首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sporadic colorectal tumours the BRAFV600E is associated with microsatellite instability (MSI-H) and inversely associated to KRAS mutations. Tumours from hereditary non-polyposis colorectal cancer (HNPCC) patients carrying germline mutations in hMSH2 or hMLH1 do not show BRAFV600E, however no consistent data exist regarding KRAS mutation frequency and spectrum in HNPCC tumours. We investigated KRAS in 158 HNPCC tumours from patients with germline hMLH1, hMSH2 or hMSH6 mutations, 166 MSI-H and 688 microsatellite stable (MSS) sporadic carcinomas. All tumours were characterized for MSI and 81 of 166 sporadic MSI-H colorectal cancer (CRCs) were analysed for hMLH1 promoter hypermethylation. KRAS mutations were observed in 40% of HNPCC tumours, and the mutation frequency varied upon the mismatch repair gene affected: 48% (29/61) in hMSH2, 32% (29/91) in hMLH1 and 83% (5/6) in hMSH6 (P = 0.01). KRAS mutation frequency was different between HNPCC, MSS and MSI-H CRCs (P = 0.002), and MSI-H with hMLH1 hypermethylation (P = 0.005). Furthermore, HNPCC CRCs had more G13D mutations than MSS (P < 0.0001), MSI-H (P = 0.02) or MSI-H tumours with hMLH1 hypermethylation (P = 0.03). HNPCC colorectal and sporadic MSI-H tumours without hMLH1 hypermethylation shared similar KRAS mutation frequency, in particular G13D. In conclusion, we show that depending on the genetic/epigenetic mechanism leading to MSI-H, the outcome in terms of oncogenic activation may be different, reinforcing the idea that HNPCC, sporadic MSI-H (depending on the hMLH1 status) and MSS CRCs, may target distinct kinases within the RAS/RAF/MAPK pathway.  相似文献   

2.
Twenty percent of colorectal cancers (CRCs) arise in people who have a family history of CRC in at least one other relative. Although a fraction of these CRCs are explained by two well-described autosomal dominant syndromes-5% by hereditary nonpolyposis colorectal cancer (HNPCC) and 1% by familial adenomatous polyposis (FAP)-the cause of the remaining 14% of familial aggregates of CRC is unknown. Many cases of HNPCC are due to germline mutations in DNA mismatch repair genes, leading to the tumor phenotype of microsatellite instability (MSI), and most cases of FAP are caused by germline APC mutations. To date, non-FAP familial CRC aggregates have not been evaluated for germline APC mutations. In this study, we examined the involvement of germline APC mutations in 79 individuals with CRC who had early-age onset of their cancer (age < 50 years) and/or a family history of CRC. Cases with FAP or HNPCC due to defective mismatch repair were excluded from the study. Using conformation-sensitive gel electrophoresis and the protein truncation test as the screening methods, no functionally significant germline mutations were detected for any of the cases. An apparently silent polymorphism resulting in a 1-bp alteration of A --> G (proline --> proline) in exon 4 was observed. Additionally, four intervening sequence (IVS) alterations were detected: IVS2-53t-->c in 3 cases; IVS4-17ins T in 3 cases; IVS5+32t-->c in 16 cases; and IVS5+33g-->a in 1 case. All appeared to be polymorphisms present in similar proportions in an average-risk population. We conclude that germline APC mutations do not account for familial MSS (stable microsatellite) CRC associated with few synchronous polyps.  相似文献   

3.
Immunohistochemical expression analysis of mismatch repair gene products has been suggested for the prediction of hereditary nonpolyposis colorectal cancer (HNPCC) carrier status in cancer families and the selection of microsatellite instability (MSI)-positive tumors in sporadic colorectal cancer. In this study, we aimed to evaluate hMSH2 and hMLH1 immunohistochemistry in familial and sporadic colorectal cancer. We found that immunohistochemistry allowed us to identify patients with germline mutations in hMSH2 and many cases with germline mutations in hMLH1. However, some missense and truncating mutations may be missed. In addition, hMLH1 promoter methylation, commonly occurring in familial and sporadic MSI-positive colorectal cancer, can complicate the interpretation of immunohistochemical expression analyses. Our results suggest that immunohistochemistry cannot replace testing for MSI to predict HNPCC carrier status or identify MSI-positive sporadic colorectal cancer.  相似文献   

