首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data supporting physical activity guidelines to optimize bone development in men is sparse. Peak bone mass is believed to be important for the risk of osteoporosis later in life. The objective of this study was to determine if an increased amount of physical activity over a 5‐year period was associated with increased bone mineral content (BMC), areal (aBMD) and volumetric (vBMD) bone mineral density, and a favorable development of cortical bone size in young adult men. The original 1068 young men, initially enrolled in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study, were invited to participate in the longitudinal study, and a total of 833 men (78%), 24.1 ± 0.6 years of age, were included in the 5‐year follow‐up. A standardized self‐administered questionnaire was used to collect information about patterns of physical activity at both the baseline and 5‐year follow‐up visits. BMC and aBMD were measured using dual energy X‐ray absorptiometry, whereas vBMD and bone geometry were measured by peripheral quantitative computed tomography. Increased physical activity between the baseline and follow‐up visits was associated with a favorable development in BMC of the total body, and aBMD of the lumbar spine and total hip (p < 0.001), as well as with development of a larger cortex (cortical cross sectional area), and a denser trabecular bone of the tibia (p < 0.001). In conclusion, increased physical activity was related to an advantageous development of aBMD, trabecular vBMD and cortical bone size, indicating that exercise is important in optimizing peak bone mass in young men. © 2012 American Society for Bone and Mineral Research.  相似文献   

2.
In a population-based, cross-sectional study, we related age-associated changes in vBMD and in bone structural parameters to circulating bioavailable estradiol and testosterone levels in men. Associations between these bone mass/structural parameters and sex steroid levels were progressively stronger with age. Our previously postulated "threshold" for skeletal estrogen deficiency was most evident at cortical sites. INTRODUCTION: Serum sex steroids, particularly estrogen levels, are associated with bone mass in men, and previous work has suggested that there may be a "threshold" bioavailable estradiol (bio E(2)) level below which the male skeleton becomes estrogen deficient. However, previous studies addressing this issue have exclusively used DXA, which cannot separate trabecular from cortical bone or provide information on bone geometry or structure. MATERIALS AND METHODS: In an age-stratified population sample of 314 men (age, 22-91 years), we assessed volumetric BMD (vBMD) and bone geometry by QCT at the lumbar spine, femoral neck, distal radius, and distal tibia and related these to circulating bio E(2) and bio testosterone (T) levels. RESULTS: Compared with young men (age, 20-39 years), middle-aged men (age, 40-59 years) had significantly lower bio T (-26%, p < 0.001) and bio E(2) (-9%, p = 0.038) levels, and these decreases were even greater in the elderly men (age > or = 60 years, -60% and -38% for bio T and bio E(2), respectively, p < 0.001 for both). Reflecting their intact gonadal status, vBMD/structural parameters were not related to sex steroid levels in young men, whereas bio E(2) levels were associated consistently with vBMD and variably with bone geometric parameters in the elderly men; middle-aged men showed associations with bio E(2) and bio T at some sites. At all cortical sites, vBMD was associated with bio E(2) at low (<30 pM, R = 0.27-0.41, p < 0.05-0.001) but not high (> or =30 pM, R = -0.003 to 0.12, p = not significant) levels; no such differences were evident at trabecular sites. CONCLUSIONS: In men, bio E(2) is the most consistent predictor of vBMD and some bone geometric variables as assessed by QCT. We also extend our previous findings on a possible "threshold" for skeletal estrogen deficiency by showing that this is most evident for cortical sites.  相似文献   

