首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cui Y  Zhang X  Gong Y  Niu S  Yin N  Yao R  Xu W  Li D  Wang H  He Y  Cao J  Yin Y 《Vaccine》2011,29(9):1736-1744
Increasing mortality, morbidity and economic costs have been paid to pneumococcal diseases every year. Currently, vaccination is the most promising strategy to reduce the occurrence of pneumococcal infection. In this study, we investigated the protective efficacy of immunization with recombinant DnaJ (hsp40) protein against infections of different serotypes of Streptococcus pneumoniae. We demonstrated that mucosal immunization with DnaJ antigen could induce both systemic and mucosal antibodies for DnaJ and stimulate the release of high levels of IL-10, IFN-γ and IL-17A. Moreover, this mucosal vaccination could reduce nasal or lung colonization of pneumococcus and elicit protection against different serotypes of invasive pneumococcal infections. As well, we found that intraperitoneal immunization with DnaJ could also protect against invasive infections caused by different serotypes of pneumococcus, and passive immunization with antibodies specific for DnaJ confirmed that this protection was antibody-mediated. Our results therefore support the potential of DnaJ as a conserved pneumococcal protein vaccine.  相似文献   

2.
In the present study DnaJ (HSP40) of Salmonella enterica serovar Typhi has been evaluated for its immunogenicity and efficacy in protecting mice against lethal challenge by S. enterica serovar Typhimurium infection. DnaJ was amplified by PCR of the genomic DNA of S. Typhi and subsequently cloned in pQE-30 expression vector. The protein was induced by IPTG and purified using Ni-NTA chromatography under denaturing conditions. After refolding in vitro the immune response was evaluated by injecting 40 microg DnaJ protein/mouse i.p. on 0th, 7th and 28th day. The results showed a significant increase in antibody titre and lymphocyte proliferation in animals immunised with DnaJ as compared to control. Further there was an appreciable increase in IL-2, IL-4, IFN-gamma production in lymphocytes isolated from immunised mice as compared to control. In this limited study, immunisation of mice with DnaJ was found to provide 70% protection against lethal challenge by S. Typhimurium indicating the possible use of DnaJ as vaccine candidate against typhoid.  相似文献   

3.
《Vaccine》2018,36(19):2581-2588
Vaccine development efforts against Streptococcus suis serotype 2 (S. suis 2) are often constrained by strain/serotype antigen variability. Bioinformatics analyses revealed two highly conserved S. suis 2 factors, EF-Tu and FtsZ. Murine immunization with recombinant proteins emulsified in white oil adjuvant or eukaryotic DNA vaccine vectors provided significant protection against lethal S. suis 2 challenge. Immune responses elicited by recombinant protein immunization revealed the robust generation of humoral immune responses, with a mixed induction of Th1-type and Th2-type responses. Furthermore, the antiserum from mice immunized with recombinant proteins significantly inhibited the growth of S. suis 2 in healthy pig whole blood, suggesting the triggering of a strong opsonizing response. Histological examination found that immunizing mice with purified recombinant proteins reduced neutrophil and macrophage accumulation in brain and lung tissues after challenge with virulent S. suis. Taken together, these findings reveal that EF-Tu and FtsZ may be promising targets for subunit and DNA vaccine candidates against S. suis 2 infection.  相似文献   

4.
Actinobacillus pleuropneumoniae is the major etiological agent of swine pleuropneumonia that causes critical economic losses in swine industry. The use of DNA vaccines encoding Apx exotoxin structural proteins is a promising novel approach for immunization against A. pleuropneumoniae. The goal of this study was to design DNA vaccines which encode the gene of ApxIA or ApxIIA, and to evaluate the elicited immune responses and protective efficacy in mice. Significant humoral immune responses were induced by these DNA vaccines through intramuscular immunization. The IgG subclass (IgG1 and IgG2a) analysis indicates that divalent DNA vaccine induces both Th1 and Th2 immune responses. The protective efficacy was evaluated by the survival against lethal challenge with A. pleuropneumoniae serotype 1. The groups of vaccination with pcDNA-apxIA or divalent (pcDNA-apxIA and pcDNA-apxIIA) DNA vaccine provided protective efficacy significantly higher than that of the negative control groups (P < 0.05). However, pcDNA-apxIIA vaccine conferred protection was limited and not significant than that of the negative control groups (P > 0.05). These results show that the divalent DNA vaccine could confer the best protection. This finding indicates that DNA immunization should facilitate the development of a ‘third-generation’ of vaccines and provide a novel strategy against A. pleuropneumoniae infection.  相似文献   

