首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are several lines of evidence to suggest that cyclooxygenase-2 (COX-2) plays an important role in the generation and maintenance of neuropathic pain states following peripheral nerve injury. However, COX-2 inhibitors are generally ineffective in reversing mechanical allodynia and hyperalgesia in models of neuropathic hypersensitivity. Here, we have investigated the effects of GW406381, a novel COX-2 inhibitor, on mechanical allodynia, hyperalgesia and generation of spontaneous ectopic discharge in rats following chronic constriction injury (CCI) of the sciatic nerve and compared it with rofecoxib. GW406381 (5mg/kg, 5 days of treatment) significantly reversed the CCI-induced decrease in paw withdrawal thresholds (PWTs), assessed using both von Frey hair and paw pressure tests, whereas an equi-effective dose of rofecoxib (5mg/kg, 5 days of treatment) in inflammatory pain models was ineffective. In rats treated with GW406381, the proportion of fibres showing spontaneous activity was significantly lower (15.58%) than that in the vehicle (32.67%)- and rofecoxib (39.66%)-treated rats. Ibuprofen, a non-selective COX inhibitor, at 5mg/kg, orally dosed three times a day for 5 days did not significantly affect the PWTs in CCI rats. In na?ve rats, GW406381 did not significantly change the PWTs. These results illustrate that COX-2 may indeed play an important role in the maintenance of neuropathic pain following nerve injury, but that only certain COX-2 inhibitors, such as GW406381, are effective in this paradigm. Whilst the mechanisms underlying this differential effect of GW406381 are not clear, differences in drug/enzyme kinetic interactions may be a key contributing factor.  相似文献   

2.
Nonsteriodal anti-inflammatory drugs (NSAIDs) are efficacious for the treatment of pain associated with inflammatory disease. Clinical experience with marketed selective cyclooxygenase-2 (COX-2) inhibitors (celecoxib, rofecoxib, and valdecoxib) has confirmed the utility of these agents in the treatment of inflammatory pain with an improved gastrointestinal safety profile relative to NSAID comparators. These COX-2 inhibitors belong to the same structural class. Each contains a core heterocyclic ring with two appropriately substituted phenyl rings appended to adjacent atoms. Here, we report the identification of vicinally disubstituted pyridazinones as potent and selective COX-2 inhibitors. The lead compound in the series, ABT-963 [2-(3,4-difluoro-phenyl)-4-(3-hydroxy-3-methyl-butoxy)-5-(4-methanesulfonyl-phenyl)-2H-pyridazin-3-one], has excellent selectivity (ratio of 276, COX-2/COX-1) in human whole blood, improved aqueous solubility compared with celecoxib and rofecoxib, high oral anti-inflammatory potency in vivo, and gastric safety in the animal studies. After oral administration, ABT-963 reduced prostaglandin E2 production in the rat carrageenan air pouch model (ED50 of 0.4 mg/kg) and reduced the edema in the carrageenan induced paw edema model with an ED30 of 1.9 mg/kg. ABT-963 dose dependently reduced nociception in the carrageenan hyperalgesia model (ED50 of 3.1 mg/kg). After 14 days of dosing in the adjuvant arthritis model, ABT-963 had an ED(50) of 1.0 mg/kg in reducing the swelling of the hind paws. Magnetic resonance imaging examination of the diseased paws in the adjuvant model showed that ABT-963 significantly reduced bone loss and soft tissue destruction. ABT-963 is a highly selective COX-2 inhibitor that may have utility in the treatment of the pain and inflammation associated with arthritis.  相似文献   

3.
In this randomized, double-blind, placebo-controlled study, we evaluated the efficacy and safety of GW406381, an investigational selective cyclooxygenase (COX)-2 inhibitor with both peripheral and central actions, in 209 patients with postherpetic neuralgia (PHN). Patients were randomly assigned to GW406381 25 mg or 50 mg or placebo treatments for 3 weeks. The primary efficacy outcome measure was the change in average daily pain intensity score from baseline to the last week of treatment. Both doses of GW406381 produced greater reduction in pain score than placebo, but the treatment difference did not reach statistical significance. It was possible that the 3-week duration was too short, as there was a tendency for increasing separation from placebo over time that did not appear to reach maximum effect by the end of the study for either GW406381 treatment group. Overall, GW406381 was well tolerated in this elderly population.PerspectiveTo our knowledge, this is the first report of a randomized, controlled clinical trial of a selective or nonselective COX inhibitor in neuropathic pain. The results of this study were inconclusive regarding the clinical relevance of the role of COX-2 in modulation of the symptoms of PHN.  相似文献   

