首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In studies of rhythmic coordination, where sensory information is often generated by an auditory stimulus, spatial and temporal variability are known to decrease at points in the movement cycle coincident with the stimulus, a phenomenon known as anchoring (Byblow et al. 1994). Here we hypothesize that the role of anchoring may be to globally stabilize coordination under conditions in which it would otherwise undergo a global coordinative change such as a phase transition. To test this hypothesis, anchoring was studied in a bimanual coordination paradigm in which either inphase or antiphase coordination was produced as auditory pacing stimuli (and hence movement frequency) were scaled over a wide range of frequencies. Two different anchoring conditions were used: a single-metronome condition, in which peak amplitude of right finger flexion coincided with the auditory stimulus; and a double-metronome condition, in which each finger reversal (flexion and extension) occurred simultaneously with the auditory stimuli. Anchored reversal points displayed lower spatial variation than unanchored reversal points, resulting in more symmetric phase plane trajectories in the double- than the single-metronome condition. The global coordination dynamics of the double-metronome condition was also more stable, with transitions from antiphase to inphase occurring less often and at higher movement frequencies than in the single-metronome condition. An extension of the Haken-Kelso-Bunz model of bimanual coordination is presented briefly which includes specific coupling of sensory information to movement through a process we call parametric stabilization. The parametric stabilization model provides a theoretical account of both local effects on the individual movement trajectories (anchoring) and global stabilization of observed coordination patterns, including the delay of phase transitions.  相似文献   

2.
The present study investigated the influence of a bilateral exhaustive exercise on the stability of bimanual anti-phase coordination pattern and attentional demands. Eight subjects performed the anti-phase coordination pattern in two sessions: an Exhausting Session and a Control Session. During the Exhausting Session, subjects performed the bimanual coordination after exhaustion of forearms muscles (i.e. endurance time test). For the Control Session, no endurance time test was previously designed before the performance of anti-phase coordination. Within these experimental sessions, two levels of load (loaded and unload) and two frequencies (1.75 and 2.25 Hz) were also manipulated during the bimanual task. Attentional demands associated with performing the anti-phase coordination pattern was measured via a probe reaction time task (RT). The results showed that relative phase variability was higher for the fastest frequency after the exhaustive exercise. Moreover, as a result of the previous muscle exercise, the observed phase coupling was less accurate. No significant effect was found concerning the attentional demands as assessed through RT. The present findings suggest that the muscle exhaustion affects bimanual performance at a more peripheral level.  相似文献   

3.
Previous electrophysiological and neuroimaging studies have provided evidence that the supplementary motor area (SMA) has an important role in the control of bimanual coordination. The present experiment investigated the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the SMA region on kinematic variables during cyclical bimanual coordination, with a particular focus on the quality of coordination. Subjects performed metronome-paced trials of in-phase and anti-phase bimanual index-finger movements at near-maximal cycling frequency. During movement execution, rTMS (20 Hz, 0.5 s, 120% hand motor threshold) was applied over one of three positions in the sagittal midline 2.0, 4.0 and 6.0 cm anterior to the primary motor leg area. Sham rTMS was included as a control condition. After rTMS, the mean relative phase error between hands increased, but only in the anti-phase trials. The maximum increase in phase error occurred immediately after rather than during the rTMS train. The effect was largest after stimulation 4 or 6 cm anterior to the leg area of the primary motor cortex. We did not observe any changes in the variability of relative phase or in cycle duration or movement amplitude. Findings are discussed in light of recent functional models on the role of the SMA in bimanual movement control.  相似文献   

4.
The spatial and temporal coupling between the hands is known to be very robust during movements which use homologous muscles (in-phase or symmetric movements). In contrast, movements using nonhomologous muscles (antiphase or asymmetric movements) are less stable and exhibit a tendency to undergo a phase transition to in-phase movements as movement frequency increases. The instability during antiphase movements has been modeled in terms of signal interference mediated by the ipsilateral corticospinal pathways. In this study we report that participants in whom distal ipsilateral motor-evoked potentials could be elicited with transcranial magnetic stimulation (TMS), exhibited higher variability during a bimanual circling task than participants whose ipsilateral pathways could not be transcranially activated. These results suggest that ipsilateral control of the limb affects the level of bimanual coupling, and may contribute to uncoupling phenomena observed during asymmetric coordination.  相似文献   