5.
《Vaccine》2018,36(29):4255-4264
Streptococcus pneumoniae has multiple protein antigens on the surface in addition to the serotype specific polysaccharide capsule antigen. Whilst the capsule antigen is the target of the polysaccharide vaccines, bacterial proteins can also act as targets for the immune system. PnuBioVax (PBV) is being developed as a multi-antigen, serotype-independent prophylactic vaccine against S. pneumoniae disease. In this study we have sought to elucidate the immune response to PBV in immunised rabbits. Sera from PBV immunised rabbits contained high levels of IgG antibodies to the PBV vaccine, and pneumococcal antigens PspA, Ply, PsaA and PiuA which are components of PBV, when compared with control sera. The PBV sera supported killing of the vaccine strain TIGR4 in an opsonophagocytic killing assay and heterologous strains 6B, 19F and 15B. In addition, incubation in PBV sera led to agglutination of several strains of pneumococci, inhibition of Ply-mediated lysis of erythrocytes and reduced bacterial invasion of lung epithelial cells in vitro. These data suggest that PBV vaccination generates sera that has multiple mechanisms of action that may provide effective protection against pneumococcal infection and give broader strain coverage than the current polysaccharide based vaccines.  相似文献   

6.
The purpose of the study was to assess post-vaccination immune response and occurrence of adverse events in the group of prematurely born infants. The study included 40 pre-term infants. Each child was vaccined four times (2, 4, 6 and 16 months) with the heptavalent conjugated pneumococcal vaccine (PCV7). Assessing of the level of antibodies was performed before vaccination, 4 weeks after primary series, before and 4 weeks after the booster dose. The research participants were qualified into 2 groups: group I - 19 children born before 30th gestational week, group II - 21 children born between the 30th and 34th gestational week. After the basic vaccination, an increase in the average antibody concentration in the area of all serotypes in most of the children tested was registered, with no significant differences observed between the groups. However, differences between individual serotypes were observed. The lowest values were found for serotype 6B. Before administering the booster dose, a significant drop in antibody titre in all of the children tested was noted. The last vaccination caused another significant increase in antibody concentration in both groups and the results obtained were markedly higher than those obtained after administering three vaccine doses. The majority of the children tested (with the exception of three from group II) achieved the preventive antibody level ≥0.35 μg/ml. In all of the children, no serious adverse events were observed. Our research showed, that heptavalent pneumococcal conjugate vaccine is immunogenic in children born before the completion of the 34th week of pregnancy. A booster dose of vaccine must be given at the right time to optimal response to the vaccine for all serotypes. Finally, any serious adverse events were observed.  相似文献   

7.
《Vaccine》2023,41(14):2387-2396
Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.  相似文献   

8.
Zhao Z  Xue Y  Tang X  Wu B  Cheng X  He Q  Zhang C  Guo A  Jin M  Chen H 《Vaccine》2009,27(18):2523-2528
Bordetella bronchiseptica is a Gram-negative respiratory pathogen that causes substantial disease in a variety of animals. Filamentous hemagglutinin (FHA) and pertactin are important attachment factors and protective immunogens, which serve as protective antigens in several animal models of infection with B. bronchiseptica. Here, we showed the efficacy of subcutaneous immunization of mice with a recombinant protein rF1P2, which consisted of the important immunodominant protective type I domain (F1) of FHA and the highly immunogenic region II domain (P2) of pertactin. Groups of mice tested, when challenged with different strains of B. bronchiseptica were fully protected, with long-lasting immunity to lethal B.bronchiseptica challenge, whereas mice immunized with Freund's adjuvant alone or PBS were not. In rF1P2-immunized mice, specific antibodies lasted for more than 120 days, and the IgG1/IgG2a ratio remained at a constant level till the end of the study. This suggests that rF1P2-induced a long-lasting balanced humoral immune responses and immunological memory in mice. rF1P2-specific antisera inhibited hemagglutination associated with full-length mature FHA. Furthermore, passive antiserum transfer from immunized animals completely protected naive mice from subsequent B. bronchiseptica challenge. These data may have implications for the development of safe and efficacious subunit vaccines for the prevention of bordetellosis, and may contribute to future acellular whooping cough vaccines.  相似文献   

