首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND AND PURPOSE

Recent evidence suggests that corticotropin-releasing factor (CRF) receptor signalling is involved in modulating the negative symptoms of opiate withdrawal. In this study, a series of experiments were performed to further characterize the role of CRF-type 2 receptor (CRF2) signalling in opiate withdrawal-induced physical signs of dependence, hypothalamus-pituitary-adrenal (HPA) axis activation, enhanced noradrenaline (NA) turnover in the hypothalamic paraventricular nucleus (PVN) and tyrosine hydroxylase (TH) phosphorylation (activation), as well as CRF2 expression in the nucleus of the solitary tract-A2 noradrenergic cell group (NTS-A2).

EXPERIMENTAL APPROACH

The contribution of CRF2 signalling in opiate withdrawal was assessed by i.c.v. infusion of the selective CRF2 antagonist, antisauvagine-30 (AS-30). Rats were implanted with two morphine (or placebo) pellets. Six days later, rats were pretreated with AS-30 or saline 10 min before naloxone and the physical signs of abstinence, the HPA axis activity, NA turnover, TH activation and CRF2 expression were measured using immunoblotting, RIA, HPLC and immunohistochemistry.

KEY RESULTS

Rats pretreated with AS-30 showed decreased levels of somatic signs of naloxone-induced opiate withdrawal, but the corticosterone response was not modified. AS-30 attenuated the increased production of the NA metabolite, 3-methoxy-4-hydroxyphenylglycol, as well as the enhanced NA turnover observed in morphine-withdrawn rats. Finally, AS-30 antagonized the TH phosphorylation at Serine40 induced by morphine withdrawal.

CONCLUSIONS AND IMPLICATIONS

These results suggest that physical signs of opiate withdrawal, TH activation and stimulation of noradrenergic pathways innervating the PVN are modulated by CRF2 signalling. Furthermore, they indicate a marginal role for the HPA axis in CRF2-mediation of opiate withdrawal.  相似文献   

2.

Background:

Relapse into drug abuse evoked by reexposure to the drug-associated context has been a primary problem in the treatment of drug addiction. Disrupting the reconsolidation of drug-related context memory would therefore limit the relapse susceptibility.

Methods:

Morphine conditioned place preference (CPP) was used to assess activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and correlative molecule expression in the Nucleus accumbens (NAc) shell during the reconsolidation of morphine CPP. U0126 and Arc/Arg3.1 antisense oligodeoxynucleotide were adapted to evaluate the role and the underlying mechanism of Arc/Arg3.1 during the reconsolidation.

Results:

The retrieval of morphine CPP in rats specifically increased the Arc/Arg3.1 protein level in the NAc shell, accompanied simultaneously by increases in the phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2), the phosphorylation of Cyclic Adenosine monophosphate (cAMP) response element-binding (pCREB), and the up-regulation of the membrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors GluR1 subunit level. Intra-NAc shell infusion U0126, an inhibitor of the Mitogen-activated protein kinase kinase (MEK), prevented the retrieval-induced up-regulation of pERK1/2, pCREB, Arc/Arg3.1, and membrane GluR1 immediately after retrieval of morphine CPP. The effect of disrupting the reconsolidation of morphine CPP by U0126 could last for at least 14 days, and could not be evoked by a priming injection of morphine. Furthermore, the specific knockdown of Arc/Arg3.1 in the NAc shell decreased the membrane GluR1 level, and impaired both the reconsolidation and the reinstatement of morphine CPP.

Conclusions:

Arc/Arg3.1 in the NAc shell mediates the reconsolidation of morphine-associated context memory via up-regulating the level of membrane of GluR1, for which the local activation of the ERK-CREB signal pathway, as an upstream mechanism of Arc/Arg3.1, is required.  相似文献   

3.