5.
Recent debate has focused upon the issue of whether general principles and laws of movement coordination may be derived without reference to anatomical, mechanical and physiological mechanisms. It has been proposed that self-generated movement involves the interaction of biomechanical and neuromuscular constraints. Biomechanical constraints are usually considered of as arising from the pendular dimensions of the limb or limb segments whereas neuromuscular constraints are commonly associated with nervous and metabolic control processes. The present study aims to investigate the interplay between these two different constraints on bimanual pattern stability and attentional demands. Five subjects were asked to execute an anti-phase coordination pattern (180 degrees of relative phase), while gradually increasing the frequency of oscillation and changing the rotational inertia of the joysticks. Frequency manipulation was expected to affect the neuromuscular constraints. Inertial manipulation was expected to affect biomechanical constraints. Attentional demands, reflecting the central cost associated with the maintenance of the coordination pattern was assessed using a dual-task paradigm. The results showed that: (1) increasing the oscillation frequency altered both coordination dynamics and attentional demands associated with the maintenance of bimanual coordination patterns; (2) manipulation of rotational inertia of the joysticks also altered pattern stability (standard deviation of relative phase) and coordination dynamics (i.e. the number of phase transition and the before transition), but these alterations were not paralleled by a change in attentional demands.  相似文献   

6.
Both discrete and continuous bimanual coordination patterns are difficult to effectively perform when the two limbs are required to perform different movements patterns, move at different velocities and/or move different amplitudes unless some form of integrated feedback is provided. The purpose of the present experiment was to determine the degree to which a complex bimanual coordination pattern could be performed when integrated feedback and movement template are provided. The complex bimanual coordination pattern involved reciprocal movements of the two limbs under different difficulty requirements. As defined by Fitts’ index of difficulty (ID), the left arm (ID = 3, A = 16°, W = 4°) task was of lower difficulty than the right arm task (ID = 5, A = 32°, W = 2°). Note that the left and right limb movements are also different in terms of movement time, movement velocity, accuracy requirements and amplitude as well as one movement was continuous and the other intermittent. Participants were provided 2 blocks of 9 trials in the bimanual condition (30 s/trial). Following the bimanual phase, participants performed two unimanual test trials—one with each limb. The results demonstrated that the performance for each limb in the bimanual condition was similar to the performance for the same limb and conditions in the unimanual control conditions. The similarity was indicated by the same movement speed, movement structure, endpoint variability and hit rates for the bimanual and unimanual conditions. The results support our hypothesis that people can overcome the intrinsic difficulties associated with performing complex bimanual coordination patterns when provided appropriate perceptual information feedback that allows them to detect and correct coordination errors.  相似文献   

7.
Several fMRI studies have been performed to detect the neural correlates of stable bimanual coordination patterns in humans. Only few of those studies were accompanied by the on-line recording of the relative phase of fingers or hands, but none with high space and time resolutions. Conversely, the high-resolution recording of fingers’ kinematics during fMRI would permit the quantification of the instantaneous fingers’ positions, from which the instant at which transitions between different bimanual coordination patterns occur might be detected. This information could then be used to analyze fMRI data and detect the neural correlates of pattern transitions. We describe an a-magnetic optic-mechanical device (AMOMeD) able to monitor the fingers’ positions during fMRI studies on bimanual coordination with 2 mm space resolution and 1 ms time resolution. From the instantaneous fingers’ positions (recorded with an optical fiber system and a dedicated acquisition system), the oscillation amplitude, frequency, velocity and relative phase of fingers’ are calculated. The signal from the fMRI trigger can be acquired simultaneously to synchronize the behavioral outcomes with the fMRI analysis. The results of our study show that this device does not affect fMRI signals, and that fMRI data can be processed using the simultaneous behavioral information to detect the brain areas activated during the transitions between different bimanual coordination patterns.  相似文献   

8.
An experiment was conducted to determine whether multi-frequency continuous bimanual circling movements of varying difficulty (1:2. 2:3, 3:4, and 4:5) could be effectively performed following relatively little practice when on-line continuous relative velocity feedback is provided. The between-subjects results indicate extremely effective bimanual multi-frequency performance for all coordination patterns with relatively stable and continuous movements of both limbs. The findings suggest that the previous performance effects using Lissajous feedback with reciprocal movement can be extended to circling movements using on-line relative velocity feedback. Contrary to the long-held position that these coordination patterns result in increasing difficulty, we failed to find systematic relative velocity error, variability, or bias differences between the participants performing the various multi-frequency coordination patterns. Indeed, coordination error, variability, and biases were remarkably low for each of the tasks. The results clearly indicate the ease with which participants are able to produce bimanual coordination patterns typically considered difficult if not impossible when salient visual information is provided that allows the participants to detect and correct their coordination errors.  相似文献   