9.
Yang P  Duan Y  Wang C  Xing L  Gao X  Tang C  Luo D  Zhao Z  Jia W  Peng D  Liu X  Wang X 《Vaccine》2011,29(4):698-705
A novel 2009 influenza A (H1N1) virus was transmitted from humans to humans worldwide. The live attenuated monovalent A H1N1 vaccine (LAMV) for intranasal administration has shown promising immunogenicity and safety in clinical trials and for human use, but the experimental data based on LAMV is incomplete. In this study, using reverse genetic technology, we produced a cold-adapted (ca), live attenuated BJ/AA ca that contained hemagglutinin (HA) and neuraminidase (NA) genes from a 2009 pandemic A H1N1 isolate, A/Beijing/501/2009 virus (BJ501), and the remaining six internal gene segments from the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AA virus). BJ/AA ca exhibited phenotypes of temperature sensitivity (ts), ca, and attenuation (att). The candidate BJ/AA ca was immunogenic in mice and induced strong mucosal secretory IgA (sIgA) in the respiratory tract. Two dosages of intranasal immunization induced robust HI antibodies and offered efficient protection against challenge by the wild-type (wt) 2009 pandemic A H1N1 (A/Beijing/501/2009 or A/California/07/2009) in mice and ferrets. These results support the evaluation of this vaccine made from a wt strain isolated in China for clinical trials.  相似文献   

10.
The present study demonstrates the protective potential of novel baculovirus recombinants, which express the glycoproteins gB, gC, or gD of Pseudorabies virus (PRV; Alphaherpesvirus of swine) and additionally contain the glycoprotein G of Vesicular Stomatitis Virus (VSV-G) in the virion (Bac-G-PRV). To evaluate the protective capacity, mixtures of equal amounts of the PRV gB-, gC-, and gD-expressing baculoviruses were used for immunization. Three intramuscular immunizations with that Bac-G-PRV mixture could protect mice against a lethal PRV challenge infection. To achieve complete protection high titers of Bac-G-PRV and three immunizations were necessary. This immunization with Bac-G-PRV resulted in the induction of high titers of PRV-specific serum antibodies of the IgG2a subclass and of interferon (IFN)-gamma, indicating a Th1-type immune response. Moreover, splenocytes of immunized mice exhibited natural killer cell activity accompanied by the production of IFN-alpha and IFN-gamma. Collectively, the presented data demonstrate for the first time that co-expression of VSV-G in baculovirus recombinant vaccines can improve the induction of a protective immune response against foreign antigens.  相似文献   

11.
Nguyen CT  Kim SY  Kim MS  Lee SE  Rhee JH 《Vaccine》2011,29(34):5731-5739
Streptococcus pneumoniae is a major respiratory pathogen that causes high levels of mortality and morbidity in infants and the elderly. Despite the use of antibiotics and vaccines, fatal pneumococcal disease remains prevalent. Pneumococcal surface protein A (PspA), a highly immunogenic surface protein produced by all strains of S. pneumoniae, can elicit protective immunity against fatal pneumococcal infection. We have previously demonstrated that the Vibrio vulnificus FlaB, a bacterial flagellin protein and agonist of TLR5, has strong mucosal adjuvant activity and induces protective immunity upon co-administration with tetanus toxoid. In this study, we have tested whether intranasal immunization with recombinant fusion proteins consisted of PspA and FlaB (PspA-FlaB and FlaB-PspA) is able to elicit more efficient protective mucosal immune responses against pneumococcal infection than immunization with PspA alone or with a stoichiometric mixture of PspA and FlaB. When mice were intranasally immunized with fusion proteins, significantly higher levels of anti-PspA IgG and IgA were induced in serum and mucosal secretions. The mice immunized intranasally with the FlaB-PspA fusion protein were the most protected from a lethal challenge with live S. pneumoniae, as compared to the mice immunized with PspA only, a mixture of PspA and FlaB, or the PspA-FlaB fusion protein. FlaB-PspA also induced a cross protection against heterologous capsular types. These results suggest that a FlaB-PspA fusion protein alone could be used as an anti-pneumococcal mucosal vaccine or as an effective partner protein for multivalent capsular polysaccharide conjugate vaccines.  相似文献   

