首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production. N protein repressed IFN-β production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-β production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-β response through targeting the initial step, potentially the cellular PRR–RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-β production by interfering with RIG-I.  相似文献   

3.

Background:

Hepatitis C virus infection is one of the leading causes of end stage liver diseases. The innate immune response slows down viral replication by activating cytokines such as type I interferon (IFN-α/β), which trigger the synthesis of antiviral proteins and modulate the adaptive immune system. Recently, leucine-rich repeat (in Flightless I) interacting protein-1 (LRRFIP1) was reported contributing to the production of interferon-β in macrophages.

Objectives:

The aim of this study was to assess the role of LRRFIP1 in induction of IFN-β and inhibition of HCV infection in hepatocytes.

Materials and Methods:

Induction of IFN-β by LRRFIP1 in Huh7 and Huh7.5.1 was determined by real-time PCR and western blotting in vitro. Inhibition of HCV replication by LRRFIP1 overexpression in hepatocytes was assessed.

Results:

LRRFIP1 increased the expression of IFN-β in hepatocytes with or without HCV infection. Induction of IFN-β by LRRFIP1 was enhanced with the presence of hepatitis C virus. Overexpression of LRRFIP1 in hepatocytes inhibited HCV replication. However, HCV infection did not regulate intracellular expression of LRRFIP1.

Conclusions:

LRRFIP1 and its mediated production of type I interferon play a role in controlling HCV infection. The findings of this study provide new target for HCV treatment and contribute to development of anti-HCV drugs.  相似文献   

4.
The sera from pigs infected with virulent classical swine fever virus (CSFV) contain substantial amounts of tumor necrosis factor (TNF), a prototype proinflammatory cytokine with pleiotropic activities. TNF limits the replication of CSFV in cell culture. In order to investigate the signaling involved in the antiviral activity of TNF, we employed small-molecule inhibitors to interfere specifically with JAK/STAT and NF-κB signaling pathways in near-to-primary endothelial PEDSV.15 cells. In addition, we knocked out selected factors of the interferon (IFN) induction and signaling pathways using CRISPR/Cas9. We found that the anti-CSFV effect of TNF was sensitive to JAK/STAT inhibitors, suggesting that TNF induces IFN signaling. Accordingly, we observed that the antiviral effect of TNF was dependent on intact type I IFN signaling as PEDSV.15 cells with the disrupted type I IFN receptor lost their capacity to limit the replication of CSFV after TNF treatment. Consequently, we examined whether TNF activates the type I IFN induction pathway. With genetically modified PEDSV.15 cells deficient in functional interferon regulatory factor 1 or 3 (IRF1 or IRF3), we observed that the anti-CSFV activity exhibited by TNF was dependent on IRF1, whereas IRF3 was dispensable. This was distinct from the lipopolysaccharide (LPS)-driven antiviral effect that relied on both IRF1 and IRF3. In agreement with the requirement of IRF1 to induce TNF- and LPS-mediated antiviral effects, intact IRF1 was also essential for TNF- and LPS-mediated induction of IFN-β mRNA, while the activation of NF-κB was not dependent on IRF1. Nevertheless, NF-κB activation was essential for the TNF-mediated antiviral effect. Finally, we observed that CSFV failed to counteract the TNF-mediated induction of the IFN-β mRNA in PEDSV.15 cells, suggesting that CSFV does not interfere with IRF1-dependent signaling. In summary, we report that the proinflammatory cytokine TNF limits the replication of CSFV in PEDSV.15 cells by specific induction of an IRF1-dependent antiviral type I IFN response.  相似文献   

5.
6.
7.
Bluetongue virus (BTV), an arbovirus transmitted by Culicoides biting midges, is a major concern of wild and domestic ruminants. While BTV induces type I interferon (alpha/beta interferon [IFN-α/β]) production in infected cells, several reports have described evasion strategies elaborated by this virus to dampen this intrinsic, innate response. In the present study, we suggest that BTV VP3 is a new viral antagonist of the IFN-β synthesis. Indeed, using split luciferase and coprecipitation assays, we report an interaction between VP3 and both the mitochondrial adapter protein MAVS and the IRF3-kinase IKKε. Overall, this study describes a putative role for the BTV structural protein VP3 in the control of the antiviral response.  相似文献   

