首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo- and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple- and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 ± 12 cGy and 7.6 ± 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of ±1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan.  相似文献   

4.
Four techniques for measuring the dose rate from Sr-90 concave eye plaques are presented. The techniques involve calibrating a concave eye plaque against a Sr-90 teletherapy unit using X-Omat film, radiochromic film, black LiF TLD discs and LiF chips. The mean dose rate predicted by these dosimeters is 7.5 cGy s(-1). The dose rate quoted by the manufacturer is 33% lower than this value, which is consistent with discrepancies reported by other authors. Calibration against a 6 MV linear accelerator was also carried out using each of the above dosimetric devices, and appropriate sensitivity correction factors have been presented.  相似文献   

5.
Gafchromic XRCT radiochromic film is a self-developing high sensitivity radiochromic film product which can be used for assessment of delivered radiation doses which could match applications such as computed tomography (CT) dosimetry. The film automatically changes colour upon irradiation changing from a yellow to green/brown colour. The absorption spectra of Gafchromic XRCT radiochromic film as measured with reflectance spectrophotometry have been investigated to analyse the dosimetry characteristics of the film. Results show two main absorption peaks produced from irradiation located at 636 nm and 585 nm. This is similar to EBT Gafchromic film. A high level of sensitivity is found for this film with a 1 cGy applied dose producing an approximate net optical density change of 0.3 at 636 nm. This high sensitivity combined with its relatively energy independent nature around the 100 kVp to 150 kVp x-ray energy range provides a unique enhancement in dosimetric measurement capabilities over currently available dosimetry films for CT applications.  相似文献   

6.
Helical tomotherapy is a technique for delivering intensity modulated radiation therapy treatments using a continuously rotating linac. In this approach, fan beams exiting the linac are dynamically modulated in synchrony with the motion of the gantry and couch. Helical IMRT deliveries have been applied to treating surface lesions, and the purpose of this study was to evaluate the accuracy of dose calculated by the TomoTherapy HiArt treatment planning system for superficial planning target volumes (PTVs). TomoTherapy treatment plans were developed for three superficial PTVs (2-, 4-, and 6-cm deep radially by 90 degrees azimuthally by 4-cm longitudinally) contoured on a 27-cm diameter cylindrical white opaque, high-impact polystyrene phantom. The phantom included removable transverse and sagittal film cassettes that contained bare Kodak EDR2 films cut such that their edges matched the phantom surface (+/-0.05 cm). The phantom was aligned to the machine's isocenter (+/-0.05 cm) and was irradiated according to the treatment plans. Films were scanned with a Vidar film digitizer, and optical densities were converted to dose using a calibration determined from a 6 MV perpendicular film exposure. This perpendicular calibration required that axial film doses (parallel irradiation) be scaled by 1.02 so that mid-arc depth doses matched those measured in the sagittal plane (perpendicular irradiation). All film readings were scaled by 0.935 to correct for over-response due to phantom Cerenkov light. Measured dose distributions were registered to calculated ones and compared. Calculated doses overpredicted measured doses by as much as 9.5% of the prescribed dose at depths less than 1 cm. At depths greater than 1 cm, calculated dose distributions showed agreement to measurement within 5% in the high-dose region and within 0.2 cm distance-to-agreement in the dose falloff regions. In the low-dose region posterior to the PTVs (<10% of the prescribed dose), the dose algorithm underpredicted the dose by 1%-2% of the prescribed dose. Clinically, it is recommended that 1 cm of bolus be used on the surface to ensure that cancerous tissues less than 1 cm depth are not underdosed.  相似文献   