9.
This study examined the stability and variability of interpersonal coordination, in which one person breathed while the other moved a wrist back and forth with an inverted pendulum in hand. Nine pairs of subjects coordinated each other's movement in two relative phase modes. In one mode, Radial flexion-Inspiration and Ulnar flexion-Expiration (RIUE), one subject radially flexed the wrist as the other inhaled and ulnarly flexed it as the other exhaled. In the other, Ulnar flexion-Inspiration and Radial flexion-Expiration (UIRE) mode, the wrist was ulnarly flexed at inhalation, and radially flexed at exhalation. Results were as follows: (1) The two were more highly coordinated in RIUE mode than UIRE mode as the frequency of oscillation increased. (2) Phase transitions were observed from URIE to RIUE mode, as the frequency of oscillation increased. And (3) the more different in preferred frequency the pendulum and breathing movements were, the more deviated from the intended relative phase the coordination became. These results suggest that interpersonal coordination of breathing and wrist-pendulum movement is qualitatively equivalent to intra personal coordination between them.  相似文献   

10.
The present findings demonstrate that when participants are provided a Lissajous display with cursor indicating the position of the limbs and a template illustrating the desired movement pattern they can rapidly (10 min) and effectively (continuous relative phase errors and variability ~10°) tune in a difficult 5:3 bimanual coordination pattern and without additional practice re-tune their responding to an equally difficult 4:3 coordination pattern. The findings indicate the extreme difficulty associated with producing complex polyrhythms in previous experiments has been due to split attention when Lissajous feedback has been provided and inability of the participant to detect and correct coordination errors when only provided vision of the limbs. Effective transfer to the 4:3 polyrhythm without previous practice suggests that the perception–action system’s capabilities are extensive. The present findings when viewed in the context of recent experiments using similar protocols suggest that much, but not all, of the difficulty associated with producing a variety of bimanual coordination tasks should be viewed in terms of perceptual constraints imposed by the testing environment.  相似文献   

11.
There is a debate in the literature about the influence of spatial and anatomical constraints on bimanual coordination dynamics. In the present experiment, participants swung hand-held pendulums about the wrist while attending to visual feedback about relative phase (superimposed phase plots of each pendulum) that was displayed on a screen. Participants were instructed to maintain in-phase or anti-phase coordination in the visual display. Visual–spatial and anatomical constraints were dissociated by introducing a phase shift in the visual display so that visual feedback differed from the movements being performed by the participants in 15° increments from −180° to +180°. Analysis of mean relative phase and its variability suggested that visual–spatial and anatomical constraints interact in bimanual coordination dynamics.  相似文献   

12.
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.  相似文献   

13.
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.  相似文献   

14.
It is well established that the in-phase pattern of bimanual coordination (i.e. a relative phase of 0°) is more stable than the antiphase pattern (i.e., a relative phase of 180°), and that a spontaneous transition from antiphase to in-phase typically occurs as the movement frequency is gradually increased. On the basis of results from relative phase perception experiments, Bingham (Proceedings of the 23rd annual conference of the cognitive science society. Laurence Erlbaum Associates, Mahwah, pp 75–79, 2001; Ecol Psychol 16:45–53, 2004; Advances in psychology 135: time-to-contact. Elsevier, Amsterdam, pp 421–442, 2004) proposed a dynamical model that consists of two phase driven oscillators coupled via the perceived relative phase, the resolution of which is determined by relative velocity. In the present study, we specifically test behavioral predictions from this last assumption during a unimanual visuo-motor tracking task. Different conditions of amplitudes and frequencies were designed to manipulate selectively relative phase and relative velocity. While the known effect of phase and frequency were observed, relative phase variability was not affected by the different conditions of relative velocity. As such, Bingham’s model assumption that instability in relative phase coordination is brought about by relative velocity that affects the resolution of the perceived relative phase has been invalidated for the case of rhythmic unimanual visuo-motor tracking. Although this does not rule out the view that relative phase production is constrained by relative phase perception, the mechanism that would be responsible for this phenomenon still has to be established.  相似文献   

15.
Unimanual and bimanual cyclical forearm movements were studied in 15 Huntington's disease (HD) patients and 15 healthy, gender- and age-matched controls. Whereas the unimanual task was only performed at maximal speed, the bimanual movements were performed according to the in-phase and anti-phase mode at different cycling frequencies. The HD patients also performed the tasks after 12 months of follow-up. Findings revealed that maximal cycling frequency during unimanual movement was significantly lower in HD patients as compared with controls. In addition, measures of relative phasing established that bimanual cyclical movements were performed with lower accuracy and higher variability in HD patients. The differential variability between both groups was magnified by increasing the cycling frequency and coordinative complexity whereas only coordinative complexity differentially affected the accuracy of relative phasing. The obtained performance measures were found to be significantly correlated with disease duration (unimanual) and with the score on the total motor scale, the Mini-Mental State Examination and the Stroop Interference Test (uni- and bimanual). After 12 months, maximal cycling frequency of unimanual elbow flexion–extension was significantly decreased in HD patients whereas the quality of the in-phase and anti-phase movement patterns remained stable. Electronic Publication  相似文献   