8.
Enterovirus A71 (EV-A71) in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN)-α/β receptor 1 (IFNAR1) to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s) of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β. Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 μM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 μM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease (IC50 = 53.1 μM). Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2′,5′-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection.  相似文献   

9.
Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.  相似文献   

10.
CLAWN miniature pig has been shown to serve as a suitable host for the experimental infection of Schistosoma japonicum. In this study, we found that radiation-attenuated cercaria (RAC) vaccine gave CLAWN miniature pigs protective immunity against subsequent challenge infection with S. japonicum cercaria. To characterize the protective immune response of the pig model vaccinated by attenuated cercaria, flow cytometric analysis of the reactive T cell subsets was performed. The intracellular interferon (IFN)-γ and the cell surface markers revealed the peripheral blood CD3+ T-lymphocytes produced significant amounts of IFN-γ during the immunization period and after the challenge infection. CD4+ αβ-T cells as well as CD4+/CD8αmid double positive and/or CD8αhigh αβ-T cells were the major IFN-γ-producing CD3+ T cells. On the contrary, γδ T cells did not produce intracellular IFN-γ. Our results suggested that RAC-vaccinated miniature pigs showed effective protective immunity through the activation of αβ T cells bearing antigen specific T-cell receptors but not through the activation of γδ T cells.  相似文献   

11.
IFN treatment may be a viable option for treating COPD exacerbations based on evidence of IFN deficiency in COPD. However, in vitro studies have used primarily influenza and rhinoviruses to investigate IFN responses. This study aims to investigate the susceptibility to infection and IFN response of primary bronchial epithelial cells (BECs) from COPD donors to infection with RSV and hMPV. BECs from five COPD and five healthy donors were used to establish both submerged monolayer and well-differentiated (WD) cultures. Two isolates of both RSV and hMPV were used to infect cells. COPD was not associated with elevated susceptibility to infection and there was no evidence of an intrinsic defect in IFN production in either cell model to either virus. Conversely, COPD was associated with significantly elevated IFN-β production in response to both viruses in both cell models. Only in WD-BECs infected with RSV was elevated IFN-β associated with reduced viral shedding. The role of elevated epithelial cell IFN-β production in the pathogenesis of COPD is not clear and warrants further investigation. Viruses vary in the responses that they induce in BECs, and so conclusions regarding antiviral responses associated with disease cannot be made based on single viral infections.  相似文献   

12.
We are developing a gene therapy method of HIV infection based on the constitutive low production of interferon (IFN) β. Peripheral blood lymphocytes (PBL) from HIV-infected patients at different clinical stages of infection were efficiently transduced with the HMB-HbHuIFNβ retroviral vector. The constitutive low production of IFN-β in cultured PBL from HIV-infected patients resulted in a decreased viral production and an enhanced survival of CD4+ cells, and this protective effect was observed only in the PBL derived from donors having a CD4+ cell count above 200 per mm3. In IFN-β-transduced PBL from healthy and from HIV-infected donors, the production of the Th1-type cytokines IFN-γ and interleukin (IL)-12 was enhanced. In IFN-β-transduced PBL from HIV-infected donors, the production of IL-4, IL-6, IL-10, and tumor necrosis factor α was maintained at normal levels, contrary to the increased levels produced by the untransduced PBL. The proliferative response to recall antigens was partially restored in IFN-β-transduced PBL from donors with an impaired antigen response. Thus, in addition to inhibiting HIV replication, IFN-β transduction of PBL from HIV-infected donors improves several parameters of immune function.  相似文献   

13.
Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-β. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses.  相似文献   