4.
The high-frequency microsatellite instability (MSI-H) phenotype, frequently identified in hereditary nonpolyposis colorectal cancer (HNPCC), also accounts for approximately 15% of sporadic colorectal cancers. Microsatellite instability (MSI) occurs from the mutational inactivation of the DNA mismatch repair genes, i.e. hMSH2 and hMLH1 in HNPCC, as well as from epigenetic inactivation of hMLH1 in sporadic colorectal tumors. The mutator pathway including microsatellite instability, hMLH1 promoter methylation, and hMSH2 and hMLH1 mutation patterns were identified in 21 sporadic colorectal adenocarcinoma patients younger than 30 yr excluding HNPCC. More than half of tumors showed MSI, with five MSI-H and six MSI-L (low-frequency microsatellite instability). Three of six MSI-H tumors showed the hMLH1 promoter methylation and did not express the hMLH1 protein. On the other hand, all MSI-L and all MSS (microsatellite stable) tumors expressed both hMSH2 and hMLH1 proteins. Two novel mutations, i.e. a missense mutation in hMLH1 and a splice-site alteration in hMSH2, were identified in two patients respectively. Although mutator pathway was implicated in younger-age-onset colorectal carcinogenesis, many tumors appeared to evolve from different genetic events other than hMSH2 and hMLH1 mutations frequently identified in HNPCC.  相似文献   

5.
One of the main features of neurofibromatosis type 1 (NF1) is benign neurofibromas, 10-20% of which become transformed into malignant peripheral nerve sheath tumors (MPNSTs). The molecular basis of NF1 tumorigenesis is, however, still unclear. Ninety-one tumors from 31 NF1 patients were screened for gross changes in the NF1 gene using microsatellite/restriction fragment length polymorphism (RFLP) markers; loss of heterozygosity (LOH) was found in 17 out of 91 (19%) tumors (including two out of seven MPNSTs). Denaturing high performance liquid chromatography (DHPLC) was then used to screen 43 LOH-negative and 10 LOH-positive tumors for NF1 microlesions at both RNA and DNA levels. Thirteen germline and 12 somatic mutations were identified, of which three germline (IVS7-2A>G, 3731delT, 6117delG) and eight somatic (1888delG, 4374-4375delCC, R2129S, 2088delG, 2341del18, IVS27b-5C>T, 4083insT, Q519P) were novel. A mosaic mutation (R2429X) was also identified in a neurofibroma by DHPLC analysis and cloning/sequencing. The observed somatic and germline mutational spectra were similar in terms of mutation type, relative frequency of occurrence, and putative underlying mechanisms of mutagenesis. Tumors lacking mutations were screened for NF1 gene promoter hypermethylation but none were found. Microsatellite instability (MSI) analysis revealed MSI in five out of 11 MPNSTs as compared to none out of 70 neurofibromas (p=1.8 x 10(-5)). The screening of seven MPNSTs for subtle mutations in the CDKN2A and TP53 genes proved negative, although the screening of 11 MPNSTs detected LOH involving either the TP53 or the CDKN2A gene in a total of four tumors. These findings are consistent with the view that NF1 tumorigenesis is a complex multistep process involving a variety of different types of genetic defect at multiple loci.  相似文献   