3.
This study aimed to examine progressive temporal relationships between changes in major reproductive hormones across three waves of a cohort study of older men and (1) changes in bone mineral density (BMD) and (2) incident fractures (any, hip or non‐vertebral) over an average of 6 years of follow‐up. The CHAMP cohort of men aged 70 years and older were assessed at baseline (2005 to 2007, n = 1705), 2‐year follow‐up (n = 1367), and 5‐year follow‐up (n = 958). Serum testosterone (T), dihydrotestosterone (DHT), estradiol (E2), and estrone (E1) (by liquid chromatography–tandem mass spectrometry [LC‐MS/MS]), and sex hormone–binding globulin (SHBG), luteinizing hormone (LH), and follicle‐stimulating hormone (FSH) (by immunoassay) were measured at all time‐points, whereas free testosterone (cFT) was calculated using a well‐validated formula. Hip BMD was measured by dual‐energy X‐ray absorptiometry (DXA) at all three time‐points, and fracture data were verified radiographically. Statistical modeling was done using general estimating equations (GEEs). For total hip BMD, univariable analyses revealed inverse associations with temporal changes in serum SHBG, FSH, and LH and positive associations for serum E1 and cFT across the three time‐points. In models adjusted for multiple covariables, serum SHBG (β = –0.029), FSH (β = –0.065), LH (β = –0.049), E1 (β = 0.019), and cFT (β = 0.033) remained significantly associated with hip BMD. However for femoral neck BMD, only FSH (β = –0.048) and LH (β = –0.036) remained associated in multivariable‐adjusted models. Temporal change in serum SHBG, but not T, E2, or other hormonal variables, was significantly associated with any, nonvertebral or hip fracture incidence in univariable analyses. In multivariable‐adjusted models, temporal increase in serum SHBG over time remained associated with any fracture (β = 0.060) and hip fracture (β = 0.041) incidence, but not nonvertebral fracture incidence. These data indicate that a progressive increase in circulating SHBG over time predicts bone loss and fracture risk in older men. Further studies are warranted to further characterize changes in circulating SHBG as a mechanism and/or biomarker of bone health during male ageing. © 2016 American Society for Bone and Mineral Research.  相似文献   

4.
In older men, low estrogen levels are associated with poor bone microarchitecture. Data on androgens are discordant. We studied the link between baseline sex steroid levels (total 17β -estradiol [17βE2], total testosterone [tT], calculated bioavailable 17βE2 [bio-17βE2], and apparent free testosterone concentration [AFTC]) and bone microarchitecture deterioration assessed prospectively in a 820 older men followed for 8 years. Bone microarchitecture was assessed by HR-pQCT at baseline, then after 4 and 8 years. At both the skeletal sites, the bone microarchitecture deterioration rate did not correlate with serum levels of tT and 17βE2. At the distal radius, cortical area (Ct.Ar) decreased more rapidly in the lowest versus the highest AFTC quartile. At the distal tibia, cortical thickness (Ct.Th) decreased and trabecular area (Tb.Ar) increased more rapidly in the highest versus the lowest AFTC quartile. At the tibia, bone mineral content (BMC), total volumetric bone mineral density (Tt.vBMD), Ct.Th, and Ct.Ar decreased, whereas Tb.Ar increased faster in the lowest versus the highest bio-17βE2 quartile. In men who had both AFTC and bio-17βE2 in the lowest quartile (high-risk group), distal radius cortical vBMD (Ct.vBMD) decreased more rapidly compared with men who had both hormones in the three upper quartiles (reference group). At the distal tibia, Tt.vBMD, Ct.Th, Ct.Ar, and Ct.vBMD decreased, whereas Tb.Ar increased more rapidly in the high-risk group versus the reference group. In men receiving androgen deprivation therapy (ADT) for prostate cancer, BMC, Tt.vBMD, Ct.Th, Ct.Ar, and Ct.vBMD decreased, whereas Tb.Ar increased more rapidly than in men not receiving ADT at both the skeletal sites. Thus, in older men followed up prospectively, low levels of bio-17βE2, and to a smaller extent AFTC, are associated with accelerated cortical bone deterioration. Cortical bone deterioration was strongly accelerated in men receiving ADT who had very low levels of all sex steroids. © 2019 American Society for Bone and Mineral Research.  相似文献   

