首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling have been identified during epileptiform discharges over the last few years. Here, we will review experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, or the amygdala. After having summarized the fundamental characteristics of GABA(A) receptor-mediated mechanisms, we will analyze their role in the generation of network oscillations and their contribution to epileptiform synchronization. Whether and how GABA(A) receptors influence the interaction between limbic networks leading to ictogenesis will be also reviewed. Finally, we will consider the role of altered inhibition in the human epileptic brain along with the ability of GABA(A) receptor-mediated conductances to generate synchronous depolarizing events that may lead to ictogenesis in human epileptic disorders as well.  相似文献   

2.
This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease.  相似文献   

3.
Objective: Bumetanide has been reported to attenuate ischemia-evoked cerebral edema. However, whether bumetanide can protect cerebral ischemia-reperfusion injury (IRI) in vivo is unclear. In the present study, we aim to determine whether intravenously injection bumetanide can attenuate cerebral IRI and if its protection effect might be related to the modification of cerebral NKCC1 and KCC2 protein expression. Methods: Focal cerebral ischemia was induced by occluding the right middle cerebral artery (MCAO) for 2-h, followed by 3-h, 24-h or 48-h of reperfusion respectively. Brain edema, neurological deficits, and infarction volume were determined by (wet weights - dry weights)/dry weights ×100, 5-point neurological function score evaluation system, and TTC staining, respectively. The expression levels of NKCC1 and KCC2 were determined by immunohistochemical staining. Results: Reperfusion increased brain edema, neurological deficits, and infarction volume. Bumetanide decreased brain edema, attenuated the neurological defects and reduced post-ischemic cerebral infarction. Cerebral ischemia-reperfusion injury increased NKCC1 expression level and decreased KCC2 expression level. Interestingly, bumetanide down-regulated the NKCC1 protein expression level without changing the KCC2 protein expression level in rat brain cortex. Conclusion: These results suggest that bumetanide protects focal cerebral ischemia-reperfusion injury in rat, which might through the inhibition of NKCC1.  相似文献   

4.
Rectal gland tubules (RGT) of spiny dogfish were dissected and perfused in vitro. Transepithelial PD (PDte), resistance (Rte), the PD across the basolateral membrane (PDbl) and intracellular chloride and potassium activities (a Cl– cell ,a K+ cell ) were measured. In a first series, 67 RGT segments were perfused with symmetric shark Ringers solution. The bath perfusate contained in addition db-cAMP 10–4, forskolin 10–6, and adenosine 10–4 mol · l–1. PDte was –11±1 (n=67) mV lumen negative, Rte 27±2 (n=47) cm2. PDbl –75±0.4 (n=260) mV.a K+ cell anda Cl– cell were 109±22 (n=4) and 38±4 (n=36) mmol · l–1 respectively. These data indicate that Cl secretion across the RGT must be an uphill transport process, whereas secretion of Na+ could be driven by the lumen negative PDte. Intracellular K+ is 14 mV above equilibrium with respect to the basolateral membrane PD and Cl is 23 mV above equilibrium across the apical membrane. In series 2, the conductivity properties of the apical and basolateral membrane as well as that of the paracellular pathway were examined in concentration step experiments. Decrease of the basolateral K+ concentration led to a rapid hyperpolarization of PDbt with a mean slope of 19 mV per decade of K+ concentration change. Addition of 0.5 mmol · l–1 Ba2+ to the bath solution lead to a marked depolarization and abolished the response to K+ concentration steps. In the lumen a Cl concentration downward step led to a depolarization of the lumen membrane; resulting in a mean slope of 18 mV per decade of Cl concentration change. When dilution potentials were generated across the epithelium, the polarity indicated that the paracellular pathway is cation selective. In series 3 the equivalent short circuit current (Isc=PDte/Rte) was determined as a function of symmetrical changes in Na+ concentration, with Cl held at 276 mmol · l–1, and as a function of symmetrical changes in Cl concentration, with Na+ held at 278 mmol · l–1 Isc was a saturable function of Na+ concentration (Hill coefficient 0.9±0.1,K 1/2 4.4 mmol · l–1,n=7) and also a saturable function of Cl concentration (Hill coefficient 2.0±0.1,K 1/2 75 mmol · l–1,n=11). These data are compatible with the assumption that the carrier responsible for NaCl uptake has a 1 Na+ per 2 Cl stoichiometry. In series 4, the effect of a K+ concentration downward step on PDbl anda Cl– cell transients was followed with high time resolution in the presence and absence of basolateral furosemide (5 · 10–5 to 10–4 mol · l–1) in an attempt to examine whether K+ reduction on the bath side inhibits Na+Cl uptake by the carrier system as does e.g. furosemide. The data indicate that removal of K+ from the bath side exerts an effect comparable to that of furosemide, i.e. it inhibits the carrier. We conclude that NaCl secretion in the RGT cell comprises at the least the following components: In the basolateral membrane, the (Na++K+)-ATPase, probably the Na+ 2 ClK+ carrier, and a K+ conductance. In the apical membrane a Cl conductance; and a Na+ conductive paracellular pathway.Supported by Deutsche Forschungsgemeinschaft DFG-Gr 480/8-1. Parts of this study have been presented at the 3rd International Symposium on Ion Selective Electrodes, Burg Rabenstein 1983, 16th Annual Meeting American Society of Nephrology, Washington DC 1983, 49th Tagung der Deutschen Physiologischen Gesellschaft, Dortmund 1984. A summary of the present study was published in Bulletin Mount Desert Island Biological Laboratory (Vol. 83)  相似文献   