4.
Voltage-gated Na(+) channels may play important roles in establishing pathological neuronal hyperexcitability associated with chronic pain in humans. Na(+) channel blockers, such as carbamazepine (CBZ) and lamotrigine (LTG), are efficacious in treating neuropathic pain; however, their therapeutic utility is compromised by central nervous system side effects. We reasoned that it may be possible to gain superior control over pain states and, in particular, a better therapeutic index, by designing broad-spectrum Na(+) channel blockers with higher potency, faster onset kinetics, and greater levels of state dependence than existing drugs. 2-[4-(4-Chloro-2-fluorophenoxy)phenyl]-pyrimidine-4-carboxamide (PPPA) is a novel structural analog of the state-dependent Na(+) channel blocker V102862 [4-(4-fluorophenoxy)benzaldehyde semicarbazone]. Tested on recombinant rat Na(v)1.2 channels and native Na(+) currents in cultured rat dorsal root ganglion neurons, PPPA was approximately 1000 times more potent, had 2000-fold faster binding kinetics, and > or =10-fold higher levels of state dependence than CBZ and LTG. Tested in rat pain models against mechanical endpoints, PPPA had minimal effective doses of 1 to 3 mg/kg p.o. in partial sciatic nerve ligation, Freund's complete adjuvant, and postincisional pain. In all cases, efficacy was similar to clinically relevant comparators. Importantly, PPPA did not produce motor deficits in the accelerating Rotarod assay of ataxia at doses up to 30 mg/kg p.o., indicating a therapeutic index >10, which was superior to CBZ and LTG. Our experiments suggest that high-potency, broad-spectrum, state-dependent Na(+) channel blockers will have clinical utility for treating neuropathic, inflammatory, and postsurgical pain. Optimizing the biophysical parameters of broad-spectrum voltage-gated Na(+) channel blockers may lead to improved pain therapeutics.  相似文献   

5.
The discoveries that cyclooxygenase (COX)-2 is an inducible form of COX involved in inflammation and that COX-1 is the major isoform responsible for the production of prostaglandins (PGs) in the gastrointestinal tract have provided a rationale for the development of specific COX-2 inhibitors as a new class of anti-inflammatory agents with improved gastrointestinal tolerability. In the present study, the preclinical pharmacological and biochemical profiles of rofecoxib [Vioxx, also known as MK-0966, 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone], an orally active COX-2 inhibitor, are described. Rofecoxib is a potent inhibitor of the COX-2-dependent production of PGE(2) in human osteosarcoma cells (IC(50) = 26 +/- 10 nM) and Chinese hamster ovary cells expressing human COX-2 (IC(50) = 18 +/- 7 nM) with a 1000-fold selectivity for the inhibition of COX-2 compared with the inhibition of COX-1 activity (IC(50) > 50 microM in U937 cells and IC(50) > 15 microM in Chinese hamster ovary cells expressing human COX-1). Rofecoxib is a time-dependent inhibitor of purified human recombinant COX-2 (IC(50) = 0.34 microM) but caused inhibition of purified human COX-1 in a non-time-dependent manner that could only be observed at a very low substrate concentration (IC(50) = 26 microM at 0.1 microM arachidonic acid concentration). In an in vitro human whole blood assay, rofecoxib selectively inhibited lipopolysaccharide-induced, COX-2-derived PGE(2) synthesis with an IC(50) value of 0.53 +/- 0.02 microM compared with an IC(50) value of 18.8 +/- 0.9 microM for the inhibition of COX-1-derived thromboxane B(2) synthesis after blood coagulation. Using the ratio of the COX-1 IC(50) values over the COX-2 IC(50) values in the human whole blood assay, selectivity ratios for the inhibition of COX-2 of 36, 6.6, 2, 3, and 0.4 were obtained for rofecoxib, celecoxib, meloxicam, diclofenac, and indomethacin, respectively. In several in vivo rodent models, rofecoxib is a potent inhibitor of carrageenan-induced paw edema (ID(50) = 1.5 mg/kg), carrageenan-induced paw hyperalgesia (ID(50) = 1.0 mg/kg), lipopolysaccharide-induced pyresis (ID(50) = 0.24 mg/kg), and adjuvant-induced arthritis (ID(50) = 0.74 mg/kg/day). Rofecoxib also has a protective effect on adjuvant-induced destruction of cartilage and bone structures in rats. In a (51)Cr excretion assay for detection of gastrointestinal integrity in either rats or squirrel monkeys, rofecoxib has no effect at doses up to 200 mg/kg/day for 5 days. Rofecoxib is a novel COX-2 inhibitor with a biochemical and pharmacological profile clearly distinct from that of current nonsteroidal anti-inflammatory drugs and represents a new therapeutic class of anti-inflammatory agents for the treatment of the symptoms of osteoarthritis and rheumatoid arthritis with improved gastrointestinal tolerability.  相似文献   