5.
In this study, we evaluated the predictive roles of sex steroids for skeletal parameters in young men (n = 1068) at the age of peak bone mass. Serum free estradiol was a negative predictor, whereas free testosterone and SHBG were positive predictors of cortical bone size. INTRODUCTION: Previous studies have shown that free estradiol in serum is an independent predictor of areal BMD (aBMD) in elderly men. The aim of this study was to determine whether sex steroids are predictors of volumetric BMD (vBMD) and/or size of the trabecular and cortical bone compartments in young men at the age of peak bone mass. MATERIALS AND METHODS: The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study consists of 1068 men, 18.9 +/- 0.6 years of age. Serum levels of testosterone, estradiol, and sex hormone binding globulin (SHBG) were measured, and free levels of testosterone and estradiol were calculated. The size of the cortical bone and the cortical and trabecular vBMDs were measured by pQCT. RESULTS: Regression models including age, height, weight, free estradiol, and free testosterone showed that free estradiol was an independent negative predictor of cortical cross-sectional area (tibia beta = -0.111, p < 0.001; radius beta = -0.125, p < 0.001), periosteal circumference, and endosteal circumference, whereas it was a positive independent predictor of cortical vBMD (tibia beta = 0.100, p < 0.003; radius beta = 0.115, p = 0.001) in both the tibia and radius. Free testosterone was an independent positive predictor of cortical cross-sectional area (tibia beta = 0.071, p = 0.013; radius beta = 0.064, p = 0.039), periosteal circumference, and endosteal circumference in both the tibia and radius. Neither cortical nor trabecular vBMD was associated with free testosterone. SHBG was an independent positive predictor of parameters reflecting the size of the cortical bone, including cross-sectional area (beta = 0.078, p = 0.009), periosteal circumference, and endosteal circumference. CONCLUSIONS: Free estradiol is a negative, whereas free testosterone is a positive, predictor of cortical bone size in young men at the age of peak bone mass. These findings support the notion that estrogens reduce, whereas androgens increase, cortical bone size, resulting in the well-known sexual dimorphism of cortical bone geometry.  相似文献   

6.
Musculoskeletal aging in the most resource-limited countries has not been quantified, and longitudinal data are urgently needed to inform policy. The aim of this prospective study was to describe musculoskeletal aging in Gambian adults. A total of 488 participants were recruited stratified by sex and 5-year age band (aged 40 years and older); 386 attended follow-up 1.7 years later. Outcomes were dual-energy X-ray absorptiometry (DXA) (n = 383) total hip areal bone mineral density (aBMD), bone mineral content (BMC), bone area (BA); peripheral quantitative computed tomography (pQCT) diaphyseal and epiphyseal radius and tibia (n = 313) total volumetric BMD (vBMD), trabecular vBMD, estimated bone strength indices (BSIc), cross-sectional area (CSA), BMC, and cortical vBMD. Mean annualized percentage change in bone outcomes was assessed in 10-year age bands and linear trends for age assessed. Bone turnover markers, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25(OH)D) were explored as predictors of change in bone. Bone loss was observed at all sites, with an annual loss of total hip aBMD of 1.2% in women after age 50 years and in men at age 70 years plus. Greater loss in vBMD and BSIc was found at the radius in both men and women; strength was reduced by 4% per year in women and 3% per year in men (p trend 0.02, 0.03, respectively). At cortical sites, reductions in BMC, CSA, and vBMD were observed, being greatest in BMC in women, between 1.4% and 2.0% per annum. Higher CTX and PINP predicted greater loss of trabecular vBMD in women and BMC in men at the radius, and higher 25(OH)D with less loss of tibial trabecular vBMD and CSA in women. The magnitude of bone loss was like those reported in countries where fragility fracture rates are much higher. Given the predicted rise in fracture rates in resource-poor countries such as The Gambia, these data provide important insights into musculoskeletal health in this population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