5.
The cerebrospinal fluid (CSF) provides mechanical and chemical protection of the brain and spinal cord. This review focusses on the contribution of the choroid plexus epithelium to the water and salt homeostasis of the CSF, i.e. the secretory processes involved in CSF formation. The choroid plexus epithelium is situated in the ventricular system and is believed to be the major site of CSF production. Numerous studies have identified transport processes involved in this secretion, and recently, the underlying molecular background for some of the mechanisms have emerged. The nascent CSF consists mainly of NaCl and NaHCO3, and the production rate is strictly coupled to the rate of Na+ secretion. In contrast to other secreting epithelia, Na+ is actively pumped across the luminal surface by the Na+,K+-ATPase with possible contributions by other Na+ transporters, e.g. the luminal Na+,K+,2Cl cotransporter. The Cl and HCO3 ions are likely transported by a luminal cAMP activated inward rectified anion conductance, although the responsible proteins have not been identified. Whereas Cl most likely enters the cells through anion exchange, the functional as well as the molecular basis for the basolateral Na+ entry are not yet well-defined. Water molecules follow across the epithelium mainly through the water channel, AQP1, driven by the created ionic gradient. In this article, the implications of the recent findings for the current model of CSF secretion are discussed. Finally, the clinical implications and the prospects of future advances in understanding CSF production are briefly outlined.  相似文献   

6.
A high density of nerve fibers containing calcitonin-gene-related peptide (CGRP) is present in the atria. Recently CGRP was reported to open ATP-sensitive K channels in arterial smooth muscle cells. This study examines whether CGRP activates a similar K+ channel in cardiac cells. In voltage-clamped whole cells loaded with GTP and ATP, CGRP reversibly evoked an inwardly rectifying K+ current. To identify the K+ channel that gives rise to this current, three types of K+ channel (resting, ATP-sensitive and acetylcholine-activated) were examined. CGRP failed to activate or inhibit the ATP-sensitive or the resting K+ channel. However, CGRP (0.1–1 M) caused activation of single channels with kinetics similar to that of the muscarinic K+ channel (35–40 pS conductance and approx. 1 ms mean open time in symmetrical 140 mM K+). In excised, inside-out (CGRP in pipette) or in outside-out (GTP in pipette) patches, the K+ current was activated by perfusion with GTP or CGRP, respectively, suggesting that CGRP activated the muscarinic K+ channel via GTP-binding protein. Treatment with pertussis toxin inhibited the activation of the K+ channel, suggesting that CGRP receptor may be coupled to a Gi or a Go type of GTP-binding protein. Together with previous findings, these results suggest that CGRP modulates several types of ion channels to produce its cellular effects.This work was supported in part by HL40586 and American Heart Association grant-in-aid.  相似文献   