16.
The purpose of the experiment was to determine the influence of Lissajous feedback on 1:1 bimanual coordination patterns (0°, 90°, and 180° phase lags) when the movement amplitudes of the two limbs were different (30°, 60°). The present data supports the notion that the lead–lag relationship as well as amplitude assimilation observed in the literature can be partially attributed to the visual-perceptual factors present in the testing environment. When participants are provided integrated feedback in the form of Lissajous plots much of the lead–lag and amplitude assimilation effects were eliminated, and relative phase error and variability were also greatly reduced after only 3 min of practice under each condition.  相似文献   

17.
 Rhythmic interlimb coordination is characterized by attraction to stable phase and frequency relations. Sudden, unintended transitions between such coordination patterns have been observed in iso- and multifrequency tasks when movement frequency was gradually increased. These transitions have been accounted for by modeling the two limbs as nonlinearly coupled oscillators. The prevailing form of the coupling function is based on time derivatives, but an alternative formulation can be derived by incorporating time delays. These time delays may be related to the neurophysiological delays associated with the use of kinesthetic afferences. The two ways of deriving coupling functions for interlimb coordination allow for different predictions with respect to the effects of movement frequency and amplitude on the strength of interaction between the limbs. In the current experiment, the effects of amplitude and frequency were dissociated experimentally, so as to arrive at an empirically motivated choice between the two ways of formalizing interlimb coupling. Subjects tapped the polyrhythm 2:3 at five different frequencies under three amplitude conditions. Whereas no effects of amplitude were observed, the strength of interaction between the hands decreased with increasing movement frequency. These results support the time-delay version of the model, in which differential (loss of) stability of coordination modes results from differential dependence on movement amplitude, but overall coupling strength is related reciprocally to movement frequency squared. This version of the model was related tentatively to three proposed aspects of interlimb coordination: (1) neurophysiological delays associated with the use of kinesthetic afferences; (2) rate-dependent decrease in pattern stability; and (3) differential entrainment influences of kinesthetic signals. Received: 23 November 1996 / Accepted: 19 May 1997  相似文献   

18.
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.  相似文献   

19.
We investigated the role of somatosensory feedback during bimanual coordination by testing a bilaterally deafferented patient, a unilaterally deafferented patient, and three control participants on a repetitive bimanual circle-drawing task. Circles were drawn symmetrically or asymmetrically at varying speeds with full, partial, or no vision of the hands. Strong temporal coupling was observed between the hands at all movement rates during symmetrical drawing and at the comfortable movement rate during asymmetrical drawing in all participants. When making asymmetric movements at the comfortable and faster rates, the patients and controls exhibited similar evidence of pattern instability, including a reduction in temporal coupling and trajectory deformation. The patients differed from controls on measures of spatial coupling and variability. The amplitudes and shapes of the two circles were less similar across limbs for the patients than the controls and the circles produced by the patients tended to drift in extrinsic space across successive cycles. These results indicate that somatosensory feedback is not critical for achieving temporal coupling between the hands nor does it contribute significantly to the disruption of asymmetrical coordination at faster movement rates. However, spatial consistency and position, both within and between limbs, were disrupted in the absence of somatosensory feedback.  相似文献   

20.
Multifrequency coordination studies have shown the importance of hand-role in addition to hand-preference in bimanual rhythmic coordination. In these studies, hand-role has been defined by the task of the individual hands (moving fast or slow). In the present study, the hands were coordinated at the same frequency and hand-role was defined by the asymmetry of the coordination pattern. Eleven consistent left-handers and 13 consistent right-handers tapped three patterns (anti-phase, left-gallop, right-gallop) in four visual feedback conditions (no feedback, left-hand feedback, right-hand feedback, full feedback). The analysis focused on phase shifts, phase variability, intertap interval variability, and correlations between intertap intervals. The manipulation of visual feedback had only minor effects. In the anti-phase pattern, a symmetric coupling mechanism was found. The results support the idea that coordination in the gallop pattern is governed by a hierarchical control mechanism. In contrast to the multifrequency studies, however, successful control in the gallop is not dependent on a hand arrangement that accommodates the preferred hand as the leading hand. An adjustment to the model of Summers et al. (1993, J Exp Psychol Hum Percept Perform 19:416–428) is presented for the case of the gallop pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号