7.
Cyclical intravenous therapy with pamidronate improves the clinical course in children and adolescents with osteogenesis imperfecta (OI). In this study, we evaluated the effect of this therapy on lumbar spine bone mass (bone mineral content [BMC]), size (bone volume [BV]), and density (volumetric bone mineral density [vBMD]). Results from 56 patients (age, 0.2-15.9 years; 25 girls) on long-term pamidronate treatment were compared with those of 167 patients who had not received pamidronate before densitometry. In all patients who received pamidronate, BMC, BV, and vBMD increased above levels expected for untreated patients (p < 0.001 in each case). After 4 years of treatment, BMC, BV, and vBMD were 154%, 44%, and 65% higher, respectively, in treated than in untreated patients who were matched for age and OI type. A multiple regression model showed that baseline BMC was negatively associated with the increase in BMC. In conclusion, the bone mass increase in pediatric OI patients receiving pamidronate is caused by increases in both bone size and density. Patients with larger deficits in bone mass at baseline have a more marked bone mass gain during therapy.  相似文献   

8.
Sclerostin is predominantly expressed by osteocytes. Serum sclerostin levels are positively correlated with areal bone mineral density (aBMD) measured by dual‐energy X‐ray absorptiometry (DXA) and bone microarchitecture assessed by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) in small studies. We assessed the relation of serum sclerostin levels with aBMD and microarchitectural parameters based on HR‐pQCT in 1134 men aged 20 to 87 years using multivariable models adjusted for confounders (age, body size, lifestyle, comorbidities, hormones regulating bone metabolism, muscle mass and strength). The apparent age‐related increase in serum sclerostin levels was faster before the age of 63 years than afterward (0.43 SD versus 0.20 SD per decade). In 446 men aged ≤63 years, aBMD (spine, hip, whole body), trabecular volumetric BMD (Tb.vBMD), and trabecular number (Tb.N) at the distal radius and tibia were higher in the highest sclerostin quartile versus the three lower quartiles combined. After adjustment for aBMD, men in the highest sclerostin quartile had higher Tb.vBMD (mainly in the central compartment) and Tb.N at both skeletal sites (p < 0.05 to 0.001). In 688 men aged >63 years, aBMD was positively associated with serum sclerostin levels at all skeletal sites. Cortical vBMD (Ct.vBMD) and cortical thickness (Ct.Th) were lower in the first sclerostin quartile versus the three higher quartiles combined. Tb.vBMD increased across the sclerostin quartiles, and was associated with lower Tb.N and more heterogeneous trabecular distribution (higher Tb.Sp.SD) in men in the lowest sclerostin quartile. After adjustment for aBMD, men in the lowest sclerostin quartile had lower Tb.vBMD and Tb.N, but higher Tb.Sp.SD (p < 0.05 to 0.001) at both the skeletal sites. In conclusion, serum sclerostin levels in men are strongly positively associated with better bone microarchitectural parameters, mainly trabecular architecture, regardless of the potential confounders.  相似文献   

9.
Low areal bone mass is a risk factor for fractures in men. Limited data are available on fractures and bone geometry in men, and the relation with sex steroids is incompletely understood. We investigated prevalent fractures in relation to peak bone mass, bone geometry, and sex steroids in healthy young men. Healthy male siblings (n = 677) at the age of peak bone mass (25 to 45 years) were recruited in a cross‐sectional population‐based study. Trabecular and cortical bone parameters of the radius and cortical bone parameters of the tibia were assessed using peripheral quantitative computed tomography (pQCT). Areal bone mineral density (aBMD) was determined using dual‐energy X‐ray absorptiometry (DXA). Sex steroids were determined using immunoassays, and fracture prevalence was assessed using questionnaires. Fractures in young men were associated with a longer limb length, shorter trunk, lower trabecular BMD, smaller cortical bone area, and smaller cortical thickness (p < .005) but not with bone‐size‐adjusted volumetic BMD (vBMD). With decreasing cortical thickness [odds ratio (OR) 1.4/SD, p ≤ .001] and decreasing cortical area (OR 1.5/SD, p ≤ .001), fracture odds ratios increased. No association between sex steroid concentrations and prevalent fractures was observed. Childhood fractures (≤15 years) were associated with a thinner bone cortex (?5%, p ≤ .005) and smaller periosteal size (?3%, p ≤ .005). Fractures occurring later than 15 years of age were associated with a thinner bone cortex (?3%, p ≤ .05) and larger endosteal circumference (+3%, p ≤ .05) without differences in periosteal bone size. In conclusion, prevalent fractures in healthy young men are associated with unfavorable bone geometry and not with cortical vBMD when adjusting for bone size. Moreover, the data suggest different mechanisms of childhood fractures and fractures during adult life. © 2010 American Society for Bone and Mineral Research  相似文献   