7.
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K+ efflux and Na+-, Ca2+- and Cl-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly δ-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na+ influx through the membrane and reduces the increase in intracellular Ca2+, thus decreasing the excessive leakage of intracellular K+. Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na+ channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.  相似文献   

8.
A glutamatergic end-bulb synapse in the avian nucleus magnocellularis relays temporal sound information from the auditory nerve. Here, we show that presynaptic Na+/K+-ATPase (NKA) activity at this synapse contributes to the maintenance of the readily releasable pool (RRP) of vesicles, thereby preserving synaptic strength. Whole-cell voltage clamp recordings were made from chick brainstem slices to examine the effects of NKA blocker dihydroouabain (DHO) on synaptic transmission. DHO suppressed the amplitude of EPSCs in a dose-dependent manner. This suppression was caused by a decrease in the number of neurotransmitter quanta released because DHO increased the coefficient of variation of EPSC amplitude and reduced the frequency but not the amplitude of miniature EPSCs. Cumulative plots of EPSC amplitude during a stimulus train revealed that DHO reduced the RRP size without affecting vesicular release probability. DHO did not affect [Ca2+]i-dependent processes, such as the paired-pulse ratio or recovery time course from the paired-pulse depression, suggesting a minimal effect on Ca2+ concentration in the presynaptic terminal. Using mathematical models of synaptic depression, we further demonstrated the contribution of RRP size to the synaptic strength during a high-frequency stimulus train to highlight the importance of presynaptic NKA in the auditory synapse.  相似文献   

9.
Using conventional and ion selective microelectrodes, the effect of ouabain (10–4 mol/l) on peritubular cell membrane potential (PDpt), on intracellular pH (pHi) as well as on the intracellular ion activities of Cl (Cl i ), K+ (K i + ), Na+ (Na i + ) and Ca2+ (Ca i 2+ ) was studied in proximal tubules of the isolated perfused frog kidney. In the absence of ouabain (PDpt=–57.0±1.9 mV), the electrochemical potential difference of chloride (apparent {ie6-1} and of potassium {ie6-2} is directed from cell to bath, of H+ {ie6-3}, of Na+ {ie6-4} and of Ca2+ {ie6-5} from bath to cell. Ouabain leads to a gradual decline of PDpt, which is reduced to half (PDpt, 1/2) within 31±4.6 min (in presence of luminal glucose and phenylalanine), and to a decline of the absolute values of apparent {ie6-6}, of {ie6-7}, {ie6-8} and {ie6-9}. In contrast, an increase of {ei6-10} is observed. At PDpt, 1/2 apparent Cl i increases by 6.2±1.0 mmol/l, pHi by 0.13±0.03, Ca i 2+ by 185±21 nmol/l, and Na i + by 34.2±4.6 mmol/l, whereas K i + decreases by 37.7±2.2 mmol/l. The results suggest that the application of ouabain is followed by a decrease of peritubular cell membrane permeability to K+, by an accumulation of Ca2+, Na+ and HCO 3 - in the cell and by a dissipation of the electrochemical Cl gradient.Supported by Österr. Forschungsrat, Proj. No. 4366  相似文献   

10.
The effect of Na+,K+,2Cl- cotransport inhibitor bumetanide on action potentials and contractions of smooth muscle cells in the ureter of guinea pigs evoked by electrical stimulation was studied by the method of double sucrose bridge. Bumetanide (10-100 M) dose-dependently suppressed action potential and contractions of smooth muscle cells induced by 1-10 M histamine, 10 M mesatone, 5 mM tetraethylammonium, and 100 M sodium nitroprusside. Our findings suggest that test substances modulate Na+,K+,2Cl- cotransport in smooth muscle cells.  相似文献   

