首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of diabetes on regulatory mechanisms and specific receptors implicated in the response of isolated rabbit renal artery to endothelin-1 was examined. Endothelin-1 induced a concentration-dependent contraction that was less potent in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal or N(G)-nitro-L-arginine (L-NOARG) enhanced contractions to endothelin-1 either in control and diabetic arteries. Indomethacin inhibited endothelin-1-induced response in control arteries, but enhanced it in diabetic arteries. In contrast to that observed in rubbed and in L-NOARG treated arteries, in the presence of indomethacin the contractile action of endothelin-1 was higher in diabetic arteries than in control arteries. Nimesulide enhanced endothelin-1 contractions both in control and diabetic arteries. Cyclo-(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123, endothelin ET(A) receptor antagonist), attenuated endothelin-1 vasoconstriction in control rabbits, while vasoconstriction resulted increased in diabetic rabbits. 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-N(in)-(Methoxycarbonyl)-D-Trp-D-Nle (BQ-788, endothelin ET(B) receptor antagonist), enhanced the contractile response in control rabbit arteries without modifying this response in diabetic rabbits. In summary, diabetes decreases the sensitivity of the rabbit renal artery to endothelin-1 by decreasing the ratio between vasoconstrictor and vasodilator prostanoids released after activation of endothelin ET(A) receptors.  相似文献   

2.
The influence of alloxan-induced diabetes on the reactivity of rabbit basilar artery to endothelin-1 was examined. Endothelin-1 induced concentration-dependent contraction of basilar arteries that was higher in diabetic than in control rabbits. Endothelium removal produced a higher enhancement of the endothelin-1-induced contraction in control than in diabetic rabbits. N(G)-nitro-L-arginine (L-NOArg) enhanced the maximal contraction induced by endothelin-1 in control rabbits and potentiated this response in diabetic rabbits. Endothelin ETA receptor antagonist, cyclo(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123), inhibited endothelin-1-induced contraction in both rabbit groups. Endothelin ETB receptor antagonist, 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-Nin-(Methoxycarbonyl)-D-Trp-D-Nle (BQ-788), enhanced endothelin-1-induced contraction in control rabbits and decreased the potency of endothelin-1 in diabetic rabbits. Sodium nitroprusside-induced relaxation of basilar arteries was lower in diabetic than in control rabbits. These results suggest that mechanisms underlying rabbit basilar artery hyperreactivity to endothelin-1 include decreased endothelial modulation of endothelin-1-induced contraction, with impaired endothelial endothelin ETB receptor activity; decreased sensitivity to nitric oxide (NO) in vascular smooth muscle; and enhanced participation of muscular endothelin ETA and ETB receptors.  相似文献   

3.
The effects of endothelin-1 on motility of guinea pig extra-hepatic biliary tract portions were studied. Endothelin-1 (< or =100 nM) failed to contract rings of hepatic, cystic, proximal or distal common bile ducts, or choledochal or papillary halves of sphincter of Oddi. At 100 nM, endothelin-1 or sarafotoxin S6c (selective endothelin ET(B) receptor agonist) inhibited contractions of choledochal (but not papillary) sphincter of Oddi to carbachol (1 microM) by 63+/-5 and 45+/-9%, respectively. In distal common bile duct, indomethacin (5.6 microM) unmasked potent contractile effects of endothelin-1 [EC(50) 7.8 (5.5-11.1) nM; E(MAX) 80+/-6% of response to 80 mM KCl] and enhanced the contractile potency of carbachol (585-fold at EC(50) level), but not cholecystokinin C-terminal octapeptide. Inhibition of cholinergic responsiveness of the choledochal sphincter of Oddi by endothelin-1 was reduced by BQ-123 (1 microM; endothelin ET(A) receptor antagonist; cyclo[DTrp-DAsp-Pro-DVal-Leu]) and abolished by either BQ-123 plus BQ-788 (1 microM; endothelin ET(B) receptor antagonist; N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D-1-methoxycarboyl-D-norleucine) or indomethacin. Thus, eicosanoids of the cyclo-oxygenase pathway (i.e. prostanoids) suppress endothelin-1-induced contractions of distal common bile duct and mediate endothelin ET(A) and ET(B) receptor-dependent inhibition of cholinergic responsiveness of the choledochal portion of the sphincter of Oddi.  相似文献   

