首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study determined whether reduced sensitivity to catecholamines in aged myocytes resulted from deficits in the ß-adrenergic receptor (ß-AR) signaling pathway. Contractions and intracellular Ca2+ were measured simultaneously in field-stimulated (2 Hz, 37 °C, fura-2) ventricular myocytes isolated from young adult (∼3 months) and aged (∼24 months) male Fischer 344 rats. Higher concentrations of a ß1-AR agonist were required to increase contraction amplitudes in aged compared to younger cells; however, Ca2+ transients were similar in both groups. There was no age-related difference in contraction or Ca2+ transient amplitudes in response to a ß2-AR agonist. The direct adenylate cyclase agonist forskolin caused smaller increases in contraction and Ca2+ transient amplitudes in aged compared to younger cells. Phosphodiesterase inhibitors did not reverse the age-related deficit in positive inotropy caused by ß-AR stimulation. Direct measurement of cAMP showed significantly less cAMP formation in response to either ß-AR or adenylate cyclase stimulation in aged compared to younger cells. However, responses to dibutyryl cAMP were similar in young adult and aged myocytes, suggesting that events downstream of cAMP formation are not affected by age. The age-related decrease in catecholamine sensitivity is mediated by ß1-ARs, resulting in a defect in cAMP production.  相似文献   

2.
Digital imaging microscopy of fura-2 fluorescence has allowed us to assess the dynamic patterns of local Ca increase in newly isolated rat myocardial cells. Of the myocytes bathed in a saline solution (1.8 mM Ca2+, 37°C, pH 7.4), 10%–20% exhibited local spontaneous contractions. The resting intracellular free calcium concentration ([Ca2+]i) of these cells was 106±4nM versus 77±3 nM for non-contracting cells. The spontaneous contractile activity appeared to be closely related to internal spontaneous Ca waves that spread across the myoplasm (velocity 50 m/s, maximal Ca amplitude=195±11nM) along the major axis of the cells. Precise topographical examination of Ca wave propagation indicated a refractory period for internal Ca release. The occurrence of both the generation and propagation of spontaneous Ca increases appeared to be closely dependent on the extent of Ca loading of the cells. Most of our observations were in accordance with the assumption that local Ca overload of the sarcoplasmic reticulum (SR) is the main parameter involved in the spontaneous Ca-release phenomena. Using the same approach, the increase in internal Ca evoked by KCl (50 mM) addition was investigated, and compared with that seen during spontaneous activity. Total [Ca2+]i increase induced by K+ depolarization involved three consecutive local Ca-release patterns: (a) a peripheral Ca enhancement that remained during the total [Ca2+]i increase, (b) subsequent transversal local Ca increases occurring in Z-line regions, (c) longitudinal local Ca increases. In addition, a weak heterogeneous Ca distribution was detected in both peripheral and central parts of resting cardiac cells. Thus, the total Ca increase seemed to result consecutively from a peripheral Ca pool, from junctional SR and from longitudinal structures (possibly longitudinal SR).  相似文献   

3.
Ca2+ release from the sarcoplasmic reticulum was studied in voltage-clamped guinea-pig atrial myocytes. Cells were dialysed with a pipette solution containing the Ca2+ indicator 1- [2-amino-5-(6-carboxyindol-2-yl) phenoxy]-2-(2-amino-5-methylphenoxy) ethane-N,N,N,N-tetraacetic acid](Indo-1, 100 M) and as main anion either chloride or the low-affinity Ca2+ buffer citrate. Intracellular Ca2+ transients (Cai transients) were elicited by depolarizations from a holding potential of –50 mV. In chloride-dialysed cells, Cai transients showed a bell-shaped dependence on the amplitude of the depolarizing pulse. In citratedialysed cells, membrane depolarizations were associated with a small rise in [Ca2+]i. These small changes in [Ca2+]i were either followed by a large Cai. transient or failed to induce large changes in [Ca2+]i. The peak amplitude of the large Cai transient did not vary with the amplitude of the depolarizing pulse. These results demonstrate that in the presence of intracellular chloride, Ca2+ release in atrial cells is a graded process triggered by Ca2+ influx. Using citrate as the main intracellular anoin, Ca2+ release triggered by Ca2+ entry was no longer graded but occurred in a regenerative manner. The results are discussed in terms of two models in which citrate, affects the spatial distribution of [Ca2+]i or the loading state of the sarcoplasmic reticulum.  相似文献   

