首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tomato yellow leaf curl disease (TYLCD)-associated viruses present a highly structured population in the western Mediterranean basin, depending on host, geographical region and time. About 1,900 tomato and common bean samples were analyzed from which 111 isolates were characterized genetically based on a genome sequence that comprises coding and non-coding regions. Isolates of three distinct begomoviruses previously described were found (Tomato yellow leaf curl virus, TYLCV, Tomato yellow leaf curl Sardinia virus, TYLCSV, and Tomato yellow leaf curl Málaga virus, TYLCMalV), together with a novel recombinant virus. Mixed infections were detected in single plants, rationalizing the occurrence of recombinants. Except for TYLCV-type strain, single, undifferentiated subpopulations were present for each virus type, probably the result of founder effects. Limited genetic variation was observed in genomic regions, with selection against amino acid change in coding regions.  相似文献   

2.
Blawid R  Van DT  Maiss E 《Virus research》2008,136(1-2):107-117
The genomes of two tomato-infecting begomoviruses from Vietnam were cloned and sequenced. A new variant of Tomato leaf curl Vietnam virus (ToLCVV) consisting of a DNA-A component and associated with a DNAbeta molecule as well as an additional begomovirus tentatively named Tomato yellow leaf curl Vietnam virus (TYLCVV) consisting also of a DNA-A component were identified. To verify if monopartite viruses occurring in Vietnam and Thailand are able to transreplicate the DNA-B component of Tomato yellow leaf curl Thailand virus-[Asian Institute of Technology] (TYLCTHV-[AIT]) infectivity assays were performed via agroinoculation and mechanically. As result, the DNA-B component of TYLCTHV-[AIT] was transreplicated by different DNA-A components of viruses from Vietnam and Thailand in Nicotiana benthamiana and Solanum lycopersicum. Moreover, the TYLCTHV-[AIT] DNA-B component facilitated the mechanical transmission of monopartite viruses by rub-inoculation as well as by particle bombardment in N. benthamiana and tomato plants. Finally, defective DNAs ranging from 735 to 1457 nucleotides were generated in N. benthamiana from those combinations containing TYLCTHV-[AIT] DNA-B component.  相似文献   

3.
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5′-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.  相似文献   

4.
Tomato yellow leaf curl disease (TYLCD) is well known in Mediterranean countries, where it has been causing severe losses in tomato crops for decades. Until recently, two viruses (with several isolates) in the genus Begomovirus, family Geminiviridae, have been associated with the epidemics: Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV). However, recombinants between these, such as Tomato yellow leaf curl Malaga virus (TYLCMalV), are spreading, and new methods for detecting all viruses present in the region are needed. By considering all DNA sequences available of viruses causing TYLCD in the Mediterranean basin, a PCR/RFLP protocol was developed that amplifies the intergenic region in a multiplex reaction, followed by digestion with AclI (=Psp1406I) restriction enzyme. This procedure generates an easily recognizable pattern on gels, with DNA fragments of specific size for each virus species and each recombinant: 800 bp for TYLCSV, 410 bp for TYLCV, 570 bp for TYLCMalV and the other detected recombinants, 640 bp for hypothetical recombinants of different type. This new method gives, with a single reaction, an overview of the species present in the sample and will be useful for screening the causal agents of TYLCD, as well as in breeding programs for resistance.  相似文献   

5.
Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010–2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0–91.1%) to isolates of the “Pakistan” strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed.  相似文献   