4.
We describe here the pharmacology of (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2,2'-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), a novel selective endothelin ET(A) receptor antagonist synthesized through the modification of the ET(A)/ET(B) non-selective antagonist, bosentan. YM598 inhibited [125I]endothelin-1 binding to cloned human endothelin ET(A) and ET(B) receptor, with K(i) of 0.697 and 569 nM, and inhibited endothelin-1-induced increases in intracellular Ca(2+) concentration in human and rat endothelin ET(A) receptor. YM598 also inhibited endothelin-1-induced vasoconstriction in isolated rat aorta with a pA(2) value of 7.6. In vivo, YM598 inhibited the pressor response to big endothelin-1, a precursor peptide of endothelin-1. DR(2) values of YM598 in pithed rats were 0.53 mg/kg, i.v. and 0.77 mg/kg, p.o., and its antagonism in conscious rats was maintained for more than 6.5 h at 1 mg/kg, p.o. In contrast, YM598 had no effect on the sarafotoxin S6c-induced depressor or pressor responses. YM598 showed not only superior antagonistic activity and higher-selectivity for endothelin ET(A) receptor in vitro, but at least a 30-fold higher potency in vivo than bosentan. In conclusion, YM598 is a potent and orally active selective endothelin ET(A) receptor antagonist.  相似文献   

5.
We have investigated the effect of potassium (E)-N-[6-methoxy-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]-2-phenylenthenesulfonamidate (YM598), a selective endothelin ET(A) receptor antagonist, on renal function in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type II diabetes. YM598 (0.1 or 1 mg kg(-1)), enalapril (5 mg kg(-1)), an angiotensin-converting enzyme inhibitor, or vehicle was administered once daily by gastric gavage to 22-week-old male Otsuka Long-Evans Tokushima Fatty rats for 32 weeks. Enalapril but not YM598 mildly lowered blood pressure in the diabetic rats. YM598 blunted the development of albuminuria in a dose-dependent manner. High dose of YM598 reduced albuminuria comparable to enalapril. Urinary endothelin-1 excretion was greater in the diabetic than in the control rats, and was not substantially influenced by the agents. These data suggest that endothelin is involved in the progression of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats, and an endothelin ET(A) receptor antagonist may be useful for the treatment of diabetic nephropathy.  相似文献   

6.
To analyse the coronary effects of endothelin-1 after ischemia-reperfusion, the left anterior descending coronary artery of anesthetized pigs was subjected to 30-min occlusion followed by 60-min reperfusion. Then, rings distal (ischemic arteries) and proximal (control arteries) to the occlusion were taken from this artery and prepared for isometric tension recording. The sensitivity of the contraction in response to endothelin-1 (3 x 10(-10)-3 x 10(-7) M) and the endothelin ET(B) receptor agonist IRL-1620 (3 x 10(-10)-3 x 10(-7) M) was greater in ischemic vessels. The endothelin ET(A) receptor antagonist BQ-123 (10(-7)-3 x 10(-6) M) decreased the sensitivity of the response to endothelin-1 similarly in ischemic and control arteries. The endothelin ET(B) receptor antagonist BQ-788 (10(-6) M), endothelium removal or the inhibitor of nitric oxide synthesis N(omega)-nitro-L-arginine methyl ester (L-NAME 10(-4) M) potentiated the response to endothelin-1 and IRL-1620 in control arteries only. The cyclooxygenase inhibitor meclofenamate (10(-5) M) augmented the maximal response to endothelin-1 in control arteries, and reduced it in ischemic arteries. In precontracted arteries, IRL-1620 (3 x 10(-11)-3 x 10(-10) M) relaxed control but not ischemic arteries, and L-NAME or meclofenamate abolished this relaxation. Therefore, ischemia-reperfusion increases the coronary vasoconstriction in response to endothelin-1 probably due to impairment of endothelin ET(B) receptor-induced release of nitric oxide and prostacyclin, augmentation of the contractile response to activation of endothelin ET(B) receptors, and increased release of vasoconstrictor prostanoids.  相似文献   