11.
Ocular herpes simplex virus (HSV) infection results in an immune-mediated inflammation of the corneal stroma known as herpetic stromal keratitis (HSK). Recurrent HSK is a common cause of virus-induced corneal blindness in humans. The role of CD4(+) and CD8(+) T cell subsets in the disease pathogenesis is ill defined and varies with the virus strain and host genetic background. To examine the contribution of T cell subsets to corneal disease, we studied the development of recurrent HSK in CD4 or CD8 gene knockout (KO) mice ocularly infected with HSV-1 McKrae strain. Following UV-B induced viral reactivation, corneal opacity in latently infected BALB/c (HSV sensitive) CD4 and CD8 KO mice was reduced compared to infected BALB/c mice with normal genotype. In contrast, opacity in C57BL/6 (HSV resistant) CD4 and CD8 KO latent mice did not differ from genetically normal latent mice. Virus-induced corneal opacity was not demonstrable in C57BL/6 CD4/CD8 double KO mice. Increased viral shedding, measured by reactivation rate, days shedding or viral titers, occurred in CD4 KO mice of both strains. Our findings indicate that both CD4(+) and CD8(+) cells play a role in the immunopathogenesis of recurrent HSK, and their role is dependent upon the host genetic profile.  相似文献   

12.
The aim of this study is to evaluate the analysis of markers related with progression, to further characterize familial breast cancers. Here, we investigated the expression of breast cancer susceptibility gene-1, hypoxia-inducible factor-1α, vascular endothelial growth factor receptor 1, and Na+/H+ exchanger regulatory factor 1 in 187 microarrayed breast carcinomas from 94 familial and 93 sporadic breast cancer patients by immunohistochemical staining. Furthermore, the expression levels of these biomarkers were compared with triple-negative phenotype. Familiarity was significantly associated with younger age (P < .000), higher tumor grade (P = .038), negative estrogen receptor hormonal status (P = .036), and high proliferative activity (P = .029). The familial cancers were immunonegative for membranous Na+/H+ exchanger regulatory factor 1 expression compared with sporadic cancers (P = .001); notably, vascular endothelial growth factor receptor 1 staining correlated with cytoplasmic Na+/H+ exchanger regulatory factor 1 expression in familial tumors (P = .009). In multivariate analysis, the "new biomarkers," including negative human epidermal growth factor receptor 2 status (odds ratio, 4.538; 95% confidence interval, 1.756-11.728), negative membranous Na+/H+ exchanger regulatory factor 1 expression (odds ratio, 7.686; 95% confidence interval, 1.876-31.483) and positive nuclear breast cancer susceptibility gene-1 (odds ratio, 0.3982; 95% confidence interval, 0.169-0.936), significantly correlated with family history of breast cancer. We hypothesize that the evaluation of human epidermal growth factor receptor 2, Na+/H+ exchanger regulatory factor 1, and breast cancer susceptibility gene-1 could be clinically useful to identify familial breast tumors and to select patients candidate to breast cancer susceptibility genes 1/2 gene sequencing.  相似文献   

13.
The sensitivity of carotid body chemoreceptors to hypoxia is low just after birth and increases over the first few weeks of the postnatal period. At present, it is believed that the hypoxia-induced excitation of carotid body glomus cells begins with the inhibition of the outward K+ current via one or more O2 sensors. Although the nature of the O2 sensors and their signals that inhibit the K+ current are not well defined, studies suggest that the postnatal maturation of the glomus cell response to hypoxia is largely due to the increased sensitivity of K+ channels to hypoxia. As KV, BK and TASK channels that are O2-sensitive contribute to the K+ current, it is important to identify the O2 sensor and the signaling molecule for each of these K+ channels. Various O2 sensors (mitochondrial hemeprotein, hemeoxygenase-2, NADPH oxidase) and associated signals have been proposed to mediate the inhibition of K+ channels by hypoxia. Studies suggest that a mitochondrial hemeprotein is likely to serve as an O2 sensor for K+ channels, particularly for TASK, and that multiple signals may be involved. Thus, changes in the sensitivity of the mitochondrial O2 sensor to hypoxia, the sensitivity of K+ channels to signals generated by mitochondria, and/or the expression levels of K+ channels are likely to account for the postnatal maturation of O2 sensing by glomus cells.  相似文献   

