in the nucleus accumbens (NA) and striatum. At 70 min after administration of CPG, we observed an increase in the DOPAC/DA ratio in the NA and the level of 5-HIAA in the striatum. At 24 h after CPG administration, we observed an increase in the HVA content and HVA/DA ratio in the hypothalamus and striatum. We found a decrease in 5-HIAA in all brain structures we studied at 24 h after administration of CPG, which was absent at 70 min after injection of the substance; the magnitude of 5-HIAA/5-HT decreased in the hypothalamus, nucleus accumbens, and hippocampus. Our results suggest that both substances we studied influence serotonergic transmission by inhibition of the MAO B enzyme.  相似文献   

15.
The technique of intracranial microdialysis was used to investigate the effects of aging on the striatal dopaminergic system of the anesthetized Fischer 344 rat. Microdialysis probes were implanted into the striatum of young (2–8 months) and aged (24–28 months) urethane anesthetized rats. Striatal dialysate levels were analyzed for dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and serotonin (5-HT) by high performance liquid chromatography with electrochemical detection. As compared to the young animals, basal extracellular levels of DA and DOPAC were significantly decreased in two groups of aged animals. Stimulation with excess potassium added through the microdialysis probe produced a robust overflow of DA in the young and aged rat striatum, but the evoked overflow of DA was not diminished in the aged rat striatum as compared to young animals. In contrast, -amphetamine-evoked overflow of DA was again robust in young and aged animals, but was greatly decreased in the aged rat striatum as compared to the signals recorded in the young rats. Taken together with previous reports, these data support the hypothesis that a major change in the regulation of DA release that occurs in aging involves changes in the function of the neuronal uptake of DA, which may be a compensatory property of DA neurons in senescence.  相似文献   

16.
Acute unilateral intranigral infusions of MPTP at doses (200 micrograms) which produce robust contralateral rotation in the rat induced significant neurochemical changes in the ipsilateral as well as contralateral nigrostriatal systems. There were pronounced increases in the levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the ipsilateral substantia nigra and a significant decrease in the levels of DA in the ipsilateral caudate nucleus while opposite changes occurred in the contralateral substantia nigra and caudate nucleus. The DOPAC:DA and HVA:DA ratios were significantly higher in the ipsilateral caudate nucleus indicating increased activity of the ipsilateral nigrostriatal DA neurones. The levels of noradrenaline and 4-hydroxy-3-methoxyphenylethyline glycol (MHPG) increased and decreased significantly in the ipsilateral and contralateral substantia nigra, respectively, but there were no significant changes in the caudate nuclei. The levels of serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) increased significantly in the ipsilateral substantia nigra and caudate nucleus as well as in the contralateral caudate nucleus but did not increase significantly in the contralateral substantia nigra. The 5-HIAA:5-HT ratio was significantly decreased in the contralateral caudate nucleus indicating a reduced activity of the contralateral nigrostriatal 5-HT neurones. The data thus indicate that MPTP applied to one substantia nigra is capable of producing profound neurochemical changes not only locally but also in the ipsilateral striatum as well as in the contralateral nigrostriatal system. Previous neuropharmacological studies have suggested that the rotation induced by intranigral MPTP may be mediated via dopamine released from dendrites in the pars reticulata in response to MPTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Suction lesions were made in the anterior, posterior or both halves of the right ventrolateral cortex in rats. Six days later, levels of the monoamine neurotransmitters, norepinephrine (NE), dopamine (DA) and serotonin (5-HT), and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA), were measured in cortical and subcortical regions of lesioned rats and compared to values in sham-operated animals. NE and 5-HT were decreased in sections of ipsilateral (right) cortex including, and posterior to lesions, while 5-HIAA was increased throughout the ipsilateral cortex. Decreases in monoamines and increases in metabolites and metabolite:monoamine ratios (especially 5-HIAA:5-HT) were found in ipsilateral subcortical structures, including striatum, nucleus accumbens, hippocampus, hypothalamus, midbrain and brainstem, depending on the type of lesion. Subacutely, focal ventrolateral cortical lesions may profoundly alter the levels and utilization rates of monoamine neurotransmitters in widespread regions of the ipsilateral hemisphere.  相似文献   