7.
This study compares the effects of threshold concentrations of endothelin-1 in isolated rat basilar arteries with those in mesenteric arterial branches and investigates the mechanisms of inhibitory and potentiating endothelin-1-effects. In basilar arteries, endothelin-1 reduces the contractions induced by 5-hydroxytryptamine (5-HT), by the thromboxane A2 agonist U46619, and by vasopressin. The inhibitory effect of endothelin-1 on the contraction induced by 5-HT is abolished by deendothelialization, by the endothelin ET(B) receptor antagonist RES 701-1, by indomethacin, or by glibenclamide. In mesenteric arteries, endothelin-1 potentiates the contractile effects of 5-HT, U46619, and vasopressin. The potentiation of the contractile effect induced by 5-HT is only somewhat modified by deendothelialization, but abolished by the thromboxane A2 receptor antagonists GR32191 and ridogrel. U46619 potentiates the 5-HT-effect in mesenteric arteries. Thus, though the contractile endothelin ET(A) receptors were not blocked, threshold concentrations of endothelin-1 inhibited contractile effects in the rat basilar artery via activation of endothelial ET(B) receptors. Prostaglandins and ATP-sensitive K+ channels are involved in this inhibitory action. In contrast, endothelin-1 potentiates contractile actions in mesenteric arteries via the release of endogeneous thromboxane A2 from non-endothelial cells. The study points out the completely different role of the endothelium in combined effects of endothelin-1 between cerebral and mesenteric arteries.  相似文献   

8.
To examine whether low concentrations of endothelin-1 potentiate the vasoconstrictor response to adrenergic stimulation, we recorded the isometric response of rings of rabbit pulmonary artery to electrical stimulation and noradrenaline. Endothelin-1 (10(-10) M) potentiated the contractions induced by electrical stimulation and noradrenaline. The endothelin ET(B) receptor antagonist (2,6-dimethylpiperidinecarbonyl-gamma-methyl-Leu-N(in)-[Methoxycarbonyl]-D-Trp-D-Nle) (BQ-788, 10(-6) M), but not the endothelin ET(A) receptor antagonist cyclo(D-Asp-Pro-D-Val-Leu-D-TRP) (BQ-123, 10(-6) M), inhibited the potentiating effects of endothelin-1. Pretreatment with the cyclooxygenase inhibitor indomethacin, the thromboxane synthase inhibitor furegrelate and the thromboxane receptor antagonist [1S-[1alpha,2alpha(Z),3alpha,4alpha]]-7-[3-[[[[(1-oxoheptyl)amino]acetyl]amino] methyl]-7-oxabicyclo-[2.2.1]hept-2-yl]-5-heptenoic acid (SQ-30741) (all at 10(-5) M) prevented the potentiation induced by endothelin-1 on adrenergic stimulation. The Ca(2+) channel antagonist nifedipine (10(-6) M) did not affect the potentiation induced by endothelin-1. The results indicate that endothelin-1 potentiates the responses to electrical stimulation and noradrenaline by activating endothelin ET(B) receptors. This potentiation depends on the production of cyclooxygenase-generated factors, probably thromboxane A(2).  相似文献   