10.
Gender difference in bone size is a potential confounder when comparing bone density between males and females. A comparison of volumetric BMD (vBMD) between men and women, which is a measure of bone mass relative to three-dimensional bone volume (g/cm3) as opposed to areal bone density (g/cm2), may be a more accurate reflection of gender differences in bone density. The aims of this study were to examine gender differences in bone mass (BMC), areal BMD (aBMD), volumetric BMD (vBMD) by comparing twins of opposite sex in whom the effects of age, genes and environment are partially controlled for. DEXA derived BMC, aBMD, vBMD at the third lumbar vertebra (L3), femoral neck (FN) and forearm (1/3 radius) were compared between 82 opposite sex pairs aged 18–80. BMC was significantly higher in males at all three sites (26–45.5%). For aBMD the gender differences remained significant at all sites except the spine. The average differences in aBMD were not as great as the differences in BMC (2.2–20.5%). The differences in vBMD, however, followed a different pattern. FN and L3 vBMD were significantly higher in females (4.8 and 0.6%, respectively), while radial BMD was not significantly different between the sexes. Comparing aBMD values between males and females, when females in general have a smaller skeleton than males may not be a true indication of gender differences in bone density. A comparison of vBMD between men and women shows only small differences in bone density between the sexes.  相似文献   

11.
Low 25‐hydroxyvitamin D (VitD), low sex hormones (SH), and high sex hormone binding globulin (SHBG) levels are common in older men. We tested the hypothesis that combinations of low VitD, low SH, and high SHBG would have a synergistic effect on bone mineral density (BMD), bone loss, and fracture risk in older men. Participants were a random subsample of 1468 men (mean age 74 years) from the Osteoporotic Fractures in Men Study (MrOS) plus 278 MrOS men with incident nonspine fractures studied in a case‐cohort design. “Abnormal” was defined as lowest quartile for VitD (<20 ng/mL), bioavailable testosterone (BioT, <163 ng/dL), and bioavailable estradiol (BioE, <11 pg/mL); and highest quartile for SHBG (>59 nM). Overall, 10% had isolated VitD deficiency; 40% had only low SH or high SHBG; 15% had both SH/SHBG and VitD abnormality; and 35% had no abnormality. Compared to men with all normal levels, those with both SH/SHBG and VitD abnormality tended to be older, more obese, and to report less physical activity. Isolated VitD deficiency, and low BioT with or without low VitD, was not significantly related to skeletal measures. The combination of VitD deficiency with low BioE and/or high SHBG was associated with significantly lower baseline BMD and higher annualized rates of hip bone loss than SH abnormalities alone or no abnormality. Compared to men with all normal levels, the multivariate‐adjusted hazard ratio (95% confidence interval [CI]) for incident nonspine fracture during 4.6‐year median follow‐up was 1.2 (0.8–1.8) for low VitD alone; 1.3 (0.9–1.9) for low BioE and/or high SHBG alone; and 1.6 (1.1–2.5) for low BioE/high SHBG plus low VitD. In summary, adverse skeletal effects of low sex steroid levels were more pronounced in older men with low VitD levels. The presence of low VitD in the presence of low BioE/high SHBG may contribute substantially to poor skeletal health. © 2012 American Society for Bone and Mineral Research.  相似文献   