6.
Administration of phosphodiesterase 4 (PDE4) inhibitors suppresses the pathogenesis associated with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In the present study, we compared the effects of rolipram and 4-[2-(3,4-bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]-3-methylpyridine-1-oxide (L-826,141), a novel nonbrain penetrant PDE4 inhibitor, on the onset and severity of clinical signs in a chronic, nonrelapsing/remitting model of EAE. Both rolipram (10 mg/kg p.o.) and L-826,141 (3 mg/kg p.o.) reduced the severity of EAE relative to controls, whereas L-826,141 (3 mg/kg p.o.) also delayed disease onset. To assess whether L-826,141 prevented EAE progression after the first signs of clinical onset, rolipram (10 mg/kg p.o.) or L-826,141 (3 or 30 mg/kg p.o.) were administered 24 h after the first signs of EAE were observed. Only L-826,141 at a dose of 30 mg/kg p.o. significantly decreased the clinical severity of EAE compared with vehicle controls. Immunohistochemical detection of the neuronal activity marker Fos confirmed that L-826,141 did not reach concentrations in the central nervous system sufficient to activate central neurons. Lipopolysaccharide-induced tumor necrosis factor-alpha in whole blood and plasma concentrations of L-826,141 revealed that only the 30-mg/kg dose resulted in levels sufficient to produce a near complete inhibition of PDE4 activity in immune cells. Taken together, these results demonstrate that peripheral PDE4 inhibition, produced by L-826,141, prevents the progression of EAE after the first onset of clinical signs, and suggest that similar compounds may have clinical efficacy in the treatment of MS.  相似文献   

7.
This randomised, double-blind, placebo-controlled, parallel-group study compared the efficacy and tolerability of lumiracoxib (a novel COX-2 selective inhibitor) with rofecoxib, celecoxib and placebo in patients with moderate-to-severe post-operative dental pain. Following third molar extraction, patients received single oral doses of lumiracoxib 400 mg, rofecoxib 50 mg, celecoxib 200 mg or placebo (n = 355). Additional patients from a similar study, assigned to lumiracoxib, rofecoxib or placebo (n = 155), were included for analysis of the primary variable, Summed Pain Intensity Difference over the first 8 h post dose (SPID-8). For SPID-8, lumiracoxib was superior to rofecoxib (p < 0.05), celecoxib (p < 0.001) and placebo (p < 0.001). Lumiracoxib demonstrated the fastest onset of analgesia and the longest time to rescue medication use. Patient global evaluation of lumiracoxib was comparable to rofecoxib and superior to celecoxib and placebo. All treatments were well tolerated. Lumiracoxib 400 mg provides rapid, effective and sustained relief of post-operative dental pain, comparable or superior to rofecoxib.  相似文献   