4.
Ca2+ current (L-type) and inward current caused by Ca2+ release from the sarcoplasmic reticulum and carried by electrogenic Na+/Ca2+ exchange have been measured in cultured atrial myocytes from hearts of adult guinea-pigs using whole-cell voltage clamp techniques. The pipette solution, used for internal dialysis of the cells, contained a high concentration, 60 mM or 25 mM, of citrate as a non-saturable low-affinity Ca2+-chelating compound. It has been shown previously that Ca2+-release-dependent inward current under these conditions is carried by electrogenic Na+/Ca2+ exchange. Furthermore, Ca2+-release-dependent inward current (the release signal) can be completely separated from triggering Ca2+ current if brief depolarizations for activating I Ca are used. In the majority of cells that did not produce spontaneous Ca2+ release, conditions could be found that caused the release signal to be split into two components: an early component of variable amplitude and a late component of rather constant amplitude. The delay of the late component with regard to triggering I Ca was inversely related to the amplitude of the first one. Below a certain amplitude of the first component, the second one failed to be elicited. This suggests the second component to be triggered by the first one. Weakly Ca2+-buffered cells produced spontaneous Ca2+ release, resulting in irregular transient inward currents at constant membrane-holding potential. Synchronization by trains of step depolarizations unmasked two components also in the spontaneous release signals. In none of the cells studied was any indication of more than two components of the release signal detected. The results are discussed in terms of two distinct compartments of sarcoplasmic reticulum with different properties of Ca2+ release.Supported by the Deutsche Forschungsgemeinschaft (FG Konzell)  相似文献   

5.
Newborn rats were rendered hyperthyroid (daily subcutaneous injections of L-triiodothyronine, 10 g 100 g–1 body weight) or hypothyroid (0.05% 6-n-propyl-2-thiouracil in drinking water to nursing mothers) during the first 3 weeks of postnatal life. Compared with the euthyroid group, hyperthyroidism resulted in: (1) cardiac enlargement with right ventricular preponderance, (2) increased cardiac contractile function, (3) increased Ca2+ uptake by the sarcoplasmic reticulum (SR), (4) decreased sensitivity to the negative inotropic effect of verapamil and (5) greater inhibition of contractile function by ryanodine. Hypothyroidism generally resulted in opposite changes. The data suggest that the development of the heart and its contractile function during early postnatal life depends on the plasma level of thyroid hormones. In particular, the relative contribution of the SR and sarcolemmal Ca2+ transport to the control of cardiac contractility seems to be markedly affected by altered thyroid states. The postnatal maturation of the SR function is accelerated in hyperthyroidism but retarded in hypothyroidism. Consequently, hyperthyroid hearts appear to be less dependent and hypothyroid ones more dependent on trans-sarcolemmal Ca2+ fluxes when compared with age-matched euthyroid animals.  相似文献   

6.
This study was aimed at clarifying the role of metabotropic glutamate receptors (mGluRs) in the regulation of intracellular Ca2+ concentration ([Ca2+]i) in postnatal mouse retinal ganglion neurons (RGNs). RGNs were maintained for 1–2 weeks in vitro by adding brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF) to the culture medium. In order to select these cells for electrophysiological measurements, RGNs were vitally labelled with an antibody against Thy-1.2. Voltage-activated Ca2+ currents [I Ca(V)] were recorded with patch electrodes in the wholecell configuration. It was found that racemic ±-1-aminocyclopentane-trans-1, 3-dicarboxylic acid (t-ACPD) or its active enantiomer 1S,3R-ACPD rapidly and reversibly either enhanced or depressed I Ca(V). Quisqualate (QA), l-2-amino-4-phosphonobutyrate (l-AP4) and the endogenous transmitter glutamate induced similar effects when ionotropic glutamate receptors were blocked with d-2-amino-5-phosphonovalerate (d-APV) and 6,7-dinitroquinoxaline-2, 3-dione (DNQX). - Conotoxin GVIA (-CgTx GVIA), but not nifedipine prevented modulation of I Ca(V) by mGluR agonists. The depression of I Ca(V) by t-ACPD was irreversible when cells were dialysed with guanosine-5-O-(3-thiotriphosphate) (GTP[-S]). Ratio measurements of fura-2 fluorescence in Thy-1+ cells showed that neither t-ACPD, QA nor l-AP4 affected [Ca2+]i by liberation of Ca2+ from intracellular stores. Our results suggest that cultured RGNs express mGluRs. These receptors cannot induce Ca2+ release from intracellular stores but regulate [Ca2+]i by a fast and reversible, G-protein-mediated action on a subpopulation of voltage-activated Ca2+ channels.  相似文献   