Background and purpose:

The intracellular signalling kinase, extracellular signal-regulated kinase 1/2 (ERK1/2) is required for new memory formation, suggesting that control of ERK signalling might be a target for the treatment of cognitive dysfunction. Previously, we reported that tanshinone congeners have ameliorating effects on drug-induced memory impairment in mice. Here, we have investigated possible modes of action of tanshinone I on learning and memory, associated with ERK phosphorylation.

Experimental approach:

Using immunohistochemical, Western blot techniques, and behavioural testing, we studied the effect of tanshinone I on memory impairment induced by diazepam or dizocilpine (MK-801) in mice.

Key results:

Tanshinone I (2 or 4 mg·kg−1, p.o.) increased latency times versus vehicle-treated control group in the passive avoidance task. Western blot analysis and immunohistochemical data showed that tanshinone I (4 mg·kg−1) increased levels of phosphorylated cAMP response element binding protein (pCREB) and phosphorylated ERK (pERK) in the hippocampus. These increases in pCREB and pERK were blocked by U0126 (inhibitor of ERK1/2), which also prevented the increase in passive avoidance task latency time after tanshinone I. In models of learning and memory impairment induced by diazepam and MK-801, tanshinone I (4 mg·kg−1) reversed learning and memory impairments detected by the passive avoidance test. Western blot analysis showed that tanshinone I reversed the diazepam- and MK-801-induced inhibitions of ERK and CREB activation in hippocampal tissues. These effects were also blocked by U0126.

Conclusions and implications:

Tanshinone I ameliorates the learning and memory impairments induced by diazepam and MK-801 through activation of ERK signalling.  相似文献   

4.

BACKGROUND AND PURPOSE

Recent evidence suggests that glucocorticoid receptor (GR) is a major molecular substrate of addictive properties of drugs of abuse. Hence, we performed a series of experiments to further characterize the role of GR signalling in opiate withdrawal-induced physical signs of dependence, enhanced noradrenaline (NA) turnover in the hypothalamic paraventricular nucleus (PVN) and tyrosine hydroxylase (TH) phosphorylation (activation) as well as GR expression in the nucleus of the solitary tract noradrenergic cell group (NTS-A2).

EXPERIMENTAL APPROACH

The role of GR signalling was assessed by i.p. pretreatment of the selective GR antagonist, mifepristone. Rats were implanted with two morphine (or placebo) pellets. Six days later, rats were pretreated with mifepristone or vehicle 30 min before naloxone and physical signs of abstinence, NA turnover, TH activation, GR expression and the hypothalamus–pituitary–adrenocortical axis activity were measured using HPLC, immunoblotting and RIA.

KEY RESULTS

Mifepristone alleviated the somatic signs of naloxone-induced opiate withdrawal. Mifepristone attenuated the increase in the NA metabolite, 3-methoxy-4-hydroxyphenylethylen glycol (MHPG), in the PVN, and the enhanced NA turnover observed in morphine-withdrawn rats. Mifepristone antagonized the TH phosphorylation at Ser31 and the expression of c-Fos expression induced by morphine withdrawal. Finally, naloxone-precipitated morphine withdrawal induced up-regulation of GR in the NTS.

CONCLUSIONS AND IMPLICATIONS

These results suggest that the physical signs of opiate withdrawal, TH activation and stimulation of noradrenergic pathways innervating the PVN are modulated by GR signalling. Overall, the present data suggest that drugs targeting the GR may ameliorate stress and aversive effects associated with opiate withdrawal.  相似文献   

5.

Background and Purpose

The negative affective states of withdrawal involve the recruitment of brain and peripheral stress circuitry [noradrenergic activity, induction of the hypothalamic–pituitary–adrenocortical (HPA) axis and activation of heat shock proteins (Hsps)]. Corticotropin-releasing factor (CRF) pathways are important mediators in the negative symptoms of opioid withdrawal. We performed a series of experiments to characterize the role of the CRF1 receptor in the response of stress systems to morphine withdrawal and its effect in the heart using genetically engineered mice lacking functional CRF1 receptors.