18.
Subordinate male laboratory rats maintained in mixed-sex groups in a Visible Burrow System habitat show a complex pattern of stress-related changes including enhanced defensive behavior, early mortality and increased voluntary ethanol consumption. Analysis of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels indicated that 5-HT levels do not differ between colony subordinates, colony dominants, and singly-housed control animals. However, 5-HIAA levels were higher in subordinates than either dominants or control animals in the preoptic area, amygdala, hippocampus, and spinal cord, and, were higher than dominants only, in entorhinal cortex. Subordinates' regional 5-HIAA/5-HT ratios were reliably higher than those of dominant or control animals in midbrain and spinal cord and reliably higher than dominants only, in hypothalamus. Dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) levels and DA/DOPAC ratios were affected neither in hypothalamus nor midbrain. These findings suggest that a consistent increase of 5-HIAA levels in selected brain regions of subordinate rats may represent a biological substrate for a well-characterized pattern of alterations in defensive behaviors for these animals.  相似文献   

19.
Recent evidence has suggested a role for free radicals in tardive dyskinesia. We, therefore, investigated the effects of chronic administration of fluphenazine decanoate (FLU) and/or vitamin E (VIT E) on regional monoamine metabolism in rat brain. Chronic FLU caused significant increases in dopamine (DA) in nucleus accumbens and brainstem, significant decreases in dihydroxyphenylacetic acid (DOPAC) in frontal cortex, nucleus accumbens and hippocampus and significant decreases in homovanillic acid (HVA) in nucleus accumbens, caudate-putamen and brainstem. Coadministration of FLU and VIT E normalized HVA in caudate-putamen, nucleus accumbens and brainstem as well as DOPAC in nucleus accumbens and hippocampus. Chronic FLU caused significant increases in norepinephrine (NE) levels in all regions studied. VIT E attenuated FLU-induced increases in NE levels in nucleus accumbens and hippocampus. Significant increases in serotonin (5-HT) levels occurred in nucleus accumbens and hippocampus whereas significant decreases in 5-hydroxyindole-acetic acid (5-HIAA) occurred in all brain regions after chronic FLU. Coadministration of VIT E attenuated the changes observed in hippocampal 5-HIAA but potentiated the FLU-induced increases in 5-HT in this region. Our data suggest that VIT E can attenuate some of the FLU-induced changes in monoamine metabolism. Results are discussed in relation to possible involvement of free radicals in monoamine metabolism during chronic neuroleptic use.  相似文献   

20.
The effects of predictable and unpredictable shock on concentrations of serotonin (5-hydroxytryptamine, 5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP) and noradrenaline (NA) have been studied in 7 regions of rat brain. Two separate experiments have been carried out determining these substances both at 30 min and 2 h after the stress session. Unpredictable shock depleted NA levels in all brain regions except the striatum. However, at 2 h poststress NA in these regions increased significantly in comparison with both controls and predictably shocked rats. Predictable shock also decreased NA in locus coeruleus, brainstem and hypothalamus, which was not observed 2 h later. Both predictable and unpredictable shock decreased 5-HT in brainstem and hypothalamus. At 2 h poststress, 5-HT levels in these regions were still decreased in predictably shocked rats, but had attained control values in unpredictably shocked rats. 5-HT metabolism expressed as the 5-HIAA/5-HT ratio, was significantly increased 30 min after predictable shock in all regions except the locus coeruleus and hippocampus. Unpredictable shock produced a much more marked increase in 5-HIAA/5-HT ratio. At 2 h poststress 5-HT metabolism returned to control values in most of the brain regions of predictably shocked animals, but it remained high after unpredictable shock. The activation of serotonergic metabolism following each type of shock is different according to the nucleus in which the 5-HT nerve endings originate. Only slight increases in tryptophan were observed after both types of shock. Our results suggest that unpredictable shock is perceived as a more anxiogenic situation and that under this condition both 5-HT and NA levels are more effectively normalized with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号