8.
(2S,4R)-1-[5-Chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), the first selective, nonpeptide vasopressin V1b receptor antagonist yet described, has been characterized in vitro and in vivo. SSR149415 showed competitive nanomolar affinity for animal and human V1b receptors and exhibited much lower affinity for rat and human V1a, V2, and oxytocin receptors. Moreover, this compound did not interact with a large number of other receptors, enzymes, or ion channels. In vitro, SSR149415 behaved as a full antagonist and potently inhibited arginine vasopressin (AVP)-induced Ca2+ increase in Chinese hamster ovary cells expressing rat or human V1b receptors. The in vivo activity of SSR149415 has been studied in several models of elevated corticotropin secretion in conscious rats. SSR149415 inhibited exogenous AVP-induced increase in plasma corticotropin, from 3 mg/kg i.p. and 10 mg/kg p.o. upwards. Similarly, this compound antagonized AVP-potentiated corticotropin release provoked by exogenous corticoliberin at 3 mg/kg p.o. The effect lasted for more than 4 h at 10 mg/kg p.o. showing a long-lasting oral effect. SSR149415 (10 mg/kg p.o.) also blocked corticotropin secretion induced by endogenous AVP increase subsequent to body water loss. Moreover, 10 mg/kg i.p SSR149415 inhibited plasma corticotropin elevation after restraint-stress in rats by 50%. In the four-plate test, a mouse model of anxiety, SSR149415 (3 mg/kg p.o. upwards) displayed anxiolytic-like activity after acute and 7-day repeated administrations. Thus, SSR149415 is a potent, selective, and orally active V1b receptor antagonist. It represents a unique tool for exploring the functional role of V1b receptors and deserves to be clinically investigated in the field of stress and anxiety.  相似文献   

9.
The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.  相似文献   

10.
3-[2-Cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074) is a novel, selective cannabinoid CB(1)/CB(2) receptor ligand (K(i) = 55.4, 48.3, and 45.5 nM at rat and human cannabinoid CB(1) and human CB(2) receptors, respectively), with partial agonist properties at these receptors in guanosine 5-[gamma(35)S]-thiophosphate triethyl-ammonium salt ([(35)S]GTPgammaS) binding assays. In rats, generalization of BAY 59-3074 to the cue induced by the cannabinoid CB(1) receptor agonist (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 38-7271) in a drug discrimination procedure, as well as its hypothermic and analgesic effects in a hot plate assay, were blocked by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR 141716A). BAY 59-3074 (0.3-3 mg/kg, p.o.) induced antihyperalgesic and antiallodynic effects against thermal or mechanical stimuli in rat models of chronic neuropathic (chronic constriction injury, spared nerve injury, tibial nerve injury, and spinal nerve ligation models) and inflammatory pain (carrageenan and complete Freund's adjuvant models). Antiallodynic efficacy of BAY 59-3074 (1 mg/kg, p.o.) in the spared nerve injury model was maintained after 2 weeks of daily administration. However, tolerance developed rapidly (within 5 days) for cannabinoid-related side effects, which occur at doses above 1 mg/kg (e.g., hypothermia). Uptitration from 1 to 32 mg/kg p.o. (doubling of daily dose every 4th day) prevented the occurrence of such side effects, whereas antihyperalgesic and antiallodynic efficacy was maintained/increased. No withdrawal symptoms were seen after abrupt withdrawal following 14 daily applications of 1 to 10 mg/kg p.o. It is concluded that BAY 59-3074 may offer a valuable therapeutic approach to treat diverse chronic pain conditions.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used as analgesics. Despite the fact that clinical experience indicates a considerable disparity in the analgesic efficacy of NSAIDs, the animal models of nociception do not allow a clear distinction to be made between the analgesic properties of these agents. In contrast to nociceptive pain, clinical pain is characterised by hyperalgesia. Therefore, we evaluated the anti-hyperalgesic effects of the four NSAIDs nimesulide, diclofenac, celecoxib and rofecoxib which are widely used to treat inflammatory pain. We performed two animal studies in which each drug was administered intraperitoneally (i.p.) at its previously defined ED50 for the anti-inflammatory effect in the rat (i.e. the inhibition of carrageenan-induced hindpaw oedema measured by plethysmometry). In the first study, nimesulide (2.9 mg/kg) completely inhibited the development of thermal hindpaw hyperalgesia induced by the injection of formalin in the tail, whereas diclofenac (3.0 mg/kg) or celecoxib (12.7 mg/kg) partly reduced the hyperalgesia, and rofecoxib (3.0 mg/kg) was ineffective. In the second study, nimesulide and diclofenac were significantly more effective than celecoxib and rofecoxib in reducing the mechanical hindpaw hyperalgesia induced by the intraplantar injection of Freund's complete adjuvant (FCA). The anti-hyperalgesic activity of the drugs was also investigated in patients with rheumatoid arthritis. After a single oral dose, all drugs reduced the inflammatory hyperalgesia. However, only nimesulide was effective 15 minutes after treatment. Moreover, nimesulide (100 mg) was significantly more effective than rofecoxib (25 mg). Overall, our data demonstrate that NSAIDs may show different anti-hyperalgesic properties. Nimesulide seems to be particularly effective and fast-acting against inflammatory pain.  相似文献   