Experimental Approach

Wild-type and CRF1 receptor-knockout mice were treated with increasing doses of morphine. Precipitated withdrawal was induced by naloxone. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels, the expression of myocardial Hsp27, Hsp27 phosphorylated at Ser82, membrane (MB)- COMT, soluble (S)-COMT protein and NA turnover were evaluated by RIA, immunoblotting and HPLC.

Key Results

During morphine withdrawal we observed an enhancement of NA turnover in parallel with an increase in mean arterial blood pressure (MAP) and heart rate (HR) in wild-type mice. In addition, naloxone-precipitated morphine withdrawal induced an activation of HPA axis and Hsp27. The principal finding of the present study was that plasma ACTH and corticosterone levels, MB-COMT, S-COMT, NA turnover, and Hsp27 expression and activation observed during morphine withdrawal were significantly inhibited in the CRF1 receptor-knockout mice.

Conclusion and Implications

Our results demonstrate that CRF/CRF1 receptor activation may contribute to stress-induced cardiovascular dysfunction after naloxone-precipitated morphine withdrawal and suggest that CRF/CRF1 receptor pathways could contribute to cardiovascular disease associated with opioid addiction.  相似文献   

6.

Aim:

Histamine plays an important role in morphine addiction and memory-dependent behavior. However, little is known about the effect of histamine on the impairment of memory after morphine withdrawal. This study was designed to investigate the effect of histamine on memory impairment induced by morphine withdrawal in histidine decarboxylase knockout (HDC-KO) and wild-type (WT) mice.

Methods:

WT and HDC-KO mice were given subcutaneous morphine or saline twice daily for 5 consecutive days. The mice received a cued or contextual fear conditioning session 7 days after the last injection. During subsequent days, mice received 4 cued or contextual extinction sessions (one session per day). Western blot was used to assess extracellular signal-regulated kinase (ERK) phosphorylation in the amygdala and hippocampus.

Results:

Morphine withdrawal did not affect the acquisition of cued or contextual fear responses. It impaired cued but not contextual fear extinction. The acquisition of cued and contextual fear responses was accelerated in HDC-KO mice. Histamine deficiency aggravated the impairment of cued fear extinction induced by morphine withdrawal, whereas histamine (icv, 5 μg/mouse) reversed this effect. Morphine withdrawal decreased ERK phosphorylation in the amygdala after cued fear extinction, especially in HDC-KO mice.

Conclusion:

These results suggest that morphine withdrawal specifically impairs cued fear extinction and histamine ameliorates this impairment. Its action might be mediated by the modulation of ERK phosphorylation in the amygdala. Histamine should be explored for possible roles in the prevention or treatment of morphine abuse and relapse.  相似文献   

7.
8.
Aim: To investigate whether activation and translocation of extracellular signalregulated kinase (ERK) is involved in the induction and maintenance of neuropathic pain, and effects of activation and translocation of ERK on expression of pCREB and Fos in the chronic neuropathic pain. Methods: Lumbar intrathecal catheters were chronically implanted in male Sprague-Dawley rats. The left sciatic nerve was loosely ligated proximal to the sciatica‘s trifurcation at approximately 1.0 mm intervals with 4-0 silk sutures. The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 or phosphorothioate-modified antisense oligonucleotides (ODN) were intrathecally administered every 12 h, 1 d pre-chronic constriction injury (CCI) and 3 d post-CCI. Thermal and mechanical nociceptive thresholds were assessed with the paw withdrawal latency (PWL) to radiant heat and von Frey filaments. The expression of pERK, pCREB, and Fos were assessed by both Western blotting and immunohistochemical analysis. Results: Intrathecal injection of U0126 or ERK antisense ODN significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia. CCI significantly increased the expression of p-ERK-IR neurons in the ipsilateral spinal dorsal horn to injury, not in the contralateral spinal dorsal horn. The time courses of pERK expression showed that the levels of both cytosol and nuclear pERK, but not total ERK, were increased at all points after CCI and reached a peak level on postoperative d 5. CCI also significantly increased the expression of pCREB and Fos. Phospho-CREB-positive neurons were distributed in all laminae of the bilateral spinal cord and Fos was expressed in laminae I and II of the ipsilateral spinal dorsal horn. Intrathecal injection of U0126 or ERK antisense ODN markedly suppressed the increase of CCI-induced pERK, pCREB and c-Fos expression in the spinal cord. Conclusion:The activation of ERK pathways contributes to neuropathic pain in CCI rats, and the function of pERK may partly be accomplished via the cAMP response element binding protein (CREB)-dependent gene expression.  相似文献   