6.
Propionic acidemia (PA) is an inborn error of organic acid metabolism caused by a deficiency of propionyl-CoA carboxylase. This enzyme is composed of two non-identical subunits, alpha and beta, which are encoded by the PCCA and PCCB genes, respectively. An enzyme deficiency can result from mutations in either PCCA or PCCB. To elucidate the mutation spectrum in Japanese patients, we have performed a mutation analysis of 30 patients with PA, which included nine previously reported patients. The study revealed that 15 patients were alpha-subunit deficient and 15 patients were beta-subunit deficient. Seven novel mutations were found (IVS18-6C >G, 1746G >A, C398R, G197E and IVS18+1G >A in the PCCA; A153P and IVS9+1G >T in the PCCB). Among these Japanese patients with alpha-subunit deficiencies, 923-924insT, IVS18-6C >G, and R399Q mutations were frequent and the total allelic frequency of these three mutations combined was 56% (17/30). This is in sharp contrast to the mutation spectrum found in Caucasian patients, where no prevalent mutations have been identified. Among the beta-subunit deficiencies, there were three frequent mutations; R410W, T428I, and A153P, whose allelic frequencies were 30, 26.7, and 13.3%, respectively. In conclusion, a limited number of mutations are predominant in both PCCA and PCCB genes among Japanese patients with propionic acidemia.  相似文献   

7.
目的 了解国人遗传性非息肉病性结直肠癌(HNPCC)的临床病理及分子遗传学特征。方法 用微解剖、微卫星不稳定性分析、免疫组织化学及直接DNA测序方法,检测4例HNPCC患者的肿瘤组织微卫星不稳定性状态、错配修复基因hMSH2及hMLH1蛋白水平的表达变化以及生殖细胞突变。结果 4例先证者5个肿瘤组织均表现为高度微卫星不稳定性,3例表现为hMSH2蛋白表达异常,1例表现为hMLH1蛋白表达异常。检测出3个生殖细胞病理性突变。结论 中国人典型HNPCC病例中错配修复基因突变率较高。高度微卫星不稳定性、错配修复基因hMSH2及hMLH1蛋白表达异常与错配修复基因生殖细胞突变密切相关。微卫星不稳定性和错配修复基因蛋白分析可作为DNA测序前的筛选手段。  相似文献   

8.
Microsatellite instability (MSI) analysis was performed using a "reference panel" of microsatellite markers in 345 unselected primary colorectal cancers (CRC). Thirty-five (10%) tumors were classified as high MSI (MSI-H). We identified 6 (17%) MSI-H tumors with germline mutations in mismatch repair (MMR) genes (tumors from patients with hereditary non-polyposis colorectal cancer (HNPCC) syndrome) and 29 (83%) MSI-H tumors without germline MMR mutations (sporadic MSI-H tumors). Hypermethylation of the hMLH1 promoter was found in 26/29 (90%) sporadic MSI-H tumors but only in 1/6 (17%) HNPCC tumors (P<.001). Somatic alterations were identified in both MMR genes in HNPCC tumors but mainly in the hMSH2 gene in sporadic MSI-H tumors. LOH at MMR loci was detected in 3/6 (50%) HNPCC tumors and in 4/26 (15%) informative sporadic MSI-H tumors. These results together indicate different mode of inactivation of MMR genes in sporadic MSI-H tumors versus MSI-H tumors in HNPCC patients. We therefore propose that MSI analysis of newly diagnosed primary CRC followed by methylation analysis of hMLH1 promoter in MSI-H tumors and mutational analysis of MMR genes in MSI-H tumors lacking hMLH1 promoter methylation might be an efficient molecular genetic approach for HNPCC screening.  相似文献   