9.
The influence of diabetes on endothelial mechanisms implicated in the response of isolated rabbit carotid arteries to 5-hydroxytryptamine (5-HT) was studied. 5-HT induced a concentration-dependent contraction that was potentiated in arteries from diabetic rabbits with respect to that in arteries from control rabbits. Endothelium removal potentiated 5-HT contractions in arteries from both control and diabetic rabbits but increased the maximum effect only in arteries from diabetic rabbits. Incubation of arterial segments with N(G)-nitro-L-arginine (L-NA) enhanced the contractile response to 5-HT. This L-NA enhancement was greater in arteries from diabetic rabbits than in arteries from control rabbits. Aminoguanidine did not modify the 5-HT contraction in arteries from control and diabetic rabbits. Indomethacin inhibited the 5-HT-induced response, and this inhibition was higher in arteries from control rabbits than in arteries from diabetic rabbits. In summary, diabetes enhances the sensitivity of the rabbit carotid artery to 5-HT. In control animals, the endothelium modulated the arterial response to 5-HT by the release of both nitric oxide (NO) and a vasoconstrictor prostanoid. Diabetes enhances endothelial constitutive NO activity and impairs the production of the endothelial vasoconstrictor.  相似文献   

10.
The influence of diabetes on the response of isolated rabbit renal arteries to 5-hydroxytryptamine (5-HT) was examined. 5-HT induced a concentration-related contraction that was higher in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal did not significantly modify 5-HT contractions in arteries from control rabbits but enhanced the response to 5-HT in arteries from diabetic rabbits. Incubation with N(G)-nitro-L-arginine (L-NA) enhanced contractions to 5-HT in arteries from control and diabetic rabbits. In arteries with endothelium, this L-NA enhancement was lower in diabetic rabbits than in control rabbits. In arteries without endothelium, incubation with L-NA enhanced the maximal contractions to 5-HT in control rabbits but did not in diabetic rabbits. Indomethacin inhibited 5-HT-induced contraction of arteries from control rabbits and enhanced the maximal contraction to 5-HT of arteries from diabetic rabbits. In summary, diabetes enhances contractile response of rabbit renal artery to 5-HT. In control animals, this response is regulated by both endothelial and non-endothelial (neuronal) nitric oxide (NO) and by a vasoconstrictor prostanoid. Diabetes impairs the release of non-endothelial NO and the vasoconstrictor prostanoid.  相似文献   

11.
Vascular responses to endothelin peptides have been proposed to be mainly mediated via subtypes of the endothelin receptor, endothelin ETA1, endothelin ETB1, and endothelin ETB2. The antagonist activity of 27-O-3-[2-(3-carboxy-acryloylamino)-5-hydroxyphenyl]acryloyloxy myricerone, sodium salt (S-0139) at these endothelin receptor subtypes was evaluated using isolated rabbit femoral, pulmonary, and mesenteric arteries. S-0139 competitively antagonized the endothelin-1-induced contraction mediated by the endothelin ETA1 receptor in endothelium-denuded rabbit femoral arteries with a pA2 value of 8.6±0.1. Endothelin ETB2 receptor-mediated contraction induced by sarafotoxin S6c in endothelium-denuded rabbit pulmonary arteries was also inhibited by S-0139 with a pA2 value of 5.6±0.1. The pA2 value of S-0139 for the endothelin ETB1 receptor, evaluated from the endothelin-3-induced relaxant response in endothelium-intact rabbit mesenteric arteries, was 6.2±0.2. In isolated canine basilar, coronary, mesenteric and renal arteries, endothelin-1 caused concentration-dependent contractions with EC50 values of 0.49±0.07, 0.61±0.25, 0.92±0.21 and 1.18±0.24 nM, respectively. S-0139 antagonized the endothelin-1-induced contraction in these arteries with pA2 values of 8.0±0.1, 7.6±0.2, 7.6±0.2 and 7.6±0.1, respectively. These results suggest that S-0139 is a potent and selective endothelin ETA1 receptor antagonist, and that the contractions induced by endothelin-1 in canine basilar, coronary, mesenteric and renal arteries are mediated mainly via the endothelin ETA1 receptor subtype.  相似文献   