9.

Aim:

The aim of this study was to study the effects of compound FLZ, a novel cyclic derivative of squamosamide from Annona glabra, on brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element-binding protein (CREB) signaling and neuronal apoptosis in the hippocampus of the amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mice.

Methods:

APP/PS1 mice at the age of 5 months and age-matched wild-type mice (WT) were intragastrically administered FLZ (150 mg/kg) or vehicle [0.05% carboxymethyl cellulose sodium (CMC-Na)] daily for 20 weeks. The levels of BDNF in the hippocampus of WT and APP/PS1 mice were then measured by immunohistochemistry and Western blot analysis. Neuronal apoptosis in mouse hippocampus was detected by Nissl staining. Expression of NGF, NT3, pTrkB (Tyr515)/TrkB, pAkt (Ser473)/Akt, pERK/ERK, pCREB (Ser133)/CREB, Bcl-2/Bax, and active caspase-3 fragment/caspase-3 in the hippocampus of WT and APP/PS1 mice was detected by Western blot analysis.

Results:

Compared with vehicle-treated APP/PS1 mice, FLZ (150 mg/kg) significantly increased BDNF and NT3 expression in the hippocampus of APP/PS1 mice. In addition, FLZ promoted BDNF high-affinity receptor TrkB phosphorylation and activated its downstream ERK, thus increasing phosphorylation of CREB at Ser133 in the hippocampus of APP/PS1 mice. Moreover, FLZ showed neuroprotective effects on neuronal apoptosis by increasing the Bcl-2/Bax ratio and decreasing the active caspase-3 fragment/caspase-3 ratio in the hippocampus of APP/PS1 mice.

Conclusion:

FLZ exerted neuroprotection at least partly through enhancing the BDNF/TrkB/CREB pathway and inhibiting neuronal apoptosis in APP/PS1 mice, which suggests that FLZ can be explored as a potential therapeutic agent in long-term Alzheimer''s disease therapy.  相似文献   

10.

Background and purpose:

The functional characterization of secreted peptides can provide the basis for the development of novel therapeutic agents. Augurin is a recently identified secreted peptide of unknown function expressed in multiple endocrine tissues, and in regions of the brain including the hypothalamus. We therefore investigated the effect of hypothalamic injection of augurin on the hypothalamo-pituitary-adrenal (HPA) axis in male Wistar rats.

Experimental approach:

Augurin was given as a single injection into the third cerebral ventricle (i.c.v.) or into the paraventricular nucleus (iPVN) of the hypothalamus. Circulating hormone levels were then measured by radioimmunoassay. The effect of augurin on the release of hypothalamic neuropeptides was investigated ex vivo using hypothalamic explants. The acute effects of iPVN augurin on behaviour were also assessed.

Key results:

i.c.v. injection of augurin significantly increased plasma ACTH and corticosterone, compared with vehicle-injected controls, but had no effect on other hypothalamo-pituitary axes hormones. Microinjection of lower doses of augurin into the PVN caused a similar increase in plasma ACTH and corticosterone, without significant alteration in behavioural patterns. Incubation of hypothalamic explants with increasing doses of augurin significantly elevated corticotrophin-releasing factor (CRF) and arginine vasopressin release. In vivo, peripheral injection of a CRF1/2 receptor antagonist prevented the rise in ACTH and corticosterone caused by i.c.v. augurin injection.