9.
Hereditary nonpolyposis colorectal cancer (HNPCC) is the most frequent hereditary form of colorectal cancer and is caused by germline mutations in mismatch repair (MMR) genes. The majority of mutations occur in MLH1 and MSH2. We report hereby seven novel germline mutations in these two genes (five in MLH1 and two in MSH2). All mutations have been found in families fulfilling criteria of the Bethesda guidelines and four of which also fulfilled the Amsterdam criteria. We identified three insertions or deletions of 1 bp leading to premature stop codons (MLH1: c.341delC, c.1413‐1414insA; MSH2: c.1119delG) and three nonsense mutations (MLH1: c.67G>T [E23X], c.436C>T [Q146X]; MSH2: c.1857T>G [Y619X]). The corresponding tumors showed a high level of microsatellite instability (MSI‐H) and a complete loss of expression of the affected protein. In addition, a missense mutation in MLH1 was identified (c.1984A>C [T662P]). The respective tumor also showed a high level of microsatellite instability but a reduced, rather then lost, expression of the MLH1‐protein. This missense mutation was not found in 107 healthy control individuals and in 54 HNPCC patients. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
Hereditary NonPolyposis Colorectal Cancer (Lynch syndrome) is an autosomal dominant disease caused by germline mutations in a class of genes deputed to maintain genomic integrity during cell replication, mutations result in a generalized genomic instability, particularly evident at microsatellite loci (Microsatellite Instability, MSI). MSI is present in 85-90% of colorectal cancers that occur in Lynch Syndrome. To standardize the molecular diagnosis of MSI, a panel of 5 microsatellite markers was proposed (known as the "Bethesda panel"). Aim of our study is to evaluate if MSI testing with two mononucleotide markers, such as BAT25 and BAT26, was sufficient to identify patients with hMLH1/hMSH2 germline mutations. We tested 105 tumours for MSI using both the Bethesda markers and the two mononucleotide markers BAT25 and BAT26. Moreover, immunohistochemical evaluation of MLH1 and MSH2 proteins was executed on the tumours with at least one unstable microsatellite, whereas germline hMLH1/hMSH2 mutations were searched for all cases showing two or more unstable microsatellites. The Bethesda panel detected more MSI(+) tumors than the mononucleotide panel (49.5% and 28.6%, respectively). However, the mononucleotide panel was more efficient to detect MSI(+) tumours with lack of expression of Mismatch Repair proteins (93% vs 54%). Germline mutations were detected in almost all patients whose tumours showed MSI and no expression of MLH1/MSH2 proteins. No germline mutations were found in patients with MSI(+) tumour defined only through dinucleotide markers. In conclusion, the proposed mononucleotide markers panel seems to have a higher predictive value to identify hMLH1 and hMSH2 mutation-positive patients with Lynch syndrome. Moreover, this panel showed increased specificity, thus improving the cost/effectiveness ratio of the biomolecular analyses.  相似文献   

11.
INTRODUCTION—Hypermethylation of the promoter region of the hMLH1 gene is associated with absent expression of MLH1 protein in sporadic colorectal cancers with microsatellite instability (MSI+), and it has been proposed that methylation may be a mechanism of inactivation in Knudson's hypothesis. The incidence of hypermethylation of the hMLH1 promoter in hereditary non-polyposis colorectal cancer (HNPCC) versus MSI+ sporadic colorectal cancer was investigated and compared.
METHODS—DNA was available from 10 HNPCC colorectal cancers (median age 58 years, range 39-67) with germline mutations in hMLH1 and 10 MSI+ sporadic colorectal cancers (mean age 79 years, range 41-85). MSI was determined by amplification of BAT26 and TGF-β RII. The methylation status of the hMLH1 promoter was studied by the polymerase chain reaction (PCR) based HpaII restriction enzyme assay technique. Evidence of allelic loss at hMLH1 was searched for in the HNPCC colorectal cancers.
RESULTS—All cases were confirmed to be MSI+. The promoter region of hMLH1 was hypermethylated in seven of 10 MSI+ sporadic cancers versus 0 of 10 HNPCC cancers (p<0.002). Evidence of loss of heterozygosity at hMLH1 was observed in eight of the 10 HNPCC colorectal cancers.
CONCLUSION—While mutations and allelic loss are responsible for the MSI+ phenotype in HNPCC cancers, the majority of MSI+ sporadic cancers are hypermethylated in the promoter region of hMLH1. These data further support our argument that tumours from HNPCC patients, which almost always acquire a raised mutation rate, mostly follow a different pathway from MSI+ sporadic tumours.