12.
We determined the role of endothelin ET(B) receptor in the renal hemodynamic and excretory responses to big endothelin-1, using A-192621, a selective endothelin ET(B) receptor antagonist and the spotting-lethal (sl) rat, which carries a naturally occurring deletion in the endothelin ET(B) receptor gene. An intravenous injection of big endothelin-1 produced a hypertensive effect, which is greater in wild-type (+/+) rats pretreated with A-192621 and in homozygous (sl/sl) rats. Big endothelin-1 markedly increased urine flow, urinary excretion of sodium and fractional excretion of sodium in wild-type rats treated with the vehicle. These excretory responses to big endothelin-1 were markedly reduced by pharmacological endothelin ET(B) receptor blockade. On the other hand, big endothelin-1 injection to the endothelin ET(B) receptor-deficient homozygous animals resulted in a small diuretic effect. When renal perfusion pressure was protected from big endothelin-1-induced hypertension by an aortic clamp, the excretory responses in vehicle-treated wild-type rats were markedly attenuated. In homozygous or A-192621-treated wild-type rats, there was a small but significant decreasing effect in urine flow. In addition, big endothelin-1 significantly elevated nitric oxide (NO) metabolite production in the kidney of wild-type rats but not in the homozygous rats. We suggest that the diuretic and natriuretic responses to big endothelin-1 consist of pressure-dependent and pressure-independent effects and that the increased NO production via the activation of endothelin ET(B) receptors in the kidney is closely related to the big endothelin-1-induced excretory responses.  相似文献   

13.
  1. Both the plasma endothelin-1 (ET-1) levels and the plasma glucose levels were markedly elevated in streptozotocin (STZ)-induced diabetic rats.
  2. The maximum contractile response of the mesenteric arterial bed to ET-1 was significantly reduced, and the vasodilatation induced by the ETB-receptor agonist IRL-1620 in the mesenteric arterial bed was significantly reduced in STZ-induced diabetic rats.
  3. ET-1 (10−8M) caused a transient vasodilatation followed by a marked vasoconstriction in methoxamine-preconstricted mesenteric arterial beds. The ET-1-induced vasodilatation was significantly larger in beds from diabetic rats than in those from age-matched controls. By contrast, the ET-1-induced vasoconstriction was significantly smaller in STZ-induced diabetic rats than in the controls.
  4. Both removal of the endothelium with Triton X-100 and preincubation with BQ-788 (10−6M) (ETB-receptor antagonist) abolished the ET-1-induced vasodilatation. Preincubation with BQ-485 (10−6M) or BQ-123 (3×10−6) (ETA-receptor antagonist) significantly augmented the ET-1-induced vasodilatation in control mesenteric arterial beds, but not that in beds from diabetic rats.
  5. These results demonstrate that marked increases not only in plasma glucose, but also in plasma ET-1 occur in STZ-induced diabetic rats. We suggest that the decreased contractile response and the increased vasodilator response of the mesenteric arterial bed to ET-1 may both be due to desensitization of ETA receptors, though ETB receptors may also be desensitized. This desensitization may result from the elevation of the plasma ET-1 levels seen in STZ-induced diabetic rats.
  相似文献   

14.
The effect of big endothelin-1 (big ET-1) and its conversion to endothelin-1 (ET-1) in rabbit cerebral arteries were examined. Big ET-1 and ET-1 induced concentration-dependent contractions in the basilar artery; ET-1 was approximately 8 times more potent than big ET-1. The metalloprotease inhibitor phosphoramidon (30 ol/1) almost abolished the contractile response to big ET-1, whereas the ET-1-induced contraction was unaffected. Removal of the endothelium did not attenuate the big ET-1-induced contraction. ET-1 was approximately 14 times more potent than endothelin-3 (ET-3) to elicit contraction. The contractions induced by big ET-1, ET-1 and ET-3 were all inhibited by the ETA receptor antagonist BQ 123 (3 mol/l). The ETB receptor antagonist IRL 1038 (3 mol/l) had no effect on the contractile responses to big ET-1 and ET 1, but produced a small inhibition of the ET-3-induced contraction. Formation of ET-1 was demonstrated in membrane fractions of cerebral arteries incubated with big ET-1 as measured by high pressure liquid chromatography followed by radioimmunoassay. These results suggest that externally applied big ET-1 is converted to ET-1 by a phosphoramidon-sensitive endothelin converting enzyme present in the vascular smooth muscle cells. The ET-1 formed subsequently mediates the big ET-1-induced contraction by activation of mainly ETA receptors, although a small contribution of ETB receptors cannot be excluded.  相似文献   