12.
《Vaccine》2017,35(20):2716-2722
Inclusion body hepatitis (IBH) is an economically important diseases in broiler chicken industry. Several serotypes of fowl adenovirus (FAdV) can cause IBH, among them, serotype FAdV-8b is associated with the majority of the IBH cases in Canada. Here, we evaluated FAdV-8b virus-like particles (VLPs) and recombinant FAdV-8b fiber proteins (expressed in E. coli) as potential broiler-breeder vaccines against IBH. For assessing the immunogenicity of vaccines, we investigated both humoral and cellular immunity. The humoral immune response was evaluated by determining total IgY and virus-neutralizing antibody in serum at 14, 28, 35 and 60 days post-immunization (dpi). We examined cellular immunity using flow cytometry by determining CD4:CD8 ratio change in peripheral blood after the booster vaccination. The protective effect of vaccines was tested by challenging 14 day-old progeny (n = 30/group) carrying maternal antibodies (MtAb) by challenging with virulent FAdV-8b virus (1 × 107 TCID50, FAdV-8b-SK). Although total IgY levels were comparable in all groups, the neutralizing antibody response in broiler-breeders at 35 and 60 dpi was significantly (p < 0.05) higher those vaccinated with FAdV-8b VLPs followed by FAdV-8b fiber compared to fiber-knob. Moreover, vaccines comprised of FAdV-8b VLPs and FAdV-8b fiber rather than FAdV-8b fiber-knob efficiently elicited the cell-mediated immune response as evidenced by a statistically significant (p < 0.05) CD8+ T-cell proliferative response in broiler-breeders four days after the booster vaccination. Unlike FAdV-8b fiber-knob, FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders were able to transfer a substantial amount (28.4 ± 9%) of MtAb to their progeny. Challenge revealed that MtAb provided 100% and 82.7% protection in progeny hatched from FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders, respectively. Collectively, our data suggest that FAdV-8b subunit vaccine-induced MtAb efficiently protected progeny against clinical IBH and broiler-breeder vaccination with subunit vaccines is a potential approach to protect against IBH.  相似文献   

13.
Wang X  Jin H  Du X  Cai C  Yu Y  Zhao G  Su B  Huang S  Hu Y  Luo D  She R  Luo X  Zeng X  Yi X  Wang B 《Vaccine》2008,26(15):1832-1845
Levamisole (LMS) as an adjuvant enhances cell-mediated immunity in DNA vaccination; we investigated the efficacy and liver immunopathology alleviation of a DNA vaccine, VR1012-SjGST-32, in a LMS formulation in the murine challenge model. Compared to controls, the VR1012-SjGST-32 plus LMS can reduce worm and egg burdens, as well as, immunopathological complications associated chronic inflammation significantly in liver, which were apparently associated with Th1-type response. Together, these results suggest that the LMS as a potential Schistosome DNA vaccine adjuvant can enhance both worm killing and disease prevention, which is possibly mediated through the induction of a strong Th1-dominant environment in immunized mice.  相似文献   