7.
目的: 构建磷酸受纳蛋白(PLB)反义RNA腺相关病毒载体(rAAV-asPLB),建立糖尿病(DM)大鼠模型。直接心肌注射rAAV-asPLB,观察其对DM大鼠心肌PLB基因转录和蛋白表达的影响,以及对心肌肌浆网Ca2+-ATPase活性的作用。方法: 利用质粒辅助重组腺相关病毒系统试剂盒构建rAAV-asPLB。腹腔注射链脲佐菌素(STZ)诱导DM大鼠模型,将实验动物分为4组:正常组、DM组、盐水组和rAAV-asPLB组。盐水或rAAV-asPLB注射后6周,RT-PCR检测心肌PLB mRNA转录;Western blotting检测PLB蛋白表达水平;检测心肌肌浆网Ca2+-ATPase活性。结果: (1)成功构建rAAV-asPLB,诱导出DM大鼠模型。(2)DM组和盐水组PLB mRNA水平均高于正常组;rAAV-asPLB组PLB mRNA水平较DM组和盐水组明显降低。 (3)DM组和盐水组PLB 蛋白水平均高于正常组;rAAV-asPLB组PLB 蛋白水平较DM组和盐水组明显降低。(4)肌浆网Ca2+-ATPase活性在DM组和盐水组中较正常组明显降低,而rAAV-asPLB组较DM组和盐水组升高。结论: rAAV-asPLB抑制DM大鼠心肌PLB表达,增强Ca2+-ATPase活性。  相似文献   

8.
Ca2+ channels are regulated in a variety of different ways, one of which is modulation by the Ca2+ ion itself. In skeletal muscle, Ca2+ release sites are presumably located in the vicinity of the dihydropyridine-sensitive Ca2+ channel. In this study, we have tried to investigate the effects of Ca2+ release from the sarcoplasmic reticulum on the L-type Ca2+ channel in frog skeletal muscle, using the double Vaseline gap technique. We found an increase in Ca2+ current amplitude on application of caffeine, a well-known potentiator of Ca2+ release. Addition of the fast Ca2+ buffer BAPTA to the intracellular solution led to a gradual decline in Ca2+ current amplitude and eventually caused complete inhibition. Similar observations were made when the muscle fibre was perfused internally with the Ca2+ release channel blocker ruthenium red. The time course of Ca2+ current decline followed closely the increase in ruthenium red concentration. This suggests that Ca2+ release from the sarcoplasmic reticulum is involved in the regulation of L-type Ca2+ channels in frog skeletal muscle.  相似文献   

9.
The mechanism of the action of acetylcholine (ACh) on the L-type calcium current (I Ca,L) was examined using a whole-cell voltage-clamp technique in single sino-atrial myocytes from the rabbit heart. ACh depressed basal I Ca,L at concentrations in the range 0.05–10 M, without previous -adrenergic stimulation. The ACh-induced reduction of I Ca,L was reversed by addition of atropine, indicating that muscarinic receptors mediate it. Incubation of cells with a solution containing pertussis toxin led to abolition of the ACh effect, suggesting that this effect is mediated by G proteins activated by muscarinic receptors. Dialysis of cells with protein kinase inhibitor or 5-adenylyl imidodiphosphate, inhibitors of the cAMP-dependent protein kinase, decreased basal I Ca,L by about 85% and suppressed the effect of ACh. The ACh effect was also absent in cells dialysed with a non-hydrolysable analogue of cAMP, 8-bromo-cAMP. The results suggest that, in basal conditions, a large part of the L-type calcium channels should be phosphorylated by protein kinase A stimulated by a high cAMP level correlated with a high adenylate cyclase activity. The depressing effect of ACh on I Ca,L may occur via inhibition of the high basal adenylate cyclase activity leading to a decrease of cAMP-dependent protein kinase stimulation and thus to a dephosphorylation of calcium channels.  相似文献   