6.
Kumar Y  Hallan V  Zaidi AA 《Virus genes》2008,37(3):425-431
A distinct bipartite begomovirus was found associated with tomato plants showing yellowing, curling, and crumpling of the leaves, in a sub-temperate region in India. The complete DNA-A and DNA-B components were amplified through rolling circle amplification (RCA) using Φ-29 DNA polymerase and characterized. The DNA-A of the isolate was comprised of 2,756 nucleotides, encoding six open reading frames (ORFs) and DNA-B that of 2,725 nucleotides, encoding two ORFs. Genome organization of the isolate was typical of an old world bipartite begomovirus. Comparisons showed that DNA-A and its intergenic region (IR) have the highest sequence identity (86% and 84%, respectively) with the Tomato leaf curl New Delhi virus (ToLCNDV; DQ116885) and some other begomoviruses (>84%) reported from cucurbits and tomato. This data suggested that the isolate is a distinct begomovirus species for which a name Tomato leaf curl Palampur virus (ToLCPMV) is proposed. DNA-B showed the maximum sequence identity (73%) with Tomato leaf curl New Delhi virus-India-[Pakistan:Dargai:T5/6:2001] (AY150305). The common region (CR) of DNA-A and DNA-B showed 94% sequence similarity with each other. In the present study, phylogenetic relationship of this new species was also established with different begomoviruses reported from tomato and other begomoviruses showing highest homologies with complete DNA-A and DNA-B sequences. ToLCPMV is being reported from a sub-temperate region in India which was previously unaffected by begomoviruses and its whitefly vector. An erratum to this article can be found at  相似文献   

7.
Tomato leaf curl disease (TLCD) and and tomato yellow leaf curl (TYLCD) is caused by a number of begomovirus species that collectively threaten tomato production worldwide. We report here that an ongoing TLCD and TYLCD epidemic in Iran is caused by variants of tomato leaf curl Palampur virus (ToLCPMV), a newly proposed begomovirus species previously only detected in India. Besides infecting tomatoes, we identified ToLCPMV as the causal agent of a cucurbit disease that has devastated greenhouse cucumber and melon farms in Jiroft, southeastern Iran. We found no convincing evidence that the ToLCPMV DNA-B sequences have been derived through inter-species recombination, however, all of the currently sampled ToLCPMV DNA-A sequences are descendents of a sequence that probably arose through recombination between a ToLCNDV isolate and a currently unsampled geminivirus species that falls outside the ToLCNDV-ToLCPMV cluster. The increasing incidence of ToLCPMV in different cultivated species throughout Iran may signal the emergence of a serious new threat to agricultural production throughout the Middle East. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Previous studies have shown that isolates of tomato yellow leaf curl Thailand virus (TYLCTHV) originated from Thailand are bipartite begomoviruses, while all the seven TYLCTHV isolates found in China are associated with DNAβ molecules. In this study, infectious clones of TYLCTHV isolate Y72 (TYLCTHV-[Y72]) and its DNAβ were constructed to verify the bipartite or monopartite nature of TYLCTHV. Agroinoculation showed that TYLCTHV-[Y72] alone was able to induce significant symptoms in Nicotiana benthamiana, Nicotiana glutinosa, and Solanum lycopersicum plants, but co-inoculation with its associated satellite DNAβ produced more severe symptoms, which is similar to tobacco curly shoot virus. Southern blot results showed that TYLCTHV DNAβ could increase the virus accumulation in systemically infected tissues. Thus, TYLCTHV-[Y72] is a monopartite begomovirus, which may represent an evolutionary intermediate between the begomoviruses requiring DNAβ and begomoviruses dispensable of DNAβ. Wei Guo and Xiuling Yang contributed equally to this paper.  相似文献   

9.
Praveen S  Dasgupta A  Varma A 《Virus genes》2004,28(2):195-199
Geminiviruses encode a replication initiator protein, Rep, which binds to iterated DNA motifs functioning as essential elements for virus specific replication. Rep protein gene of three isolates of whitefly transmitted geminivirus causing leaf curl disease of tomato in India were amplified, cloned and sequenced. Nucleotide sequence and the derived amino acid sequence for the replicase gene of these isolates was determined and included in an analysis with the published sequences. Phylogenetic relationship clearly indicates two subsets, one belonging to Tomato leaf curl virus (ToLCV) having bipartite genome and the other having the monopartite genome. Comparisons of various functional domains and motifs involved in specificity determinants, DNA-binding and catalysis were discussed. The implications of the sequence analysis were discussed with respect to the strategy for the generation of engineered resistance having wide spectrum applications.  相似文献   