14.
A 68-year-old man visited our hospital due to anorexia, weight loss and a fever. We diagnosed the patient with disseminated Mycobacterium avium complex (MAC) and confirmed the presence of interferon (IFN)-γ neutralizing autoantibodies (IFN-γAb). His lesions improved following antibiotic therapy, but chylous ascites (CA) developed seven months after treatment. CA was able to be controlled by subcutaneous octreotide and diet therapy. IFN-γAb is recognized as having a critical role in the pathogenesis of disseminated MAC disease, but its clinical features are not fully understood. CA may be a complication that develops during the treatment of disseminated MAC infection.  相似文献   

15.
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms.  相似文献   

16.
Duck enteritis virus (DEV) can infect several types of waterfowl can cause high mortality and huge economic losses to the global waterfowl industry. Type I interferons (IFN) are important for host defense against virus infection through induction of antiviral effector molecules. TANK-binding kinase 1 (TBK1) is a key kinase required for the induction of type I IFNs; however, the role of TBK1 on DEV infection remains unclear. Here, we observed that the expression levels of TBK1 and IFN-β were upregulated during DEV infection in vivo and in vitro. Thus, the function of TBK1 on DEV infection was determined. The results showed that overexpression of TBK1 reduced DEV infection and knockdown of TBK1 resulted in the increased of DEV infection. Additionally, TBK1 overexpression upregulated the expression of IFN-β and a few interferon-stimulated genes (ISGs), which thus inhibited the synthesis of DEV glycoprotein B. On the other hand, the TBK1 inhibitor Amlexanox down-regulated the expression levels of IFN-β and IRF3. Interestingly, the expression levels of MAVS and GSK-3β were decreased in the cells treated with Amlexanox. Furthermore, overexpression of TBK1 activated the expression of upstream molecules MAVS and GSK-3β. Whereas, the expression of TBK1, IRF3 and IFN-β was inhibited by the GSK-3β inhibitor SB216763. Our findings suggest that DEV–stimulated TBK1 may be involved in defense against DEV infection.  相似文献   

17.
This study demonstrates that endogenously produced interferon γ (IFN-γ) forms the basis of a tumor surveillance system that controls development of both chemically induced and spontaneously arising tumors in mice. Compared with wild-type mice, mice lacking sensitivity to either IFN-γ (i.e., IFN-γ receptor-deficient mice) or all IFN family members (i.e., Stat1-deficient mice) developed tumors more rapidly and with greater frequency when challenged with different doses of the chemical carcinogen methylcholanthrene. In addition, IFN-γ-insensitive mice developed tumors more rapidly than wild-type mice when bred onto a background deficient in the p53 tumor-suppressor gene. IFN-γ-insensitive p53−/− mice also developed a broader spectrum of tumors compared with mice lacking p53 alone. Using tumor cells derived from methylcholanthrene-treated IFN-γ-insensitive mice, we found IFN-γ’s actions to be mediated at least partly through its direct effects on the tumor cell leading to enhanced tumor cell immunogenicity. The importance and generality of this system is evidenced by the finding that certain types of human tumors become selectively unresponsive to IFN-γ. Thus, IFN-γ forms the basis of an extrinsic tumor-suppressor mechanism in immunocompetent hosts.  相似文献   

18.
IFN-γ is critical for immunity against infections with intracellular pathogens, such as Salmonella enterica. However, which of the many cell types capable of producing IFN-γ controls Salmonella infections remains unclear. Using a mouse model of systemic Salmonella infection, we observed that only a lack of all lymphocytes or CD90 (Thy1)+ cells, but not the absence of T cells, Retinoic acid-related orphan receptor (ROR)-γt–dependent lymphocytes, (NK)1.1+ cells, natural killer T (NKT), and/or B cells alone, replicated the highly susceptible phenotype of IFN-γ–deficient mice to Salmonella infection. A combination of antibody depletions and adoptive transfer experiments revealed that early protective IFN-γ was provided by Thy1-expressing natural killer (NK) cells and that these cells improved antibacterial immunity through the provision of IFN-γ. Further analysis of NK cells producing IFN-γ in response to Salmonella indicated that less mature NK cells were more efficient at mediating antibacterial effector function than terminally differentiated NK cells. Inspired by recent reports of Thy1+ NK cells contributing to immune memory, we analyzed their role in secondary protection against otherwise lethal WT Salmonella infections. Notably, we observed that a newly generated Salmonella vaccine strain not only conferred superior protection compared with conventional regimens but that this enhanced efficiency of recall immunity was afforded by incorporating CD4CD8Thy1+ cells into the secondary response. Taken together, these findings demonstrate that Thy1-expressing NK cells play an important role in antibacterial immunity.  相似文献   