15.
We investigated the contractile response of the lower urinary tract to endothelin-1 in vitro (rabbits) and in vivo (dogs). We also assessed the effects of a selective endothelin ETA receptor antagonist, (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2, 2′-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), on endothelin-1-induced contractile responses. In the in vitro study, endothelin-1 induced contractile responses in isolated rabbit bladder base, urethra, and prostate tissues. YM598 (10− 7–10− 5 M) antagonized these endothelin-1-induced contractile responses without affecting the maximal responses. In the in vivo study, endothelin-1 induced the elevation of non-prostatic urethral pressure as well as prostatic urethral pressure even in the presence of tamsulosin (10 μg/kg, i.v.) in anesthetized male dogs. YM598 (0.1–3 mg/kg, i.v.) inhibited these endothelin-1-induced contractile responses in a dose-dependent fashion. These results suggest that endothelin ETA receptors play an important role in the lower urinary tract contraction, and that the selective endothelin ETA receptor antagonist YM598 has ameliorating effects on various urinary dysfunctions, including benign prostatic hyperplasia.  相似文献   

16.
Abstract: This study compares the effects of threshold concentrations of endothelin-1 in isolated rat basilar arteries with those in mesenteric arterial branches and investigates the mechanisms of inhibitory and potentiating endothelin-1-effects. In basilar arteries, endothelin-1 reduces the contractions induced by 5-hydroxytryptamine (5-HT), by the thromboxane A2 agonist U46619, and by vasopressin. The inhibitory effect of endothelin-1 on the contraction induced by 5-HT is abolished by deendothelialization, by the endothelin ETB receptor antagonist RES 701–1, by indomethacin, or by glibenclamide. In mesenteric arteries, endothelin-1 potentiates the contractile effects of 5-HT, U46619, and vasopressin. The potentiation of the contractile effect induced by 5-HT is only somewhat modified by deendothelialization, but abolished by the thromboxane A2 receptor antagonists GR32191 and ridogrel. U46619 potentiates the 5-HT-effect in mesenteric arteries. Thus, though the contractile endothelin ETA receptors were not blocked, threshold concentrations of endothelin-1 inhibited contractile effects in the rat basilar artery via activation of endothelial ETB receptors. Prostaglandins and ATP-sensitive K+ channels are involved in this inhibitory action. In contrast, endothelin-1 potentiates contractile actions in mesenteric arteries via the release of endogeneous thromboxane A2 from non-endothelial cells. The study points out the completely different role of the endothelium in combined effects of endothelin-1 between cerebral and mesenteric arteries.  相似文献   

17.
The involvement of endothelin (ET), ET(A) receptors and nitric oxide (NO) in the contractions induced by cyclosporine A (CyA) were investigated in guinea pig isolated gallbladder strips. Both BQ-123, a selective ET(A) receptor antagonist, and phosphoramidon, an ET converting enzyme inhibitor, inhibited the contractile responses to the parenteral and oral CyA preparations, whereas l-NOARG, a NO synthase inhibitor, potentiated these contractions. Additionally, the pattern of the concentration-dependent contractions in response to ET-1 was similar to that of CyA preparations in gallbladder strips. Both bosentan, a non-selective ET receptor antagonist, and BQ-123 inhibited the ET-1-induced contractions. These findings suggest that an ET-1-mediated mechanism contributes to the contractile response to CyA preparations in guinea pig isolated gallbladder strips. ET(A) receptor activation is likely to be involved in this process. We also speculate that CyA-induced stimulation of NO production might act as a counter-regulatory mechanism in the effect of CyA preparations in this tissue.  相似文献   