Conclusions and implications:

These data suggest that augurin stimulates the release of ACTH via the release of hypothalamic CRF. Pharmacological manipulation of the augurin system may therefore be a novel target for regulation of the HPA axis.  相似文献   

11.

Aim:

The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity.

Methods:

Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS).

Results:

Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol''s effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well.

Conclusion:

In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.  相似文献   

12.
13.

Aim:

To investigate the protective effect of tribulosin, a monomer of the gross saponins from Tribulus terrestris, against cardiac ischemia/reperfusion injury and the underlying mechanism in rats.

Methods:

Isolated rat hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion using Langendorff''s technique. The hearts were assigned to seven groups: control, ischemia/reperfusion (I/R), treatment with gross saponins from Tribulus terrestris (GSTT) 100 mg/L, treatment with tribulosin (100, 10, and 1 nmol/L) and treatment with a PKC inhibitor (chelerythrine) (1 μmol/L). Infarct size was assessed by triphenyltetrazolium chloride staining. Malondialdehyde (MDA), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) contents as well as superoxide dismutase (SOD) and creatine kinase (CK) activities were determined after the treatment. Histopathological changes in the myocardium were observed using hematoxylin-eosin (H&E) staining. Apoptosis was detected with terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay. Bcl-2, Bax, caspase-3, and PKCɛ protein expression were examined using Western blotting.

Results:

Tribulosin treatment significantly reduced MDA, AST, CK and LDH contents, and increased the activity of SOD. The infarct size of I/R group was 40.21% of the total area. GSTT and various concentrations of tribulosin treatment decreased the infarct size to 24.33%, 20.24%, 23.19%, and 30.32% (P<0.01). Tribulosin treatment reduced the myocardial apoptosis rate in a concentration-dependent manner. Bcl-2 and PKCɛ protein expression was increased after tribulosin preconditioning, whereas Bax and caspase-3 expression was decreased. In the chelerythrine group, Bcl-2 and PKCɛ expression was decreased, whereas Bax and caspase-3 expression was increased.

Conclusion:

Tribulosin protects myocardium against ischemia/reperfusion injury through PKCɛ activation.  相似文献   

14.

Aim:

Actin rearrangements are induced in the dorsal hippocampus after conditioned morphine withdrawal, and involved in the formation of conditioned place aversion. In the present study, we investigated the mechanisms underlying the actin rearrangements in rat dorsal hippocampus induced by conditioned morphine withdrawal.

Methods:

The RhoA-ROCK pathway inhibitor Y27632 (8.56 μg/1 μL per side) or the Rac1 inhibitor NSC23766 (25 μg/1 μL per side) was microinjected into the dorsal hippocampus of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal was assessed. Crude synaptosomal fraction of hippocampus was prepared, and the amount of F-actin and G-actin was measured with an Actin Polymerization Assay Kit.

Results:

Conditioned morphine withdrawal significantly increased actin polymerization in the dorsal hippocampus at 1 h following the naloxone injection. Preconditioning with microinjection of Y27632, but not NSC23766, attenuated CPA, and blocked the increase in actin polymerization in the dorsal hippocampus.

Conclusion:

Our results suggest that the small GTPase RhoA, but not Rac1, in the dorsal hippocampus is responsible for CPA formation, mainly through its regulation of actin rearrangements.  相似文献   

15.

BACKGROUND AND PURPOSE

One key mechanism for endothelial dysfunction is endothelial NOS (eNOS) uncoupling, whereby eNOS generates superoxide (O2•−) rather than NO. We explored the effect of pyridoxine on eNOS uncoupling induced by oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism.