Keywords: hMLH1 promoter region; HNPCC; hypermethylation; colorectal cancer  相似文献   

12.
13.
Alterations in DNA mismatch repair (MMR) proteins result in microsatellite instability (MSI), increased mutation accumulation at target genes and cancer development. About one-third of gastric cancers display high-level microsatellite instability (MSI-High) and low-level microsatellite instability (MSI-Low) is frequently detected. To determine whether variations in the levels of MMR proteins or mutations in the main DNA MMR genes are associated with MSI-Low and MSI-High in gastric cancer cell lines, the MSI status (MSI-High, MSI-Low or MS-Stable (MSS)) of 14 gastric cancer lines was determined using multiple clone analysis with a panel of five microsatellite markers. Protein levels of hMLH1, hMSH2, hMSH6, hPMS2 and hPMS1 were determined by Western blot. Sequence analysis of hMLH1 and hMSH2 was performed and the methylation status of the hMLH1 promoter was examined. The cell lines SNU1 and SNU638 showed MSI-High, decreased to essentially absent hMLH1 and hPMS2 and reduced hPMS1 and hMSH6 protein levels. The hMLH1 promoter region was hypermethylated in SNU638 cells. The MKN28, MKN87, KATOIII and SNU601 cell lines showed MSI-Low. The MMR protein levels of cells with MSI-Low status was similar to the levels detected in MSS cells. A marked decrease in the expression levels of MutL MMR proteins (hMLH1, hPMS2 and hPMS1) is associated with high levels of MSI mutations in gastric cancer cells. Gastric cancer cell lines with MSI-Low status do not show significant changes in the levels of the main DNA MMR proteins or mutations in the DNA mismatch repair genes hMSH2 and hMLH1. These well-characterized gastric cancer cell lines are a valuable resource to further our understanding of DNA MMR deficiency in cancer development, progression and prognosis.  相似文献   

14.
Mutations in Bruton’s tyrosine kinase (BTK) gene result in X linked agammaglobulinemia (XLA). Using Single Strand Conformation Polymorphism (SSCP) followed by direct sequencing 21 mutations were found in 27 patients with an XLA phenotype from 21 unrelated families. We identified 13 novel and 8 known mutations: seven missense (R288W, R544G, P566S, K430E; K374N, L512P, R544S), 5 nonsense (Q196X, Y361X, L249X, Q612X, Q466X), 2 deletions of one nucleotide (A207fsX216, Q612fsX648), 2 deletion‐insertions (V219fsX227, K218fsX228), one insertion of two nucleotides (S572fsX587) and 4 point mutations in donor/acceptor splice sites (g.IVS1+1G>C, g.IVS6+5G>A, g.IVS10+1G>T, g.IVS13‐1GG>CT). Carrier detection was performed in 18 mothers. Only in one case the mutation was found to be de novo. Additionally, BTK mutations were not found in four patients without family history, but with XLA‐compatible phenotype. Hum Mutat 18:84, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
Most sporadic gastric cancer with the microsatellite instability (MSI) phenotype is linked with hypermethylation (HM) of hMLH1. However, a part of gastric cancer with hMLH1 HM does not show MSI, suggesting a region-specific effect of hMLH1 promoter methylation on developing MSI. To test this possibility, we measured the methylation level in 3 distinct areas of hMLH1 promoter and compared them with MSI in 129 sporadic gastric cancer patients. Three areas of hMLH1 promoter, from distal toward proximal, were designated as hMLH1-A, hMLH1-B, and hMLH1-C, respectively. The methylation level was measured by fluorescence-based real-time methylation specific PCR. MSI status was tested using a panel of 5 microsatellite markers (BAT25, BAT26, D2S123, D5S346, and D17S250). Gastric cancers with no HM in hMLH1-A (n=105, 81.4%) also showed no HM in 2 other regions of hMLH1 promoter. On the other hand, the cancers with HM in hMLH1-A (n=24, 18.6%) showed various levels of methylation in 2 other regions. In most cases, the methylation value was the highest in hMLH1-A and the lowest in hMLH1-C. We found the MSI phenotype in 12 cancers (13%) of 92 tested cases and these cancers were all associated with HM in the region of hMLH1-C. A third of hypermethylated cancers in the hMLH1-A region did not show the MSI phenotype. The survival of the patients with HM in hMLH1-C was significantly better than that of patients without HM (P<0.05). These results suggest that HM in the proximal region of hMLH1 promoter, hMLH1-C in this study, plays a critical role in the progression of gastric cancer with MSI. The complete association between HM in hMLH1-C and MSI phenotype with gastric cancer provides an alternative diagnostic tool for detecting a favorable prognostic subgroup with MSI by using simple methylation analysis.  相似文献   