12.
The aim of this study was to investigate the development of bone mineral density (BMD) and bone mineral content (BMC) in relation to peak height velocity (PHV), and to investigate whether late normal puberty was associated with remaining low BMD and BMC in early adulthood in men. In total, 501 men (mean ± SD, 18.9 ± 0.5 years of age at baseline) were included in this 5‐year longitudinal study. Areal BMD (aBMD) and BMC, volumetric BMD (vBMD) and cortical bone size were measured using dual‐energy X‐ray absorptiometry (DXA) and pQCT. Detailed growth and weight charts were used to calculate age at PHV, an objective assessment of pubertal timing. Age at PHV was a strong positive predictor of the increase in aBMD and BMC of the total body (R2 aBMD 11.7%; BMC 4.3%), radius (R2 aBMD 23.5%; BMC 22.3%), and lumbar spine (R2 aBMD 11.9%; BMC 10.5%) between 19 and 24 years (p < 0.001). Subjects were divided into three groups according to age at PHV (early, middle, and late). Men with late puberty gained markedly more in aBMD and BMC at the total body, radius, and lumbar spine, and lost less at the femoral neck (p < 0.001) than men with early puberty. At age 24 years, no significant differences in aBMD or BMC of the lumbar spine, femoral neck, or total body were observed, whereas a deficit of 4.2% in radius aBMD, but not in BMC, was seen for men with late versus early puberty (p < 0.001). pQCT measurements of the radius at follow‐up demonstrated no significant differences in bone size, whereas cortical and trabecular vBMD were 0.7% (p < 0.001) and 4.8% (p < 0.05) lower in men with late versus early puberty. In conclusion, our results demonstrate that late puberty in males was associated with a substantial catch up in aBMD and BMC in young adulthood, leaving no deficits of the lumbar spine, femoral neck, or total body at age 24 years. © 2012 American Society for Bone and Mineral Research.  相似文献   

13.
Duan Y  Wang XF  Evans A  Seeman E 《BONE》2005,36(6):987-998
We conducted a cross-sectional study in 1868 healthy Chinese and Caucasian women and men aged 18 to 93 years to define the structural and biomechanical basis for racial and sex differences in vertebral body (VB) fragility. VB bone mineral content (BMC), cross-sectional area (CSA), and volumetric bone mineral density (vBMD) of the third lumbar vertebrae were measured using dual-energy X-ray absorptiometry. Using engineering principles, we calculated the load per unit CSA (stress), VB strength estimated from vBMD and the ratio of stress to strength (fracture risk index, FRI). Young adult Chinese women and men had a smaller VB with a higher vBMD than their Caucasian counterparts. In each race, women had a smaller VB than men but similar vBMD. From young adulthood (30 years) to old age (70 years), VB CSA increased more in Chinese than Caucasian women (8.6% vs. 5.8%) and increased less in Chinese than Caucasian men (8.7% vs. 11.8%). Estimated periosteal bone deposited was similar in Chinese and Caucasian women (2.64 vs. 2.63 g, 46% vs. 40% of peak BMC). Estimated endosteal bone lost was similar (3.94 vs. 4.05 g or 68% vs. 62% of peak BMC). As endosteal bone loss exceeded periosteal bone gain, net bone was lost from the VB, but this was similar in Chinese and Caucasian women (1.30 vs. 1.42 g or both lost 22% of peak BMC). For men, Chinese gained less periosteal bone than Caucasians (2.73 vs. 5.05 g or 34% vs. 56% of peak BMC) and lost less endosteal bone (3.07 vs. 5.49 g or 38% vs. 61% of peak BMC), so net bone loss was similar in Chinese and Caucasian men (0.34 vs. 0.44 g, both lost 5% of peak BMC). Comparing sexes, in Chinese, net bone loss was greater in women than in men because of greater endosteal bone loss in women (68% of peak BMC) than men (38% of peak BMC); periosteal bone gain was similar in women and men. In Caucasians, net bone loss was greater in women than men because periosteal bone gain was less in women (40%) than men (56%), endosteal bone loss was similar. The age-related increase in VB CSA reduced VB stress but vBMD decreased so the FRI increased; 25% of elderly Chinese and Caucasian women and 5% of elderly Chinese and Caucasian men had an FRI above unity. The structural basis of bone fragility differs by race and sex. Periosteal apposition plays a pivotal role in determining racial and sex differences in net bone loss, geometry, and strength.  相似文献   

14.
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214 ) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

15.