14.
Experiments studied the effect of yoghurt on the recovery of defence mechanisms against Streptococcus pneumoniae respiratory infection in malnourished mice. Weaned mice were malnourished with a protein-free diet (PFD) for 21 d. Malnourished mice were made replete with a balanced diet (BD), yoghurt, or the BD with supplemental yoghurt (BD + Y) for 7, 14 or 21 d. The normal control (NC) group was fed the BD whereas malnourished control (MC) mice consumed only the PFD. Mice were challenged with pneumococci at the end of each dietary treatment. MC mice showed increased susceptibility to pneumococcal infection. Blood leucocytes, phagocyte activity and serum and bronco-alveolar anti-pneumococcal IgG and IgA were significantly lower in the MC than in the NC group. Repletion of malnourished mice with the BD for 21 d was necessary to obtain a response to infection similar to that of NC mice; however, administration of the BD + Y for 14 d was enough to normalise the immune defence mechanisms. Histological examination of MC lungs showed progressive loss of alveolar architecture. Lung injuries were significantly less pronounced in NC mice. Mice treated with the BD + Y for 14 d showed histological signs similar to the NC group. The present study showed that administration of yoghurt to malnourished mice induced an early recovery of the immunological parameters studied. Despite the uncertainties about the mechanisms involved and about the human relevance of the effects observed in animal models, the present study provides a strong rationale for the hypothesis that yoghurt consumption by malnourished hosts will accelerate the recovery of the immune mechanisms involved in the protection against respiratory infections.  相似文献   

15.
Romano M  Rindi L  Korf H  Bonanni D  Adnet PY  Jurion F  Garzelli C  Huygen K 《Vaccine》2008,26(48):6053-6063
In this study we have evaluated the vaccine potential of a Mycobacterium tuberculosis antigen of the PPE protein family, namely PPE44 (Rv2770c). PPE44-specific immune responses could be detected in mice acutely, chronically and latently infected with M. tuberculosis. Vaccination of mice with a plasmid DNA vaccine coding for PPE44 or recombinant PPE44 protein formulated in adjuvant generated strong cellular and humoral immune responses; immunodominant T cell epitopes were identified. Most importantly, vaccination of mice with both subunit vaccines followed by an intratracheal challenge with M. tuberculosis resulted in a protective efficacy comparable to the one afforded by BCG. Taken together these results indicate that PPE44 of M. tuberculosis is a protective antigen that could be included in novel subunit TB vaccines and that warrants further analysis.  相似文献   

16.
During a 1-year period from October 1995 to September 1996, 273 isolations of Streptococcus pneumoniae were made from various types of clinical specimens. The majority of the isolates (39.2%) were from sputum whilst 27.5% were from blood, CSF and other body fluids. The organism was isolated from patients of all age groups, 31.1% from children aged 10 years and below, 64.7% of which come from children aged 2 years or below. The majority of the isolates belong to serotypes 1, 6B, 19B, 19F and 23F. Serotypes 1 and 19B were the most common serotypes associated with invasive infection. About 71.9% of the invasive infections were due to serotypes included in the available 23 valent polysaccharide vaccine. The rates of resistance to penicillin and erythromycin were 7.0 and 1.1% respectively. Our findings show that the serotypes of S. pneumoniae causing most invasive infections in Malaysia are similar to those in other parts of the world and the available vaccine may have a useful role in this population.  相似文献   

17.
《Vaccine》2015,33(8):1008-1016
Streptococcus pneumoniae, a major respiratory pathogen, is a leading cause of death among children worldwide. Mucosal vaccination is a recommended method to prevent respiratory infection. However, development of mucosal vaccination is usually hindered due to the lack of safe and effective mucosal adjuvants. Mast cell activator compound 48/80 (C48/80) has been used as a mucosal adjuvant in immunization of adult mice, but its adjuvanticity is not clear in the immunization of young mice. In this study, the adjuvanticity of C48/80 was evaluated when intranasally co-administrated with a pneumococcal vaccine candidate strain SPY1 in a young mice model in comparison with a classical mucosal adjuvant cholera toxin (CT) and a relatively safe mucosal adjuvant Pam2CSK4. All three adjuvants enhanced antibody responses, whereas serum IgG titers were maintained at a stable level during the 3 months after the last immunization only in the SPY1 + C48/80 and SPY1 + CT groups. Furthermore, both the SPY1 + CT group and the SPY1 + C48/80 group induced strong Th17 immune response. Notably, C48/80 showed the exceptional ability to promote the clearance of nasal pneumococcal colonization which CT and Pam2CSK4 did not show. We found that C48/80's ability to induce protection against nasal pneumococcal colonization depended on B cells and IL-17A. Additionally, C48/80, as a mucosal adjuvant, showed a greater ability to protect young mice against lethal pneumococcal infection than CT. In comparison with CT, C48/80 also showed a favorable safety. These results reveal a promising perspective for using C48/80 as a mucosal adjuvant to improve protection against pneumococcal diseases early in life.  相似文献   