16.
AIM: The aim of this study was to determine the potential synchronous contribution of alterations in TGF-betaRII, BAX, IGFIIR, caspase-5, hMSH3 and hMSH6 genes to the development and clinical outcome of bladder cancer, in relation to p53 mutations, microsatellite status and hMLH1/hMSH2 expression. METHODS: Molecular biology techniques as well as immunohistochemistry were applied in 69 samples from patients with urothelial carcinoma. RESULTS: Microsatellite alterations were observed in TGF-betaRII(A)(10 )(16%) and BAX(G)(8 )(3%), irrespective of the presence of p53 mutations, but not in IGFIIR(G)(8), caspase-5(A)(10, ) hMSH3(A)(8) and hMSH6(C)(8). A statistically significant correlation could be found only between hMLH1 expression and the presence of microsatellite instability (Fisher's exact test, p = 0,013). Survival analysis indicated that apart from grade and T-category, hMLH1 expression was the only parameter significantly affecting overall survival (p = 0.021 in univariate and p = 0.015 in multivariate analysis) and recurrence-free survival (p = 0.0463 in univariate and p = 0.022 in multivariate analysis). CONCLUSIONS: We conclude that alterations of the examined target genes of MSI are rare in urinary bladder carcinoma and they are not associated with microsatellite instability or the presence of p53 mutations.  相似文献   

17.
Germline mutations in BRCA1 gene account for varying proportions of breast/ovarian cancer families, and demonstrate considerable variation in mutational spectra coincident with ethnic and geographical diversity. We have screened for mutations the entire coding sequence of BRCA1 in 30 breast/ovarian cancer women with family history of two or more cases of breast cancer under age 50 and/or ovarian cancer at any age. Genomic DNA from patient was initially analyzed for truncating mutations in exon 11 with PTT followed by DNA sequencing. In the cases where no frameshift mutation was observed in exon 11, all other exons were screened with direct sequencing. Two novel (3099delT, 3277insG) and three already described (3741insA, 1623del5-TTAAA, 5382insC-twice) truncating mutations were identified. In addition, 6 point mutations (L771L, P871L, E1038G, K1183R, S1436S, S1613G) which are already classified as polymorphisms were identified. Three unclassified intronic variants (IVS16-68 G>A, IVS16-92 G>A, IVS18+65G>A) were also detected. These results show that BRCA1 deleterious mutations are present in a fraction (20%) of Greek breast/ovarian cancer families similar to other European countries. Mutations were detected in high- (>/=3 members) as well as in moderate-risk (2 members) families. This is the first report of BRCA1 mutation analysis in Greece.  相似文献   