7.
In stereotactic radiosurgery the choice of appropriate detectors, whether for absolute or relative dosimetry, is very important due to the steep dose gradient and the incomplete lateral electronic equilibrium. For both linac-based and Leksell Gamma Knife radiosurgery units, we tested the use of calibrated radiochromic film to measure absolute doses and relative dose distributions. In addition a small diode was used to estimate the relative output factors. The data obtained using radiochromic and diode detectors were compared with measurements performed with other conventional methods of dosimetry, with calculated values by treatment planning systems and with data prestored in the treatment planning system supplied by the Leksell Gamma Knife (LGK) vendor. Two stereotactic radiosurgery techniques were considered: Leksell Gamma Knife (using gamma-rays from 60Co) and linac-based radiosurgery (LR) (6 MV x-rays). Different detectors were used for both relative and absolute dosimetry: relative output factors (OFs) were estimated by using radiochromic and radiographic films and a small diode; relative dose distributions in the axial and coronal planes of a spherical polystyrene phantom were measured using radiochromic film and calculated by two different treatment planning systems (TPSs). The absolute dose at the sphere centre was measured by radiochromic film and a small ionization chamber. An accurate selection of radiochromic film was made: samples of unexposed film showing a percentage standard deviation of less than 3% were used for relative dose profiles, and for absolute dose and OF evaluations this value was reduced to 1.5%. Moreover a proper calibration curve was made for each set of measurements. With regard to absolute doses, the results obtained with the ionization chamber are in good correlation with radiochromic film-generated data, for both LGK and LR, showing a dose difference of less than 1%. The output factor evaluations, performed using different methods, are in good agreement with a maximum difference of 1.5% for all field sizes considered (LGK and LR) except the 4 mm helmet used in the LGK unit. In this case, differences exist between diode and radiochromic film measurements and both detectors show data values larger than the prestored OF value of 0.80. Dose profiles measured by radiochromic film and calculated are in excellent agreement for both LGK and LR with a maximum deviation of less than 1.0 mm, when full widths of the dose profiles at 20%, 50%, 80% levels are considered. When external photon beams are used in stereotactic radiosurgery, the 'well selected' radiochromic films are very accurate detectors both for relative and absolute dosimetry. The experimental results, obtained using both radiochromic and diode detectors, show that the 4 mm helmet relative output factor could be underestimated.  相似文献   

8.
Niu H  Hsi WC  Chu JC  Kirk MC  Kouwenhoven E 《Medical physics》2004,31(12):3372-3377
The nucletron Leipzig applicator is designed for (HDR) 192Ir brachy radiotherapy of surface lesions. The dosimetric characteristics of this applicator were investigated using simulation method based on Monte Carlo N-particle (MCNP) code and phantom measurements. The simulation method was validated by comparing calculated dose rate distributions of nucletron microSelectron HDR 192Ir source against published data. Radiochromic films and metal-oxide-semiconductor field-effect transistor (MOSFET) detectors were used for phantom measurements. The double exposure technique, correcting the nonuniform film sensitivity, was applied in the film dosimetry. The linear fit of multiple readings with different irradiation times performed for each MOSFET detector measurement was used to obtain the dose rate of each measurement and to correct the source transit-time error. The film and MOSFET measurements have uncertainties of 3%-7% and 3%-5%, respectively. The dose rate distributions of the Leipzig applicator with 30 mm opening calculated by the validated MC method were verified by measurements of film and MOSFET detectors. Calculated two-dimensional planar dose rate distributions show similar patterns as the film measurement. MC calculated dose rate at a reference point defined at depth 5 mm on the applicator's central axis is 7% lower than the film and 3% higher than the MOSFET measurements. The dose rate of a Leipzig applicator with 30 mm opening at reference point is 0.241+/-3% cGy h(-1) U(-1). The MC calculated depth dose rates and profiles were tabulated for clinic use.  相似文献   

9.
Helical tomotherapy superficial dose measurements   总被引:1,自引:0,他引:1  
Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73 +/- 0.10 Gy (or 86.6 +/- 5.1% of the prescribed dose). The measured superficial dose decreases to 1.23 +/- 0.10 Gy (61.5 +/- 5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9 +/- 3.2%. The radiographic film dose for the 0 mm test case was 1.73 +/- 0.07 Gy, as compared to the calculated dose of 1.78 +/- 0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these clinical cases. For cases where the target volume is located 1 to 5 mm below the surface, the tumor volume coverage can be achieved with surface doses ranging from 56% to 93% of the prescribed dose.  相似文献   