14.
Electrophysiological and immunohistochemical studies have demonstrated that glucose-sensing neurons in the hypothalamus contain both ATP-sensitive K(+) (K(ATP)) and tandem-pore K(+) (TASK1 and TASK3) channels and that glucose-induced depolarization or hyperpolarization of these neurons function as an important link between glucose-excited or glucose-inhibited neurons and feeding behavior. Medication with atypical antipsychotics increases the appetite of schizophrenic patients and thus causes increases in body weight. Therefore, the present study investigates mRNA expression levels of the genes encoding the components of these K(+) channel subsets in PC12 cells cultured with risperidone (an atypical antipsychotic) and in the hypothalami of rats subcutaneously injected for 21 consecutive days with 0.1 or 0.01 mg/kg/day of risperidone. The mRNA expression levels of various genes were not obviously altered in rat hypothalami. However, the mRNA expression levels for sulfonylurea receptor 1, a component affording nucleotide-binding folds to K(ATP) channels, and TASK1 were down-regulated in PC12 cells cultured with 50 microM risperidone for 24h, but the amount of intracellular ATP in these cells was not affected by the drug. Collectively, these results indicate that the amplitude of the current through these K(+) channels in PC12 cells might be modulated as a pharmacological effect of risperidone.  相似文献   

15.
Glycine is a primary inhibitory neurotransmitter in the spinal cord and brainstem. It acts at glycine receptor (GlyR)-chloride channels, as well as a co-agonist of NMDA receptors (NMDARs). In the hippocampus, the study of GlyRs has largely been under-appreciated due to the apparent absence of glycinergic synaptic transmission. Emerging evidence has shown the presence of extrasynaptic GlyRs in the hippocampus, which exert a tonic inhibitory role, and can be highly regulated under many pathophysiological conditions. On the other hand, besides d-serine, glycine has also been shown to modulate NMDAR function in the hippocampus. The simultaneous activation of excitatory NMDARs and inhibitory GlyRs may provide a homeostatic regulation of hippocampal network function. Furthermore, glycine can regulate hippocampal neuronal activity through GlyR-mediated cross-inhibition of GABAergic inhibition, or through the glycine binding site-dependent internalization of NMDARs. Therefore, hippocampal glycine and its receptors may operate in concert to finely regulate hippocampus-dependent high brain function such as learning and memory. Finally, dysfunction of hippocampal glycine signaling is associated with neuropsychiatric disorders. We speculate that further studies of hippocampal glycine-mediated regulation may help develop novel glycine-based approaches for therapeutic developments.  相似文献   

16.
Synapses are specialized cell–cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.  相似文献   

17.
Cardiovascular complications are a leading cause of mortality in patients with diabetes mellitus (DM). The present study was designed to investigate the effects of trimetazidine (TMZ), an anti-angina drug, on transient outward potassium current (Ito) remodeling in ventricular myocytes and the plasma contents of free fatty acid (FFA) and glucose in DM. Sprague-Dawley rats, 8 weeks old and weighing 200-250 g, were randomly divided into three groups of 20 animals each. The control group was injected with vehicle (1 mM citrate buffer), the DM group was injected with 65 mg/kg streptozotocin (STZ) for induction of type 1 DM, and the DM+TMZ group was injected with the same dose of STZ followed by a 4-week treatment with TMZ (60 mg·kg−1·day−1). All animals were then euthanized and their hearts excised and subjected to electrophysiological measurements or gene expression analyses. TMZ exposure significantly reversed the increased plasma FFA level in diabetic rats, but failed to change the plasma glucose level. The amplitude of Ito was significantly decreased in left ventricular myocytes from diabetic rats relative to control animals (6.25 ± 1.45 vs 20.72 ± 2.93 pA/pF at +40 mV). The DM-associated Ito reduction was attenuated by TMZ. Moreover, TMZ treatment reversed the increased expression of the channel-forming alpha subunit Kv1.4 and the decreased expression of Kv4.2 and Kv4.3 in diabetic rat hearts. These data demonstrate that TMZ can normalize, or partially normalize, the increased plasma FFA content, the reduced Ito of ventricular myocytes, and the altered expression Kv1.4, Kv4.2, and Kv4.3 in type 1 DM.  相似文献   