12.
Recent in vitro studies, clinical trials and epidemiological studies have suggested possible interactions between aspirin and other cyclo-oxygenase (COX) inhibitors, such as ibuprofen of the COX-2 inhibitors celecoxib and rofecoxib. The objective of this study was to test the effects of aspirin (1, 2.5 and 5 mg/kg), and ibuprofen (4 and 15 mg/kg), diclofenac (2.5 mg/kg), flurbiprofen (2 mg/kg), celecoxib (7.5 mg/kg), and rofecoxib (1 mg/kg), alone or combined on a rat model of arterial thrombosis. Drugs were given orally daily for 7 days, before insertion of an arterio-venous shunt thrombosis system, left in place for 15 min. Main parameter was thrombus weight. Five to 12 rats were used per experiment, and 35 controls overall. Aspirin inhibited thrombus formation in a dose-dependent manner. All NSAIDS given alone also inhibited thrombus formation to approximately the same level as aspirin 1 mg/kg/day. Ibuprofen, celecoxib and rofecoxib inhibited the effects of aspirin, but not diclofenac or flurbiprofen. The interactions with aspirin do not seem to affect all NSAIDs to equal levels. The clinical impact of this needs to be confirmed in adequately powered clinical trials or pharmaco-epidemiological studies.  相似文献   

13.
The potency, efficacy, and pharmacokinetic properties of IDN-6556 (3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid), a first-in-class caspase inhibitor in clinical trials for the treatment of liver diseases, were characterized in vivo in rodent models. In the mouse alpha-Fas model of liver injury, i.p. administration of IDN-6556 resulted in marked reduction of alanine aminotransferase (ALT), apoptosis, and caspase activities at a dose of 3 mg/kg. At this dose, IDN-6556 was also effective when given up to 2 h before alpha-Fas and as late as 4 h after alpha-Fas administration. In both the alpha-Fas and d-galactosamine/lipopolysaccharide (D-Gln/LPS) model, ED(50) values in the sub-milligram per kilogram range were established after a number of routes of administration (i.p., i.v., i.m., or p.o.), ranging from 0.04 to 0.38 mg/kg. Efficacy was also demonstrated in the rat D-Gln/LPS model with 67 and 72% reductions in ALT activities after i.p. and p.o. treatment with IDN-6556 (10 mg/kg), respectively. Pharmacokinetic analysis in the rat demonstrated rapid clearance after i.v., i.p., and s.c. administration with terminal t(1/2) ranging from 46 to 51 min. Low absolute bioavailability after p.o. administration was seen (2.7-4%), but portal drug concentrations after oral administration were 3-fold higher than systemic concentrations with a 3.7-fold increase in the terminal t(1/2), indicating a significant first-pass effect. Liver concentrations remained constant after oral administration for at least a 4-h period, reaching a C(max) of 2558 ng/g liver at 120 min. Last, 51 +/- 20 and 4.9 +/- 3.4% of IDN-6556 was excreted intact in bile after i.v. and p.o. administration, respectively. This evaluation indicates that IDN-6556 has marked efficacy in models of liver disease after oral administration and thus, is an excellent candidate for the treatment of liver diseases characterized by excessive apoptosis.  相似文献   