10.
Ca2+ release from the sarcoplasmic reticulum (SR) of mammalian cardiac myocytes occuring either due to activation by a depolarization or the resulting transmembrane Ca2+ current (I Ca), or spontaneously due to Ca2+ overload has been shown to cause inward current(s) at negative membrane potentials. In this study, the effects of different intracellular Ca2+ chelating compounds on I Ca-evoked or spontaneous Ca2+-release-dependent inward currents were examined in dialysed atrial myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. As compared to dialysis with solutions containing only a low concentration of a high affinity ethylene glycol-bis(-aminoethylether) N,N,N,N-tetraacetic acid (EGTA) like chelator (50–200 M), inward membrane currents (at –50 mV) due to evoked Ca2+ release, spontaneous Ca2+ release or Ca2+ overload following long-lasting depolarizations to very positive membrane potentials are prolonged if the dialysing fluid contains a high concentration of a low affinity Ca2+ chelating compound such as citrate or free adenosine 5-triphosphate (ATP). Without such a non-saturable Ca2+ chelator in the dialysing fluid, Ca2+-release-dependent inward currents are often oscillatory and show an irregular amplitude. With a low affinity chelator in a non-saturable concentration, discrete inward currents with constant properties can be recorded. We conclude that the variability in Ca2+-release-dependent inward current seen in single cells arises from spatial inhomogeneities of intracellular Ca2+ concentration ([Ca2+]i) due to localized saturation of endogenous and exogenous high affinity Ca2+ buffers (e.g. [2]). This can be avoided experimentally by addition of a non-saturable buffer to the intracellular solution. This condition might be useful, if properties of Ca2+ release from the SR and/ or the resulting membrane current, like for example arrhythmogenic transient inward current, are to be investigated on the single cell level.  相似文献   

11.
Pathophysiological changes in arterial smooth muscle structure and function occur with aging and there are a number of reports illustrating reductions in vascular responsiveness with aging. While much is known about arterial remodeling and functional adaptations with aging, very little is known about the biophysical adaptations in individual arterial myocytes. Cytosolic Ca2+ signaling, involving activation of L-type Ca2+ channels on the plasma membrane as well as InsP3 and ryanodine receptors on the sarcoplasmic reticulum, is integral to vascular tone and reactivity. Thus, we tested the hypothesis that aging results in reductions in the functional expression of L-type channels and temporal aspects of ryanodine receptor and InsP3 receptor Ca2+ signaling, in mesenteric arterial smooth muscle cells isolated from 6 and 30 months old C57Bl/6 mice. Comparisons of L-type current activity were made using dialyzed, whole-cell voltage-clamp techniques and Ba2+ as charge carrier. Ca2+ signaling was measured using fura-2 fluorescence microscopy techniques. Cell morphological changes were also investigated using electrophysiological and immunocytochemical approaches. The amplitudes of L-type Ca2+ currents were increased in older mice, but this was associated with membrane surface area increases of approximately 50%, due to increases in cell length not cell width. Consequently, L-type Ca2+ current densities were preserved with age, indicating functional channel expression was unchanged. In contrast, aging was associated with decrements in Ca2+ signaling in response to either ryanodine receptor stimulation by caffeine or InsP3 receptor activation with phenylephrine. These changes with aging may be related to the previously reported depression in myogenic reactivity.  相似文献   

12.
Transient inward current (Iti) indicating Ca2+-release from the sarcoplasmic reticulum and L-type Ca2+-current(ICa) were studied in atrial and ventricular myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. The increase of ICa caused by -adrenergic stimulation using isoprenaline (ISO) or related experimental manoeuvres such as superfusion with forskoline (FORSK) was used as a qualitative monitor of an increase of intracellular cAMP. Changes of Iti were used to manifest changes of sarcoplasmic Ca2+-release. In myocytes dialysed with citrate-based (60 mM) pipette filling solution containing 100 M EGTA spontaneous transient inward currents were recorded at a constant holding potential of –50 mV in the majority of myocytes. Superfusion with a solution containing ISO (5·10–8M) increased the amplitude of spontaneous Iti and reduced its time-to-peak. The effects of ISO on Iti developed in parallel to stimulation of ICa. In myocytes which did not show spontaneous cyclic Ca2+-release in the above condition, this could be evoked de novo by ISO. Spontaneous Iti was suppressed in the majority of cells by increasing the concentration of EGTA in the dialysing solution to 200 M. Brief (50 ms) activation of ICa by voltage steps from –50 to +10 mV usually failed to trigger Ca2+-release from the SR. The increase of ICa-amplitude upon administration of ISO went ahead with the induction of Ca2+-release by brief activation of ICa. The effects of ISO could be mimicked by FORSK or intracellular dialysis with 35-cyclic adenosine monophosphate. The effects on ICa and SR Ca2+-release were dependent on the concentration of the stimulating substance. In a given cell changing superfusion from a low to a high concentration of ISO or FORSK resulted in an increase of the number of Ca2+-release events per number of Ca2+-currents elicited and a shortening of time-to-peak of Iti's. The stimulating effects of ISO or FORSK on Ca2+-release were only partially due to an increase of the triggering ICa. Ca2+-currents too small to trigger Ca2+-release before -adrenergic stimulation could evoke Ca2+-release after augmentation of intracellular cAMP. Whereas the effects of ISO and FORSK on ICa were reversible, the stimulatory effects on Ca2+-release persisted after washing out the substances. The results give support to the hypothesis that -adrenoceptor-mediated positive inotropic and arrhythmogenic effects are, at least partly, due to a cyclic AMP-dependent regulatory mechanism modulating sarcoplasmic Ca2+-release.This work was supported by the Deutsche Forschungsgemeinschaft (FG Konzell)  相似文献   