10.
Begomoviruses (family Geminiviridae) cause severe damage to tomato crops worldwide. Among them, tomato leaf curl disease (ToLCD)-associated begomoviruses are a major concern for tomato production in Sudan. Here, we report the detection of unexpectedly large cotton leaf curl Gezira alphasatellite molecules (up to 1467 nt) associated with an isolate of a novel strain of tomato leaf curl Sudan virus (ToLCSDV) in tomato plants affected by ToLCD. A recombinant nature is suggested for this ToLCSDV isolate.  相似文献   

11.
Bosco D  Mason G  Accotto GP 《Virology》2004,323(2):276-283
The transovarial transmission of two species of begomovirus, Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV), through generations of Bemisia tabaci of the B and Q biotypes has been investigated. Different life stages of the progeny of viruliferous female whiteflies have been analysed by PCR detection of viral DNA and infectivity tests. Our results indicate that TYLCSV DNA can be detected in eggs and nymphs, and to a lesser extent adults, of the first-generation progeny. Infectivity tests using a large number of adult progeny of the first, second, and third generation indicate that even when viral DNA is inherited, infectivity is not. For TYLCV, neither viral DNA nor infectivity were associated with the progeny of viruliferous female whiteflies. Because the inherited viral DNA is unable to give rise to infections, the transovarial transmission of TYLCSV DNA appears to have no epidemiological relevance.  相似文献   

12.
Guo X  Zhou X 《Virus genes》2006,33(3):279-285
Two virus isolates Hn57 and Hn60 were obtained from Sida cordifolia showing mild upward leaf-curling symptoms in Hainan province of China. Comparison of partial sequences of DNA-A like molecule confirmed the existence of a single type of begomovirus. The complete nucleotide sequence of DNA-A of Hn57 was determined to be 2757 nucleotides, with a genomic organization typical of begomoviruses. Complete sequence comparison with other reported begomoviruses revealed that Hn57 DNA-A has the highest sequence identity (71.0%) with that of Tobacco leaf curl Yunnan virus. Consequently, Hn57 was considered to be a new begomovirus species, for which the name Sida leaf curl virus (SiLCV) is proposed. In addition to DNA-A molecule, two additional circular single-stranded satellite DNA molecules corresponding to DNAβ and DNA1 were found to be associated with SiLCV isolates. Both DNAβ and DNA1 were approximately half the size of their cognate genomic DNA. Sequence analysis shows that DNAβ of Hn57 and Hn60 share 93.8% nucleotide sequence identity, and they have the highest sequence identity (58.5%) with DNAβ associated with Ageratum leaf curl disease (AJ316027). The nucleotide sequence identity between DNA1 of Hn57 and that of Hn60 was 83.8%, they share 58.2–79.3% nucleotide sequence identities in comparison with other previously reported DNAl. The GenBank accession numbers of the sequences reported in this paper are AM050730-35.  相似文献   

13.
Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.  相似文献   

14.
Zhang J  Dong J  Xu Y  Wu J 《Virus research》2012,163(1):51-58
The V2 protein of Tomato yellow leaf curl China virus (TYLCCNV) was identified as an RNA silencing suppressor by Agrobacterium-mediated co-infiltration. The V2 protein could inhibit local RNA silencing, systemic RNA silencing of the green fluorescent protein (GFP) gene and the spread of a systemic GFP RNA silencing signal. However, the V2 could not interfere with the cell-to-cell spread of RNA silencing. Subcellular localization assay indicated that the V2 protein was distributed in the cytoplasm of Nicotiana benthamiana cells, and accumulated in irregular cytoplasmic bodies. The V2 bound 21 nt and 24 nt small interfering RNA (siRNA) duplexes and 24 nt single-stranded (ss)-siRNA but not 21 nt ss-siRNA in electrophoresis mobility shift assays. Expression of the V2 protein via the Potato virus X (PVX) vectors heterogenous system induced severe symptoms in N. benthamiana. In a yeast two-hybrid system, TYLCCNV V2 could interact with itself, but not with SlSGS3, which is known to been involved in RNA silencing pathway and to interact with a closely related Tomato yellow leaf curl virus (TYLCV) V2. These results indicate that TYLCCNV V2 is an RNA silencing suppressor, possibly through sequestering siRNA molecules.  相似文献   