Background

Male obesity can be associated with symptomatic alterations in sex hormones resulting in hypogonadism and impaired fertility. Surgical-induced weight loss can improve the sex hormone profile in men. The aim of the present study is to evaluate the levels of sex hormones in obese males before and after 6 months from bariatric surgery. Possible mechanisms and clinical implications are also discussed.

Methods

We evaluated levels of serum total testosterone (TT), sex hormone-binding globulin (SHBG), calculated free testosterone (cFT), follicular-stimulating hormone (FSH), luteinizing hormone (LH), and total estradiol (E2) in 20 male patients at the baseline and 6 months after bariatric surgery.

Results

Median [interquartile range] age at the time of surgery was 40.5 [27.2–46.7] years with a median [interquartile range] BMI of 43.6 [40.9–48.7] kg/m2. The median baseline levels of TT, SHBG, cFT, LH, and FSH were reduced; levels of E2 were elevated. At 6 months from surgery, the median BMI dropped to 34.8 [31.7–40.5]?kg/m2, TT, SHBG, cFT, LH, and FSH increased, while levels of E2 decreased. The improvement in the sex hormone profile was more evident in younger patients, with a statistically significant difference in cFT following surgery and in the raise of TT and cFT between the groups of patients below and above 35 years. At multivariate analysis, the age was the best predictive factor of the postoperative variations of TT.

Conclusions

These preliminary results confirm the general improvement in sex hormone profile in obese men after bariatric surgery and introduce the age as a possible contributing factor to this improvement.  相似文献   

16.
In a population-based, cross-sectional study, we assessed age- and sex-specific changes in bone structure by QCT. Over life, the cross-sectional area of the vertebrae and proximal femur increased by approximately 15% in both sexes, whereas vBMD at these sites decreased by 39-55% and 34-46%, respectively, with greater decreases in women than in men. INTRODUCTION: The changes in bone structure and density with aging that lead to fragility fractures are still unclear. MATERIALS AND METHODS: In an age- and sex-stratified population sample of 373 women and 323 men (age, 20-97 years), we assessed bone geometry and volumetric BMD (vBMD) by QCT at the lumbar spine, femoral neck, distal radius, and distal tibia. RESULTS: In young adulthood, men had 35-42% larger bone areas than women (p < 0.001), consistent with their larger body size. Bone area increased equally over life in both sexes by approximately 15% (p < 0.001) at central sites and by approximately 16% and slightly more in men at peripheral sites. Decreases in trabecular vBMD began before midlife and continued throughout life (p < 0.001), whereas cortical vBMD decreases began in midlife. Average decreases in trabecular vBMD were greater in women (-55%) than in men (-46%, p < 0.001) at central sites, but were similar (-24% and -26%, respectively) at peripheral sites. With aging, cortical area decreased slightly, and the cortex was displaced outwardly by periosteal and endocortical bone remodeling. Cortical vBMD decreased over life more in women ( approximately 25%) than in men (approximately 18%, p < 0.001), consistent with menopausal-induced increases in bone turnover and bone porosity. CONCLUSIONS: Age-related changes in bone are complex. Some are beneficial to bone strength, such as periosteal apposition with outward cortical displacement. Others are deleterious, such as increased subendocortical resorption, increased cortical porosity, and, especially, large decreases in trabecular vBMD that may be the most important cause of increased skeletal fragility in the elderly. Our findings further suggest that the greater age-related decreases in trabecular and cortical vBMD and perhaps also their smaller bone size may explain, in large part, why fragility fractures are more common in elderly women than in elderly men.  相似文献   