14.
OBJECTIVES: The objective of this study was to examine the effects of rofecoxib, meloxicam, both cyclooxygenase-2 (COX-2) inhibitors and aminoguanidine hydrochloride, an inducible nitric oxide synthase (iNOS) inhibitor and their combinations in neuropathic pain in rats. METHODS: Neuropathy was induced by chronic constriction injury (CCI) of right sciatic nerve under ketamine anesthesia in rats. Effect of ED(50) of aminoguanidine hydrochloride, rofecoxib and meloxicam administered orally was investigated using behavioral tests. Effect of combinations of aminoguanidine hydrochloride with rofecoxib and meloxicam was also investigated in neuropathic pain employing behavioral tests. RESULTS: Behavioral tests, mechanical, thermal and cold stimuli confirmed the development of neuropathic pain after CCI. Aminoguanidine hydrochloride, rofecoxib and meloxicam when administered alone, produced significant increase in paw withdrawal threshold to mechanical stimuli at 6 h in ipsilateral hind paw after CCI. Co-administration of aminoguanidine hydrochloride (30 mg/kg) with rofecoxib (1.31 mg/kg) and meloxicam (1.34 mg/kg) was also found to produce significant increase in paw withdrawal latencies to mechanical stimuli at 6 h. Combined administration of aminoguanidine hydrochloride with meloxicam and rofecoxib produced significant rise in pain threshold for mechanical hyperalgesia in ipsilateral hind paw when compared with the groups treated with aminoguanidine hydrochloride, meloxicam and rofecoxib alone. CONCLUSION: Co-administration of meloxicam and rofecoxib with aminoguanidine hydrochloride may be an alternative approach for the treatment of neuropathic pain.  相似文献   

15.
Recent research showed the involvement of prostaglandin E receptor subtype 4 (EP4) in hypersensitivity to inflammatory pain and suggested that the EP4 receptor is a potential target for the pharmacological treatment of inflammatory pain. We examined the effects of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy) benzamido)ethyl) benzoic acid (CJ-42794), a selective EP4 antagonist, on gastrointestinal ulcerogenic and healing responses in rats, in comparison with those of various cyclooxygenase (COX) inhibitors. CJ-42794 alone, given p.o., did not produce any damage in the gastrointestinal mucosa, similar to 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560) (COX-1 inhibitor) or rofecoxib (COX-2 inhibitor), whereas indomethacin (nonselective COX inhibitor) caused gross lesions. Rofecoxib but not CJ-42794, however, damaged these tissues when coadministered with SC-560 and aggravated gastric lesions produced by aspirin. Indomethacin and SC-560 worsened the gastric ulcerogenic response to cold-restraint stress, yet neither CJ-42794 nor rofecoxib had any effect. Furthermore, indomethacin and SC-560 at lower doses damaged the stomach and small intestine of adjuvant arthritic rats. In arthritic rats, rofecoxib but not CJ-42794 provoked gastric ulceration, whereas CJ-42794 produced little damage in the small intestine. The repeated administration of CJ-42794 and rofecoxib as well as indomethacin impaired the healing of chronic gastric ulcers with a down-regulation of vascular endothelial growth factor expression in the ulcerated mucosa. These results suggest that CJ-42794 does not cause any damage in the normal rat gastrointestinal mucosa and in the arthritic rat stomach and does not worsen the gastric ulcerogenic response to stress or aspirin in normal rats, although this agent slightly damages the small intestine of arthritic rats and impairs the healing of gastric ulcers.  相似文献   