18.
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) causes long-lasting vasoconstrictions. These can be prevented by ET(A) receptor antagonists but are only poorly reversed by these drugs. We tested the hypothesis that endothelin ET(A) receptors are susceptible to allosteric modulation by endogenous agonists and exogenous ligands. EXPERIMENTAL APPROACH Rat isolated mesenteric resistance arteries were pretreated with capsaicin and studied in wire myographs, in the presence of L-NAME and indomethacin to concentrate on arterial smooth muscle responses. KEY RESULTS Endothelins caused contractions with equal maximum but differing potency (ET-1 = ET-2 > ET-3). ET-1(1-15) neither mimicked nor antagonized these effects in the absence and presence of ET(16-21). 4(Ala) ET-1 (ET(B) agonist) and BQ788 (ET(B) antagonist) were without effects. BQ123 (peptide ET(A) antagonist) reduced the sensitivity and relaxed the contractile responses to endothelins. Both effects depended on the agonist (pK(B): ET-3 = ET-1 > ET-2; % relaxation: ET-3 = ET-2 > ET-1). Also, with PD156707 (non-peptide ET(A) antagonist) agonist-dependence and a discrepancy between preventive and inhibitory effects were observed. The latter was even more marked with bulky analogues of BQ123 and PD156707. CONCLUSIONS AND IMPLICATIONS These findings indicate allosteric modulation of arterial smooth muscle ET(A) receptor function by endogenous agonists and by exogenous endothelin receptor antagonists. This may have consequences for the diagnosis and pharmacotherapy of diseases involving endothelins.  相似文献   

19.
To clarify the receptor subtype(s) contributing to the RhoA activation by endothelin-1 in bronchial smooth muscle, the effects of BQ-123 [cycro(D-Asp-Pro-D-Val-Leu-D-Trp)], an endothelin ET(A) receptor antagonist, and/or BQ-788 [2,6-dimethylpiperidinecarbonyl-g-methyl-Leu-Nin-(Methoxycarbonyl)-D-Trp-D-Nle], an endothelin ET(B) receptor antagonist, on the endothelin-1-induced translocation of RhoA to plasma membrane were examined. Incubation of rat bronchial smooth muscle with endothelin-1 induced a distinct translocation of RhoA to plasma membrane, indicating an activation of RhoA by endothelin-1. The endothelin-1-induced translocation of RhoA was completely blocked by treatment with BQ-123, whereas BQ-788 had no effect. Thus, endothelin ET(A) but not ET(B) receptors might be involved in the endothelin-1-induced translocation of RhoA in rat bronchial smooth muscle.  相似文献   

20.
In the guinea-pig ileum, both sarafotoxin S6c and IRL1620 (Suc-[Glu9,Ala11,15]endothelin-1-(8-21) induced a concentration-dependent biphasic effect (relaxation and contraction), but distinct tachyphylaxis of the tissue. Cross-tachyphylaxis and additivity experiments evidenced distinct receptors for these agonists. BQ-123 (cyclo[D-Trp-D-Asp-Pro-D-Val-Leu]), an endothelin ET(A) receptor antagonist, did not affect the response induced by either agonist. PD145065 [Ac-(D-Bhg-Leu-Asp-Ile-Ile-Trp) (D-Bhg = 5H-dibenzyl[a,d]cycloheptene-10,11-dihydroglycine)], an endothelin ET(A)/ET(B) receptor antagonist, inhibited the contractions induced by IRL1620 and sarafotoxin S6c in competitive and noncompetitive manner, respectively. RES-701-1 [cyclic(Gly1-Asp9)(Gly-Asn-Trp-His-Gly-Thr-Ala-Pro-Asp-Trp-P he-Phe-Asn-Tyr-Tyr-Trp)], an endothelin ET(B1) receptor antagonist, inhibited both components of the response induced by IRL1620, whereas it inhibited mainly the relaxation induced by low sarafotoxin S6c doses. Apamin and suramin had different effects towards the agonists. Our results suggest that two endothelin ET(B) receptors with distinct signal transduction mechanism mediate the biphasic response: (1) the endothelin ET(B1) receptor: sensitive to RES-701-1 and PD145065 and (2) the endothelin ET(B2) receptor: less sensitive to RES-701-1 and PD145065.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号