15.
Information on the distribution and prevalence of the economically destructive Begomovirus species and recombinant forms infecting fresh-market and processing tomato crops in Brazil is crucial in guiding breeding programs and also to understand the evolutionary mechanisms associated with the upsurge of so many species and quasi-species comprising this unique disease complex. An extensive survey was carried out over 3 years (between 2002 and 2004) aiming to study the diversity of begomoviruses in tomato plants, predominantly collected in central Brazil. Polymerase chain reaction (PCR) with degenerated primers was used to detect the begomoviruses in tomato leaf samples showing virus-like symptoms in commercial fields. Seven hundred and seventeen out of 2,295 samples were found to be PCR positive for a begomovirus infection. High quality sequences were obtained from a fragment encompassing the 5′ region of the coat protein (CP) gene and a segment of the intergenic region for 295 isolates from distinct geographic regions. Comparison analyses with those available in public databases enabled preliminary classification of the isolates into four previously described and/or proposed species: Tomato severe rugose virus (61%), Tomato golden vein virus (29.8%), Tomato mottle leaf curl virus (7.1%), Tomato yellow vein streak virus (0.7%), and two putative new species (1.4% of isolates). Within the prevailing species, we noted a relatively low degree of diversity, possibly indicating the existence of recent population founder effects and/or recent selective sweeps.  相似文献   

16.
Xanthium strumarium is a common weed that often shows symptoms typical of begomovirus infection, such as leaf curling and vein thickening. The virus complex isolated from the weed consisted of two begomoviruses along with a betasatellite and an alphasatellite. The first begomovirus was shown to be an isolate of Cotton leaf curl Burewala virus, a new recombinant begomovirus species that is associated with resistance breaking in previously resistant cotton varieties in Pakistan, whereas the second was shown to be an isolate of Tomato leaf curl Gujarat virus (ToLCGV), a begomovirus previously reported to be bipartite. However, there was no evidence for the presence of the second genomic component, DNA B, of ToLCGV in X. strumarium. The betasatellite was shown to be an isolate of Tomato yellow leaf curl Thailand betasatellite, the first time this satellite has been identified in Pakistan. The alphasatellite associated with infection of X. strumarium was shown to be a species recently identified in potato and various weeds; Potato leaf curl alphasatellite. Although each component has been identified previously, this is the first time they have been identified in a single host. These findings reinforce the hypothesis that weeds are reservoirs of crop-infecting begomoviruses that may contribute to virus diversity by virtue of harboring multiple viruses and virus associated components, which may lead to interspecific recombination and component exchange.  相似文献   

17.
Momordica charantia (Cucurbitaceae), a vegetable crop commonly cultivated throughout Pakistan, and begomoviruses, a serious threat to crop plants, are natives of tropical and subtropical regions of the world. Leaf samples of M. charantia with yellow vein symptoms typical of begomovirus infections and samples from apparently healthy plants were collected from areas around Lahore in 2004. Full-length clones of a bipartite begomovirus were isolated from symptomatic samples. The complete nucleotide sequences of the components of one isolate were determined, and these showed the arrangement of genes typical of Old World begomoviruses. The complete nucleotides sequence of DNA A showed the highest nucleotide sequence identity (86.9%) to an isolate of Tomato leaf curl New Delhi virus (ToLCNDV), confirming it to belong to a distinct species of begomovirus, for which the name Bitter gourd yellow vein virus (BGYVV) is proposed. Sequence comparisons showed that BGYVV likely emerged as a result of inter-specific recombination between ToLCNDV and tomato leaf curl Bangladesh virus (ToLCBDV). The complete nucleotide sequence of DNA B showed 97.2% nucleotide sequence identity to that of an Indian strain of Squash leaf curl China virus.  相似文献   