17.
Quantitative genetic analyses of bone data for 710 inter-related individuals 8-85 yr of age found high heritability estimates for BMC, bone area, and areal and volumetric BMD that varied across bone sites. Activity levels, especially time in moderate plus vigorous activity, had notable effects on bone. In some cases, these effects were age and sex specific. INTRODUCTION: Genetic and environmental factors play a complex role in determining BMC, bone size, and BMD. This study assessed the heritability of bone measures; characterized the effects of age, sex, and physical activity on bone; and tested for age- and sex-specific bone effects of activity. MATERIALS AND METHODS: Measures of bone size and areal and volumetric density (aBMD and vBMD, respectively) were obtained by DXA and pQCT on 710 related individuals (466 women) 8-85 yr of age. Measures of activity included percent time in moderate + vigorous activity (%ModVig), stair flights climbed per day, and miles walked per day. Quantitative genetic analyses were conducted to model the effects of activity and covariates on bone outcomes. RESULTS: Accounting for effects of age, sex, and activity levels, genes explained 40-62% of the residual variation in BMC and BMD and 27-75% in bone size (all p<0.001). Decline in femoral neck (FN), hip, and spine aBMD with advancing age was greater among women than men (age-by-sex interaction; all p 相似文献   

18.
Sex steroids are important regulators of bone turnover, but the mechanisms of their effects on bone remain unclear. Sclerostin is an inhibitor of Wnt signaling, and circulating estrogen (E) levels are inversely associated with sclerostin levels in postmenopausal women. To directly test for sex steroid regulation of sclerostin levels, we examined effects of E treatment of postmenopausal women or selective withdrawal of E versus testosterone (T) in elderly men on circulating sclerostin levels. E treatment of postmenopausal women (n = 17) for 4 weeks led to a 27% decrease in serum sclerostin levels [versus +1% in controls (n = 18), p < .001]. Similarly, in 59 elderly men, we eliminated endogenous E and T production and studied them under conditions of physiologic T and E replacement, and then following withdrawal of T or E, we found that E, but not T, prevented increases in sclerostin levels following induction of sex steroid deficiency. In both sexes, changes in sclerostin levels correlated with changes in bone‐resorption, but not bone‐formation, markers (r = 0.62, p < .001, and r = 0.33, p = .009, for correlations with changes in serum C‐terminal telopeptide of type 1 collagen in the women and men, respectively). Our studies thus establish that in humans, circulating sclerostin levels are reduced by E but not by T. Moreover, consistent with recent data indicating important effects of Wnts on osteoclastic cells, our findings suggest that in humans, changes in sclerostin production may contribute to effects of E on bone resorption. © 2011 American Society for Bone and Mineral Research.  相似文献   

19.
Romosozumab, a monoclonal antibody that binds sclerostin, has a dual effect on bone by increasing bone formation and reducing bone resorption, and thus has favorable effects in both aspects of bone volume regulation. In a phase 2 study, romosozumab increased areal BMD at the lumbar spine and total hip as measured by DXA compared with placebo, alendronate, and teriparatide in postmenopausal women with low bone mass. In additional analyses from this international, randomized study, we now describe the effect of romosozumab on lumbar spine and hip volumetric BMD (vBMD) and BMC at month 12 as assessed by QCT in the subset of participants receiving placebo, s.c. teriparatide (20 µg once daily), and s.c. romosozumab (210 mg once monthly). QCT measurements were performed at the lumbar spine (mean of L1 and L2 entire vertebral bodies, excluding posterior processes) and hip. One year of treatment with romosozumab significantly increased integral vBMD and BMC at the lumbar spine and total hip from baseline, and compared with placebo and teriparatide (all p < 0.05). Trabecular vertebral vBMD improved significantly and similarly from baseline (p < 0.05) with both romosozumab (18.3%) and teriparatide (20.1%), whereas cortical vertebral vBMD gains were larger with romosozumab compared with teriparatide (13.7% versus 5.7%, p < 0.0001). Trabecular hip vBMD gains were significantly larger with romosozumab than with teriparatide (10.8% versus 4.2%, p = 0.01), but were similar for cortical vBMD (1.1% versus –0.9%, p = 0.12). Cortical BMC gains were larger with romosozumab compared with teriparatide at both the spine (23.3% versus 10.9%, p < 0.0001) and hip (3.4% versus 0.0%, p = 0.03). These improvements are expected to result in strength gains and support the continued clinical investigation of romosozumab as a potential therapy to rapidly reduce fracture risk in ongoing phase 3 studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

20.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号