19.
Two distinct human herpesvirus 6 (HHV-6) variants infect humans. HHV-6B is the etiologic agent of roseola and is associated with life-threatening neurological diseases, such as encephalitis, as well as organ transplant failure. The epidemiology and disease association for HHV-6A remain ill-defined. Specific anti-HHV-6 drugs do not exist and classic antiherpes drugs have secondary effects that are often problematic for transplant patients. Clinical trials using IFN were also performed with inconclusive results. We investigated the efficacy of type I IFN (α/β) in controlling HHV-6 infection. We report that cells infected with laboratory strains and primary isolates of HHV-6B are resistant to IFN-α/β antiviral actions as a result of improper IFN-stimulated gene (ISGs) expression. In contrast, HHV-6A-infected cells were responsive to IFN-α/β with pronounced antiviral effects observed. Type II IFN (γ)-signaling was unaltered in cells infected by either variant. The HHV-6B immediate-early 1 (IE1) physically interacts with STAT2 and sequestrates it to the nucleus. As a consequence, IE1B prevents the binding of ISGF3 to IFN-responsive gene promoters, resulting in ISG silencing. In comparison, HHV-6A and its associated IE1 protein displayed marginal ISG inhibitory activity relative to HHV-6B. The ISG inhibitory domain of IE1B mapped to a 41 amino acid region absent from IE1A. Transfer of this IE1B region resulted in a gain of function that conferred ISG inhibitory activity to IE1A. Our work is unique in demonstrating type I IFN signaling defects in HHV-6B-infected cells and highlights a major biological difference between HHV-6 variants.  相似文献   

20.
Inflammation is associated with production of cytokines and chemokines that recruit and activate inflammatory cells. Interleukin (IL) 12 produced by macrophages in response to various stimuli is a potent inducer of interferon (IFN) γ production. IFN-γ, in turn, markedly enhances IL-12 production. Although the immune response is typically self-limiting, the mechanisms involved are unclear. We demonstrate that IFN-γ inhibits production of chemokines (macrophage inflammatory proteins MIP-1α and MIP-1β). Furthermore, pre-exposure to tumor necrosis factor (TNF) inhibited IFN-γ priming for production of high levels of IL-12 by macrophages in vitro. Inhibition of IL-12 by TNF can be mediated by both IL-10-dependent and IL-10-independent mechanisms. To determine whether TNF inhibition of IFN-γ-induced IL-12 production contributed to the resolution of an inflammatory response in vivo, the response of TNF+/+ and TNF−/− mice injected with Corynebacterium parvum were compared. TNF−/− mice developed a delayed, but vigorous, inflammatory response leading to death, whereas TNF+/+ mice exhibited a prompt response that resolved. Serum IL-12 levels were elevated 3-fold in C. parvum-treated TNF−/− mice compared with TNF+/+ mice. Treatment with a neutralizing anti-IL-12 antibody led to resolution of the response to C. parvum in TNF−/− mice. We conclude that the role of TNF in limiting the extent and duration of inflammatory responses in vivo involves its capacity to regulate macrophage IL-12 production. IFN-γ inhibition of chemokine production and inhibition of IFN-γ-induced IL-12 production by TNF provide potential mechanisms by which these cytokines can exert anti-inflammatory/repair function(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号