18.
《Vaccine》2018,36(9):1203-1208
Since a novel hyper-virulent fowl adenovirus serotype 4 (FAdV-4) infection occurred in 2015, the novel FAdV-4 has been widely spreading across China, causing significant economic losses to the poultry industry. As the urgency of the issue calls for effective and efficient solutions, the present study investigated the possibility of the fiber-2 protein of the FAdV-4 to serve as a vaccine candidate against the novel FAdV-4. In the research, fiber-2 proteins were expressed in Escherichia coli, and then purified. To evaluate the immunogenicity of the recombinant fiber-2 protein, we investigated both the humoral and cellular immune responses in chickens immunized with fiber-2. The humoral immunity was assessed by detecting IgY antibodies and virus-neutralizing antibodies in chicken serum at 7, 14, 21 days post-immunization (dpi). We examined cellular immune responses by detecting CD3+CD4+ and CD3+CD8+ changes in chickens’ peripheral blood through using flow cytometry at 7, 14, 21 dpi. The cytokine production in the serum of the immunized chickens was detected by ELISA at 7, 14, 21 dpi to further explore the impact of the recombinant protein on the regulation of cytokines. The protective efficacy was determined by the survival rate of the immunized chickens challenged with the novel FAdV-4. The results show that the level of IgY antibodies of the chickens immunized with fiber-2 protein was significantly higher than that of the chickens immunized with an inactivated vaccine against FAdV-4. Moreover, 7 days after immunization, the CD4+ T-cell proliferative response of the chickens immunized with fiber-2 was significantly higher than that of the chickens immunized with the inactivated vaccine. Challenge experiment showed that the fiber-2 protein could provide full protection and the inactivated vaccine could provide 90 percent protection against the FAdV-4. These results suggest that the recombinant fiber-2 protein can be an ideal candidate for subunit vaccines against the disease.  相似文献   

19.
《Vaccine》2022,40(42):6107-6113
Capsular polysaccharides (CPSs), with which most pathogenic bacterial surfaces are decorated, have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide. Pneumococcal conjugate vaccines (PCVs) are administered globally to prevent invasive pneumococcal disease (IPD). While PCVs have played important roles in controlling IPD in all age groups, their empirical, and labor-intensive chemical conjugation yield poorly characterized, heterogeneous, and variably immunogenic vaccines, with poor immune responses in high-risk populations such as the elderly and patients with weak immune systems. We previously developed a method that bypasses the dependency of chemical conjugation and instead exploits prokaryotic glycosylation systems to produce pneumococcal conjugate vaccines. The bioconjugation platform relies on a conjugating enzyme to transfer a bacterial polysaccharide to an engineered carrier protein all within the lab safe bacterium E. coli. In these studies, we demonstrate that a serotype 8 pneumococcal bioconjugate vaccine is highly immunogenic and elicits functionally protective anti-serotype 8 antibody responses. Specifically, using multiple models we show that mice immunized with multiple doses of a serotype 8 bioconjugate vaccine elicit antibody responses that mediate opsonophagocytic killing, protect mice from systemic infection, and decrease the ability of serotype 8 pneumococci to colonize the nasopharynx and disseminate. Collectively, these studies demonstrate the utility of bioconjugation to produce efficacious pneumococcal conjugate vaccines.  相似文献   

20.
Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号