18.
A number of native and cultivated eudicots in the Yucatan Peninsula of Mexico (YPM) exhibit symptoms associated with virus infection. Symptomatic leaves were collected and assessed for begomoviral detection using polymerase chain reaction (PCR), and universal primers that amplify a fragment of the coat protein gene (core Cp). Begomovirus were detected in nine native and seven cultivated species, representing seven eudicot families. DNA extracts from the 16 hosts were used for PCR amplification and sequencing of a fragment containing the coat protein (Cp) gene. The complete Cp sequence was used to establish provisional species identification. Results indicated that 13 distinct begomovirus species were represented. Among these, five potentially new begomovirus species were identified, for which we propose the names Anoda golden mosaic virus (AnGMV), Boerhavia yellow spot virus (BoYSV), Papaya golden mosaic virus (PaGMV), Desmodium leaf distortion virus (DeLDV), and Hibiscus variegation virus (HiVV). Five previously described begomoviral species were provisionally identified for the first time in the YPM; these include Euphorbia mosaic virus (EuMV), Melon chlorotic leaf curl virus (MCLCuV), Okra yellow mosaic Mexico virus (OkYMMV), Sida golden mosaic virus (SiGMV), and Tobacco apical stunt virus (TbASV). Additionally, viruses previously reported from this region, Bean golden yellow mosaic virus (BGYMV), Pepper golden mosaic virus (PepGMV), and Tomato mottle virus (ToMoV) were provisionally identified in cultivated hosts. Phylogenetic analysis provisionally placed all isolates from the YPM in a Western Hemisphere begomovirus clade.  相似文献   

19.
The complete sequences of a begomovirus and an associated betasatellite isolated from Croton bonplandianus originating from Pakistan were determined. The sequence of the begomovirus showed the highest level of nucleotide sequence identity (88.9%) to an isolate of papaya leaf curl virus and thus represents a new species, for which we propose the name Croton yellow vein virus (CYVV). The sequence of the betasatellite showed the highest levels of sequence identity (82 to 98.4%) to six sequences in the databases that have yet to be reported, followed by isolates of tomato leaf curl Joydebpur betasatellite (48.7 to 52.5%). This indicates that the betasatellite identified here (and the six sequences in the databases) is an isolate of a newly identified species for which the name Croton yellow vein mosaic betasatellite (CroYVMB) is proposed. For the begomovirus, an analysis of the sequence indicates that it has a recombinant origin.  相似文献   

20.
For last two decades, begomoviruses (family Geminiviridae) have been a major constraint for tomato production in Oman, particularly in the Al-Batinah region, the major agricultural area of Oman. Farms in the Al-Batinah region were surveyed during January-March and November-December in 2012 and January-February in 2013. Leaf samples of tomato plants showing typical leaf curl disease symptoms were collected and analyzed for begomoviruses. Out of fifteen begomovirus clones sequenced, seven were shown to be tomato yellow leaf curl virus strain Oman (TYLCV-OM); three, chili leaf curl virus strain Oman (ChLCV-OM); and one, tomato leaf curl Oman virus (ToLCOMV) – viruses that have previously been shown to occur in Oman. Four sequences were shown to have relatively low percent identity values to known begomoviruses, with the highest (86 %) to isolates of pepper leaf curl Lahore virus, indicating that these should be included in a new species, for which the name “Tomato leaf curl Al Batinah virus” (ToLCABV) is proposed. Although the betasatellite tomato leaf curl betasatellite (ToLCB; 7 full-length sequences isolated) was identified with some isolates of ChLCV-OM, TYLCV-OM and ToLCOMV, it was not identified in association with any of the ToLCABV isolates. Analysis of the sequences of the TYLCV-OM and ToLCOMV isolates characterized here did not show them to differ significantly from previously characterized isolates of these viruses. The three isolates of ChLCV-OM characterized were shown to have a recombination pattern distinct from earlier characterized isolates. ToLCABV was shown to have resulted from recombination between ChLCV-OM and ToLCOMV. A clone of ToLCABV was infectious by Agrobacterium-mediated inoculation to Nicotiana benthamiana and tomato, inducing symptoms typical of those seen in tomato in the field. Additionally, ToLCABV was shown to be able to interact in planta with ToLCB, resulting in a change in symptom phenotype, although the betasatellite did not appear to affect viral DNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号