13.
Tubular magnesium reabsorption was investigated by recollection micropuncture and in vivo microperfusion techniques in acutely thyropara-thyroidectomized rats made magnesium deficient by dietary deprivation. Henle's loop which normally reclaims the major portion of filtered magnesium was examined by elevation of intraluminal magnesium concentration. The transport capacity in these conditions was significantly lower in magnesium deficient rats (41%) compared to normal animals (71%) at comparable magnesium delivery rates. Acute infusion of MgCl2 further depressed loop magnesium reabsorption independent of intraluminal magnesium delivery. Parathyroid hormone did not alter magnesium transport capacity in magnesium deficient rats but resulted in enhanced transport in acutely hypermagnesemic deficient rats. Calcium reabsorption followed a similar qualitative pattern as magnesium with respect to loop function and urinary excretion. These results are consistent with a depressed transport capacity for magnesium in the loop of Henle of magnesium deficient rats which is independent of intraluminal magnesium delivery and circulating parathyroid hormone level.  相似文献   

14.
Laboratory of Experimental and Clinical Cardiology, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. (Presented by Academician of the Academy of Medical Sciences of the USSR A. N. Klimov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 111, No. 5, pp. 471–473, May, 1991.  相似文献   

15.
Intracellular Ca2+ ([Ca2+]i) was measured in single isolated human umbilical vein smooth muscle cells. Stimulation with histamine, in the absence of external Ca2+, mobilised Ca2+ from intracellular stores. When repeated brief applications of agonist were used, the time to onset, amplitude and rate of rise of the Ca2+ transients were found to change. Two components could often be discerned in the rising phase of the transients, an initial slow pacemaker and a second faster and larger component. Following the first histamine-activated transient the basal level of [Ca2+]i was invariably lower than that prior to stimulation. This lower value was maintained whilst the cell remained in Ca2+-free solution, but could be returned to a higher level if the cell was exposed to external Ca2+. When the mobilisation of the intracellular store was reduced to undetectable levels, re-exposure to Ca2+-containing medium reactivated responses. In the absence of external Ca2+, continuous application of histamine activated a series of transient increases in intracellular Ca2+, which decreased progressively in amplitude and rate of rise. The interval between transients also increased. These findings are discussed in terms of the activation of inositol trisphosphate-sensitive intracellular Ca2+ stores and their sensitivity to cytoplasmic Ca2+ and intrasarcoplasmic reticulum Ca2+.  相似文献   

16.
We have developed a method of rapidly changing the solutions on one side of a planar phospholipid bilayer. Bilayers can be painted on glass pipettes of tip diameter 50 m. By modifying an established method for rapid exchange of solutions bathing excised membrane patches, solution changes can be made at the bilayer within 10 ms. After incorporation of channels into the bilayer, the bilayer is moved into one of two parallel streams of solution flowing from a length of double-barrelled glass theta tubing. Activation of a solenoid system rapidly moves the theta tubing so that the bilayer is in the flow of the adjacent solution. For various reasons, the single-channel gating mechanisms of many channels are studied in planar bilayer systems. The conventional bilayer technique only allows for steady-state single-channel gating to be monitored. This novel method now allows the effects of rapid changes in modulators of channels incorporated into planar phospholipid bilayers to be measured.  相似文献   