EXPERIMENTAL APPROACH

HUVECs were incubated with ox-LDL with/without pyridoxine, NG-nitro-L-arginine methylester (L-NAME), chelerythrine chloride (CHCI) or apocynin. Endothelial O2•− was measured using lucigenin chemiluminescence, and O2•−-sensitive fluorescent dye dihydroethidium (DHE). NO levels were measured by chemiluminescence, PepTag Assay for non-radioactive detection of PKC activity, depletion of PKCα and p47phox by siRNA silencing and the states of phospho-eNOS Thr495, total-eNOS, phospho-PKCα/βII, total PKC, phospho-PKCα, total PKCα and p47phox were measured by Western blot.

KEY RESULTS

Ox-LDL significantly increased O2•− production and reduced NO levels released from HUVECs; an effect reversed by eNOS inhibitor, L-NAME. Pyridoxine pretreatment significantly inhibited ox-LDL-induced O2•− generation and preserved NO levels. Pyridoxine also prevented the ox-LDL-induced reduction in phospho-eNOS Thr495 and PKC activity. These protective effects of pyridoxine were abolished by the PKC inhibitor, CHCI, or siRNA silencing of PKCα. However, depletion of p47phox or treatment with the NADPH oxidase inhibitor, apocynin, had no influence on these effects. Also, cytosol p47phox expression was unchanged by the different treatments.

CONCLUSIONS AND IMPLICATIONS

Pyridoxine mitigated eNOS uncoupling induced by ox-LDL. This protectant effect was related to phosphorylation of eNOS Thr495 stimulated by PKCα, not via NADPH oxidase. These results provide support for the use of pyridoxine in ox-LDL-related vascular endothelial dysfunction.  相似文献   

16.
目的观察慢性吗啡(Mor)处理对大鼠交感神经节-颈上神经节(SCG)环腺苷酸反应元件结合蛋白(cAMP responseelement binding protein,CREB)磷酸化和mRNA表达的影响。方法 Wistar大鼠随机分成4组(正常对照组、吗啡急性给药组、吗啡依赖组、吗啡戒断组),免疫组织化学方法及RT-PCR法分别检测磷酸化的CREB(phosphorylated CREB,pCREB)和CREB mRNA在SCG中的表达。结果 (1)与正常对照组相比,吗啡急性给药组大鼠SCG中pCREB含量明显降低(P<0.05);(2)吗啡依赖组大鼠SCG中pCREB含量回到正常对照组水平,并有增高趋势(与正常对照组比较,P>0.05;与吗啡急性给药组比较,P<0.01);(3)吗啡戒断组大鼠SCG中pCREB含量明显高于正常对照组(P<0.01);(4)各组大鼠SCG的CREBmRNA表达无差异(P>0.05)。结论慢性吗啡处理大鼠交感神经节CREB磷酸化水平存在适应性上调现象。  相似文献   

17.

Aim:

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel located in the collecting tubule and collecting duct cells of mammalian kidney. The aim of this study is to investigate whether PKCα plays a role in vasopressin-induced AQP2 trafficking in mouse inner medullary collecting duct 3 (mIMCD3) cells.

Methods:

AQP2-mIMCD3 stable cell line was constructed by transfection of mouse inner medullary collecting duct 3 (mIMCD3) cells with AQP2-GFP construct. Then the cells were transfected with PKCα shRNA, PKCα A/25E, or PKCα scrambled shRNA. The expression levels of PKCα, AQP2, and phospho-S256-AQP2 were analyzed using Western blot. The interaction between AQP2 and PKCα was examined using immunoprecipitation. The distribution of AQP2 and microtubules was studied using immunocytochemistry. The AQP2 trafficking was examined using the biotinylation of surface membranes.