16.
ATP-sensitive P2X(7) receptors are localized on cells of immunological origin including glial cells in the central nervous system. Activation of P2X(7) receptors leads to rapid changes in intracellular calcium concentrations, release of the proinflammatory cytokine interleukin-1beta (IL-1beta), and following prolonged agonist exposure, cytolytic plasma membrane pore formation. P2X(7) knockout mice show reduced inflammation as well as decreased nociceptive sensitivity following peripheral nerve injury. A-740003 (N-(1-{[(cyanoimino)(5-quinolinylamino) methyl] amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide) is a novel competitive antagonist of P2X(7) receptors (IC(50) values = 40 nM for human and 18 nM for rat) as measured by agonist-stimulated changes in intracellular calcium concentrations. A-740003 showed weak or no activity (IC(50) > 10 muM) at other P2 receptors and an array of other neurotransmitter and peptide receptors, ion channels, reuptake sites, and enzymes. A-740003 potently blocked agonist-evoked IL-1beta release (IC(50) = 156 nM) and pore formation (IC(50) = 92 nM) in differentiated human THP-1 cells. Systemic administration of A-740003 produced dose-dependent antinociception in a spinal nerve ligation model (ED(50) = 19 mg/kg i.p.) in the rat. A-740003 also attenuated tactile allodynia in two other models of neuropathic pain, chronic constriction injury of the sciatic nerve and vincristine-induced neuropathy. In addition, A-740003 effectively reduced thermal hyperalgesia observed following intraplantar administration of carrageenan or complete Freund's adjuvant (ED(50) = 38-54 mg/kg i.p.). A-740003 was ineffective in attenuating acute thermal nociception in normal rats and did not alter motor performance at analgesic doses. These data demonstrate that selective blockade of P2X(7) receptors in vivo produces significant antinociception in animal models of neuropathic and inflammatory pain.  相似文献   

17.
The vanilloid receptor 1 (VR1) is a cation channel expressed predominantly by nociceptive sensory neurons and is activated by a wide array of pain-producing stimuli, including capsaicin, noxious heat, and low pH. Although the behavioral effects of injected capsaicin and the VR1 antagonist capsazepine have indicated a potential role for VR1 in the generation and maintenance of persistent pain states, species differences in the molecular pharmacology of VR1 and a limited number of selective ligands have made VR1 difficult to study in vivo. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) is a recently described inhibitor of capsaicin- and acid-mediated currents at rat VR1. Here, we report the effects of BCTC on acute, inflammatory, and neuropathic pain in rats. Administration of BCTC (30 mg/kg p.o.) significantly reduced both mechanical and thermal hyperalgesia induced by intraplantar injection of 30 micro g of capsaicin. In rats with Freund's complete adjuvantinduced inflammation, BCTC significantly reduced the accompanying thermal and mechanical hyperalgesia (3 mg/kg and 10 mg/kg p.o., respectively). BCTC also reduced mechanical hyperalgesia and tactile allodynia 2 weeks after partial sciatic nerve injury (10 and 30 mg/kg p.o.). BCTC did not affect motor performance on the rotarod after administration of doses up to 50 mg/kg p.o. These data suggest a role for VR1 in persistent and chronic pain arising from inflammation or nerve injury.  相似文献   

18.
Transient receptor potential vanilloid 1 (TRPV1) activation in peripheral sensory nerve is known to be associated with various pain-related diseases, thus TRPV1 has been the focus as a target for drug discovery. In this study, we characterized the pharmacological profiles of (3S)-3-(hydroxymethyl)-4-(5-methylpyridin-2-yl)-N-[6-(2,2,2-trifluoroethoxy)pyridin-3-yl]-3,4-dihydro-2H-benzo[b][1,4]oxazine-8-carboxamide (JTS-653), a novel TRPV1 antagonist. JTS-653 displaced [(3)H]resiniferatoxin binding to human and rat TRPV1. JTS-653 competitively antagonized the capsaicin-induced activation of human TRPV1 with pA(2) values of 10.1. JTS-653 also inhibited proton-induced activation of human and rat TRPV1 with IC(50) values of 0.320 and 0.347 nM, respectively. Electrophysiological studies indicated that JTS-653 blocked heat-induced inward currents in rat TRPV1 with IC(50) values of 1.4 nM. JTS-653 showed weak or no inhibitory effects on other TRP channels, receptors, and enzymes. JTS-653 significantly prevented capsaicin-induced mechanical hyperalgesia at 1 mg/kg p.o. and attenuated carrageenan-induced mechanical hyperalgesia at 0.3 mg/kg p.o. JTS-653 significantly attenuated carrageenan-induced thermal hyperalgesia at 0.1 mg/kg p.o. and fully reversed at 0.3 mg/kg p.o. without affecting the volume of the carrageenan-treated paw. JTS-653 showed a transient increase of body temperature at 0.3 mg/kg p.o. These results indicated that JTS-653 is a highly potent and selective TRPV1 antagonist in vitro and in vivo and suggested that JTS-653 is one of the most potent TRPV1 antagonists. The profiles of JTS-653, high potency in vivo and transient hyperthermia, seem to be associated with polymodal inhibition of TRPV1 activation.  相似文献   