18.
Expression of the Ha-ras oncogene has been reported to stimulate the dimethylamiloride sensitive Na+/H+ exchanger and Na+, K+, 2Cl cotransport, both transport systems which are involved in cell volume regulation. The present study has been performed to test for an influence of ras oncogene expression on cell volume regulation in NIH 3T3 fibroblasts expressing the Ha-ras oncogene (+ ras). As controls served NIH 3T3 fibroblasts not expressing the ras oncogene (– ras). In isotonic extracellular fluid, the cell volume of + ras cells (2.70±0.08 pl) is significantly greater than the cell volume of –ras cells (2.04±0.10 pl). Both, + ras and – ras cells exhibit a regulatory cell volume increase in hypertonic extracellular fluid and a regulatory cell volume decrease in hypotonic extracellular fluid. The regulatory cell volume decrease is inhibited by 1 mmol/l quinidine and barium, the regulatory cell volume increase is inhibited in – ras and + ras cells by dimethyl-amiloride (100 mol/l) and, only in + ras cells, by furosemide (100 mol/l) and bumetanide (10 mol/l). In conclusion, expression of the ras oncogene leads to a shift of the set point for cell volume regulation to greater cell volumes, which may contribute to the activation of the Na+/H+ exchanger and Na+, K+, 2Cl cotransport.  相似文献   

19.
Piretanide blocks the Na+ 2Cl K+ cotransporter protein in the thick ascending limb (TAL) of the loop of Henle reversibly. When tested from the luminal side in isolated perfused cTAL segments it leads to a half maximal inhibition (IC50) of the equivalent short circuit current (Isc) at a concentration of 10–6 mol/l. From the basolateral side it has no effect on Isc up to 10–4 mol/l. The present study was designed to search for high affinity blockers of the Na+ 2Cl K+ cotransporter with large molecular weight in an attempt to use these macromolecules for antibody-labelling or affinity separation of this transport-protein. Amino-ethyl-dextran or amino-ethyl-polyethylene glycol (M.W. 5kd) were coupled to isothiocyanato-piretanide (ISO-PIR) at room temperature in DMSO. The resulting compounds dextran-sulfonylurea-piretanide (PIR-DEX) and polyethylene glycol-sulfonylurea-piretanide (PIR-PEG) (M.W. 5.38kd) were purified and tested in isolated perfused cTAL segments. IC50 values for ISO-PIR, PIR-DEX and PIR-PEG were estimated from dose response curves after their addition to the lumen or bath perfusate, respectively. ISO-PIR, PIR-DEX and PIR-PEG acted from the lumen side at 3·10–6, 6·10–6 and 2·10–6 mol/l. The inhibitory effect was easily reversible. From the basolateral side no effect for any compound was seen at up to 10–4 mol/l. In clearance experiments PIR-DEX was given to female Wistar rats as an i.v. bolus (25 mol/kg) and the diuretic urine was collected. After dialysis (exclusion limit 2.5kd) the dialysed urine and the dialysate were tested in isolated perfused cTAL segments. The dialysates had no effect on Isc, but the dialysed urine inhibited Isc by 35% from the luminal side. The present data show: High molecular derivatives of piretanide with dextran or polyethylene glycol moieties block the Na+ 2Cl K+ cotransporter in cTAL segments at roughly the same low concentration as piretanide itself. Our data exclude a metabolism of these piretanide compounds in the kidney. Since these macromolecular probes can probably not enter the cell their inhibitory effect indicates that the binding site for piretanide diuretics on the Na+ 2Cl K+ cotransporter is exposed on the surface of the luminal cell membrane.This study was supported by Deutsche Forschungsgemeinschaft Gr 480/9  相似文献   

20.
Previously, we have shown that CD8+T/FOXP3+ cell ratio but not FOXP3+ cell number alone is an independent prognostic factor for colorectal cancer. In the present study, we evaluated whether the number of intratumoral FOXP3+VEGFR2+ (itFOXP3+VEGFR2+) T cells alone could be a predictive factor for survival prognosis in patients with colorectal cancer. Distribution of regulatory T cells (Tregs) at tumor sites derived from 88 patients with primary colorectal cancer was fluorescence-immunohistochemically examined. Relatively low number of itFOXP3+VEGFR2+ cells significantly correlated with poor disease-free survival (DS) and overall survival (OS); multivariate analysis indicated that number of itFOXP3+VEGFR2+ cells is an independent predictive and prognostic factor of DS and OS while neither intratumoral FOXP3+ cell number nor intratumoral FOXP3+VEGFR2 cell number alone showed significant correlation with DS or OS. These results suggest that FOXP3+VEGFR2+ may be a better predictive Treg marker than FOXP3+ alone for recurrence and survival in patients with colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号