17.
The pancreatic duct has been regarded as a typical cAMP-regulated epithelium, and our knowledge about its Ca2+ homeostasis is limited. Hence, we studied the regulation of intracellular calcium, [Ca2+]i, in perfused rat pancreatic ducts using the Ca2+-sensitive probe fura-2. In some experiments we also measured the basolateral membrane voltage, V bl, of individual cells. The resting basal [Ca2+]i was relatively high, corresponding to 263±28 nmol/l, and it decreased rapidly to 106±28 nmol/l after removal of Ca2+ from the bathing medium (n=31). Carbachol increased [Ca2+]i in a concentration-dependent manner. At 10 mol/l the fura-2 fluorescence ratio increased by 0.49±0.06 (n=24), corresponding to an increase in [Ca2+]i by 111±15 nmol/l (n=17). ATP, added to the basolateral side at 0.1 mmol/l and 1 mmol/l, increased the fluorescence ratio by 0.67±0.06 and 1.01±14 (n=46; 12), corresponding to a [Ca2+]i increase of 136±22 nmol/l and 294±73 nmol/l respectively (n= 15; 10). Microelectrode measurements showed that ATP (0.1 mmol/l) hyperpolarized V bl from –62±3 mV to-70±3 mV, an effect which was in some cases only transient (n=7). This effect of ATP was different from that of carbachol, which depolarized Vbl. Applied together with secretin, ATP delayed the secretin-induced depolarization and prolonged the initial hyperpolarization of V bl (n=4). Several other putative agonists of pancreatic HCO 3 secretion were also tested for their effects on [Ca2+]i. Bombesin (10 nmol/l) increased the fura-2 fluorescence ratio by 0.24±0.04 (n=8), neurotensin (10 nmol/l) by 0.25±0.04 (n=6), substance P (0.1 mol/l) by 0.22±0.06 (n=6), and cholecystokinin (10 nmol/l) by 0.14±0.03 (n=7). Taken together, our studies show that Ca2+ homeostasis plays a role in pancreatic ducts. The most important finding is that carbachol and ATP markedly increase [Ca2+]i, but their different electrophysiological responses indicate that intracellular signalling pathways may differ.Preliminary reports of the present study have been presented at the 72nd Meeting of the German Physiological Society, March 1993  相似文献   

18.
The influence of myoplasmic Mg2+ (0.05–10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 M Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 M Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 M ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 M Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 M), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres. In the soleus and cardiac preparations Ca2+ uptake was optimal between 1 and 10 mM Mg2+. The results of this study demonstrate that SR Ca2+ accumulation is different from SR Ca2+ uptake and that these two important determinants of muscle function are differently affected by Mg2+ in different muscle fibre types.  相似文献   

19.
This study compares changes in contractile properties, Parvalbumin content, and Ca2+-uptake by the sarcoplasmic reticulum (SR) of low-frequency stimulated rat and rabbit tibialis anterior (TA) muscles. Time to peak tension increased 1.8-fold in 35-day stimulated rabbit TA, while no change occurred in rat TA. Isometric twitch tension increased 2-fold in rabbit TA, but was unaltered in rat TA. Parvalbumin (PA) content was more than 90% reduced in rabbit TA, but only 60% in rat TA after 35 days. At this time, PA content of the stimulated rat TA was still higher than that of normal rabbit TA. Taking into account the suggested role of PA as a cytosolic Ca2+ buffer, its decrease could lead to an impaired free Ca2+-decay with a prolonged active state and a higher tension output during a single twitch. This would explain why chronic stimulation led to an increase in isometric twitch tension in rabbit TA, but not in rat TA. The 1.6-fold rise in half-relaxation time of 35-day stimulated rat and rabbit TA most likely resulted from a 50% reduced Ca2+-uptake by the SR, due to a still unknown modification of the Ca2+-transport ATPase.  相似文献   

20.
Slow outward potassium currents were recorded in isolated frog skeletal muscle fibres using the double mannitol-gap voltage-clamp technique.Detubulated fibres failed to generate a slow outward current, and apamin had no effect on the remaining current.The maximum blocking effect of organic and inorganic Ca2+-channel blockers on the slow outward channels of intact fibres was larger than that of apamin. Apamin failed to induce an additional block when applied after Ca2+-channel blockers.In a low-Ca2+ solution (OCa, EGTA 1 mM) the slow outward current was slightly increased and the blocking effect of apamin was enhanced. A Ca2+-rich solution (Ca2+×10) increased the slow outward current and the blocking effect of apamin was drastically reduced.It is concluded that the apamin-sensitive current which is a component of the slow outward K+ current is located in the tubular membrane. Its activation seems barely dependent on the Ca2+ influx via the slow inward Ca2+ current. Apamin-receptor binding appears to be dependent on the extracellular Ca2+ concentration. Blockade of slow outward current by Ca2+-channel blockers is likely to be the result of a direct action on the slow K+ permeability rather than a consequence of Ca2+ channel inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号