19.
OBJECTIVE: To evaluate the relative analgesic efficacy and tolerability of single-dose COX-2 inhibitors in post-operative pain management. METHOD: Systematic review of randomized controlled trials (RCTs). OUTCOME MEASURES: The area under the pain relief vs. time curve was used to evaluate the proportion of patient achieving at least 50% pain relief using validated equations. The proportions of patients experiencing any adverse event or specific adverse events were also examined. RESULTS: In all, 18 RCTs were included which contained 2783 patients. The results of the effects of single-dose analgesics on the basis of 50% of patients achieving pain relief over 6 h from dental pain models suggested that oral rofecoxib 50 mg was more effective than codeine/paracetamol 60/600 mg, and the rate ratio (RR) was 2.11 (95% CI 1.6-2.75). Valdecoxib 40 mg was also more effective than oxycodone/paracetamol 10/1000 mg (RR 1.34; 95% CI 1.11-1.62). There was no significant differences between other oral COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs (NSAIDs), except that celecoxib 200 mg was less effective than ibuprofen 400 mg (RR 0.66; 95% CI 0.48-0.90) and rofecoxib 50 mg (RR 0.65; 95% CI 0.49-0.87). The results from orthopaedic pain model showed no significant difference between rofecoxib 50 mg and naproxen sodium 550 mg (RR 1.04; 95% CI 0.73-1.49). The adverse effects of single-dose COX-2 inhibitor used in short-term post-operative pain management were generally mild and less than non-selective NSAIDs, although there was no significant difference. CONCLUSIONS: The analgesic efficacy and tolerability of single-dose COX-2 inhibitors were more effective than opioid-containing analgesics and similar to non-selective NSAIDs in post-operative pain management. Further studies are needed to examine the efficacy and tolerability of COX-2 inhibitors compared against active comparators over a longer duration to assess whether these short-term effects are mirrored by longer-term outcomes and to determine their ultimate risk-benefit profile.  相似文献   

20.
The endocannabinoid system may serve important functions in the central and peripheral regulation of pain. In the present study, we investigated the effects of the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] on rodent models of acute and persistent nociception (intraplantar formalin injection in the mouse), neuropathic pain (sciatic nerve ligation in the rat), and inflammatory pain (complete Freund's adjuvant injection in the rat). In the formalin model, administration of AM404 (1-10 mg/kg i.p.) elicited dose-dependent antinociceptive effects, which were prevented by the CB(1) cannabinoid receptor antagonist rimonabant (SR141716A; 1 mg/kg i.p.) but not by the CB2 antagonist SR144528 (1 mg/kg i.p.) or the vanilloid antagonist capsazepine (30 mg/kg i.p.). Comparable effects were observed with UCM707 [N-(3-furylmethyl)-eicosa-5,8,11,14-tetraenamide], another anandamide transport inhibitor. In both the chronic constriction injury and complete Freund's adjuvant model, daily treatment with AM404 (1-10 mg/kg s.c.) for 14 days produced a dose-dependent reduction in nocifensive responses to thermal and mechanical stimuli, which was prevented by a single administration of rimonabant (1 mg/kg i.p.) and was accompanied by decreased expression of cyclooxygenase-2 and inducible nitric-oxide synthase in the sciatic nerve. The results provide new evidence for a role of the endocannabinoid system in pain modulation and point to anandamide transport as a potential target for analgesic drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号