Results:

Treatment of AQP2-mIMCD3 cells with 100 μmol/L of 1-desamino-8-D-arginine vasopressin (DdAVP) for 30 min stimulated the translocation of AQP2 from the cytoplasm to plasma membrane through influencing the microtubule assembly. Upregulation of active PKCα by transfection with PKCα A/25E plasmids resulted in de-polymerization of α-tubulin and redistributed AQP2 in the cytoplasm. Down-regulation of PKCα by PKCα shRNA partially inhibited DdAVP-stimulated AQP2 trafficking without altering α-tubulin distribution. Although 100 μmol/L of DdAVP increased AQP2 phosphorylation at serine 256, down-regulation of PKCα by PKCα shRNA did not influence DdAVP-induced AQP2 phosphorylation, suggesting that AQP2 phosphorylation at serine 256 was independent of PKCα. Moreover, PKCα did not physically interact with AQP2 in the presence or absence of DdAVP.

Conclusion:

Our results suggested that PKCα regulates AQP2 trafficking induced by DdAVP via microtubule assembly.  相似文献   

18.

Background:

Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors.

Methods:

In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis.

Results:

In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex.

Conclusions:

There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn2+-sensing receptor in the pathophysiology of depression with component of anxiety.  相似文献   

19.

Aim:

Brain-derived neurotrophic factor (BDNF) plays an important role in learning and memory in multiple brain areas. In the present study, we investigated the roles of BDNF in aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats.

Methods:

Conditioned place aversion (CPA) was induced in male SD rats exposed to a single dose of morphine (10 mg/kg, sc) followed by naloxone (0.3 mg/kg, sc). In some rats, BDNF receptor antagonist K252a (8.5 ng per side) or BDNF scavenger TrkB-FC (0.65 μg per side) was bilaterally microinjected into amygdala before naloxone injection. BDNF mRNA and protein expression levels in amygdala were detected after the behavior testing.

Results:

CPA behavior was induced in rats by the naloxone-precipitated morphine withdrawal, which was accompanied by significantly increased levels of BDNF mRNA and protein in the amygdala. Bilateral microinjection of TrkB-FC or K252a into the amygdala completely blocked CPA behavior in the rats.

Conclusion:

Formation of aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats requires BDNF expression in the amygdala.  相似文献   

20.

BACKGROUND AND PURPOSE

Homologous agonist-induced phosphorylation of the μ-opioid receptor (MOR) is initiated at the carboxyl-terminal S375, followed by phosphorylation of T370, T376 and T379. In HEK293 cells, this sequential and hierarchical multi-site phosphorylation is specifically mediated by G-protein coupled receptor kinases 2 and 3. In the present study, we provide evidence for a selective and dose-dependent phosphorylation of T370 after activation of PKC by phorbol esters.

EXPERIMENTAL APPROACH

We used a combination of phospho site-specific antibodies, kinase inhibitors and siRNA knockdown screening to identify kinases that mediate agonist-independent phosphorylation of the MOR in HEK293 cells. In addition, we show with phospho site-specific antibodies were also used to study constitutive phosphorylation at S363 of MORs in mouse brain in vivo.

KEY RESULTS

Activation of PKC by phorbol esters or heterologous activation of substance P receptors co-expressed with MORs in the same cell induced a selective and dose-dependent phosphorylation of T370 that specifically requires the PKCα isoform. Inhibition of PKC activity did not compromise homologous agonist-driven T370 phosphorylation. In addition, S363 was constitutively phosphorylated in both HEK293 cells and mouse brain in vivo. Constitutive S363 phosphorylation required ongoing PKC activity. When basal PKC activity was decreased, S363 was also a substrate for homologous agonist-stimulated phosphorylation.

CONCLUSIONS AND IMPLICATIONS

Our results have disclosed novel mechanisms of heterologous regulation of MOR phosphorylation by PKC. These findings represent a useful starting point for definitive experiments elucidating the exact contribution of PKC-driven MOR phosphorylation to diminished MOR responsiveness in morphine tolerance and pathological pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号