18.
Germline mutation analysis of BRCA1 gene has demonstrated significant allelic heterogeneity. These differences represent historical influences of migration, population structure and geographic or cultural isolation. To date, there have been no reports of Indian families with mutations in BRCA1. We have screened for mutations in selected coding exons of BRCA1 and their flanking intron regions in three breast or breast and ovarian cancer families with family history of three or more cases of breast cancer under age 45 and/or ovarian cancer at any age. We have also analyzed 10 female patients with sporadic breast cancer regardless of age and family history, as well as 50 unrelated normal individuals as controls. Thus a total of 90 samples were analyzed for BRCA1 mutations using polymerase chain reaction-mediated site directed mutagenesis (PSM) and single stranded conformation polymorphism (SSCP) analysis for various selected exons followed by sequencing of variant bands. Eight point mutations were identified. Two deleterious pathogenic, protein truncating non-sense mutations were detected in exon 11 (E1250X) and exon 20 (E1754X) and six novel and unique amino acid substitutions (F1734S, D1739Y, V1741G, Q1747H, P1749A, R1753K). One complex missense mutation of exon 20 [V1741G; P1749A] was seen in two out of three families and another complex combination of missense and non-sense mutations of the same exon [V1741G; E1754X] was observed in only one family. These complex mutations exist only in breast cancer families but not in control populations of women. Three splice site variants (IVS20+3A>C, IVS20+4A>T, IVS20+5A>T) and two intronic variants (IVS20+21_22insG, IVS20+21T>G) were also detected. In the group of 10 sporadic female patients no mutations were found.  相似文献   

19.
目的 筛查先天性心脏病(congenital heart fflsease,CHD)患者CHD7(chromodomsin helicase DNA-binding protein gene)基因的胚系突变,探讨其在先心病发生中的作用.方法 采集67例临床确诊的CHD患儿、100名正常对照的外周静脉血,提取白细胞基因组DNA,PCR扩增CHD7基因,变性高效液相色谱分析技术对PCR产物进行突变筛选,出现异常峰型的扩增片段进行DNA测序,明确突变位点和类型,并进一步结合病例对照和生物信息学分析探讨变异的功能意义.结果 67例先心病患者中共检出7种单碱基的替换,位于CHD7的不同内含子.其中,IVS11+127A>G和WS12+21T>G的等位基因频率均为0.0075,为罕见变异;而IVS2+34G>A、IVS4+39C>A、IVS12.5T>C和IVS16+51C>A等位基因频率为0.2635、0.2156、0.1505、0.3636,属于单核苷酸多态性;IVS12-5T>C在CHD组的检出频率显著低于正常对照组(5.42%vs 9.57%,P<0.05);而IVS14-35C>G则仅见于CHD患儿.生物信息学分析显示,IVS12-5T>C替换具有增强外显子剪切的效应.结论 CHD7基因单核苷酸多态性变异WS12-5T>C对CHO的发生可能具有保护作用,而CHD7基因的突变并不是构成散发性先天性心脏病的主要原因.  相似文献   

20.
To test whether a subset of esophageal squamous cell carcinomas (SCC) develop through a deficiency in DNA mismatch repair, we examined microsatellite instability (MSI) using 11 microsatellite markers including BAT-26, hMLH1 protein expression by immunohistochemistry, and methylation status of the hMLH1 promoter by methylation-specific polymerase chain reaction (MSP). p53 mutations were also investigated. Microsatellite instability at one or more loci was observed in 40% (12/30) of esophageal SCC tumor samples, although only one of these tumors was categorized as high-frequency MSI (MSI-H) and none showed BAT-26 instability. While immunohistochemistry revealed decreased hMLH1 protein expression in 27% (8/30) of the tumors, hMLH1 promoter hypermethylation was not observed. Absence of hMLH1 protein expression was relatively common in well-differentiated (keratinizing-type) esophageal SCC, but was not associated with hMLH1 promoter hypermethylation. p53 mutation was detected in 37% (11/30) and loss of heterozygosity (LOH) in 90% (27/30) of esophageal SCC samples. Our results suggested that most esophageal SCC develop through defects in tumor suppressor genes (i.e. the suppressor pathway), and that MSI in esophageal SCC probably represent random replication errors rather than being associated with DNA mismatch repair deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号