10.
The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.  相似文献   

11.
Film dosimetry provides a convenient tool to determine dose distributions, especially for verification of IMRT plans. However, the film response to radiation shows a significant dependence on depth, energy and field size that compromise the accuracy of measurements. Kodak's XV2 film has a low saturation dose (approximately 100 cGy) and, consequently, a relatively short region of linear dose-response. The recently introduced Kodak extended range EDR2 film was reported to have a linear dose-response region extending to 500 cGy. This increased dose range may be particularly useful in the verification of IMRT plans. In this work, the dependence of Kodak EDR2 film's response on the depth, field size and energy was evaluated and compared with Kodak XV2 film. Co-60, 6 MV, 10 MV and 18 MV beams were used. Field sizes were 2 x 2, 6 x 6, 10 x 10, 14 x 14, 18 x 18 and 24 x 24 cm2. Doses for XV2 and EDR2 films were 80 cGy and 300 cGy, respectively. Optical density was converted to dose using depth-corrected sensitometric (Hurter and Driffield, or H&D) curves. For each field size, XV2 and EDR2 depth-dose curves were compared with ion chamber depth-dose curves. Both films demonstrated similar (within 1%) field size dependence. The deviation from the ion chamber for both films was small forthe fields ranging from 2 x 2 to 10 x 10 cm2: < or =2% for 6, 10 and 18 MV beams. No deviation was observed for the Co-60 beam. As the field size increased to 24 x 24 cm2, the deviation became significant for both films: approximately 7.5% for Co-60, approximately 5% for 6 MV and 10 MV, and approximately 6% for 18 MV. During the verification of IMRT plans, EDR2 film showed a better agreement with the calculated dose distributions than the XV2 film.  相似文献   

12.
Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H&N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H&N IMRT cases were planned with the PINNACLE treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE3 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE3 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV data, indicating that almost all measurements were within +/-5%. We have used SPC tools to evaluate a new beam model in our planning system to produce a systematic difference of -0.6% for PTVs and 0.4% for ORs, although the number of measurements is smaller (n=25). Analysis of this large series of H&N IMRT measurements demonstrated that our IMRT dosimetry was stable over time and within accepted tolerances. These data provide useful information for assessing alterations to beam models in the planning system. IMRT is enhanced by the addition of statistical process control to traditional quality control procedures.  相似文献   

13.
目的:比较动态适形弧(DCA)与容积调强(RA)两种放疗技术在肺部转移瘤立体定向放射治疗(SBRT)中的剂量学差异,评估各自的优势及在临床中的应用价值。方法:回顾性选择肺转移瘤患者20例,分别采用RA和DCA技术设计SBRT计划,基于RTOG0813报告标准,对比两种技术的PTV剂量学参数及危及器官受量。另外比较了计划设计时间、MU值及出束时间以评估两类计划的执行效率。结果:所有RA和DCA计划均能满足RTOG0813报告规定的靶区覆盖率要求,RA计划比DCA计划在靶区适形度CI(0.998±0.039 vs 1.357±0.138)、剂量跌落梯度指数R50%(4.90±0.93 vs 6.04±1.09)及D2 cm(47.3%±6.7%vs 54.5%±10.8%)指标上表现更好(P<0.05)。在肺部V12.5 Gy[(148.60±114.24)cm3vs(176.25±152.16)cm3]、V13.5 Gy[(135.52±107.25)...  相似文献   

14.
The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the CORVUS (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the CORVUS pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3-5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to breathing-induced motion/deformation affecting the soft/lung tissue density and motion of the bone structures (such as the rib cage) in and out of the beam. Intrafraction and interfraction dosimetric differences between (c) free-breathing and gated delivery were found to be small. However, more significant dosimetric differences, of the order of 3%-5%, were observed between the dose calculations based on static CT (3DCT) and the ones based on time-resolved CT (4DCT). These differences are a consequence of the larger contribution of the inhale phase in the 3DCT data than in the 4DCT.  相似文献   

15.
The dosimetric accuracy of a 3D treatment planning system (TPS) for conformal radiotherapy with a computer-assisted dynamic multileaf collimator (DMLC) was evaluated. The DMLC and the TPS have been developed for clinical applications where dynamic fields not greater than 10 x 10 cm2 and multiple non-coplanar arcs are required. Dosimetric verifications were performed by simulating conformal treatments of irregularly shaped targets using several arcs of irradiation with 6 MV x-rays and a spherical-shaped, tissue-simulating phantom. The accuracy of the delivered dose at the isocentre was verified using an ionization chamber placed in the centre of the phantom. Isodose distributions in the axial and sagittal planes passing through the centre of the phantom were measured using double-layer radiochromic films. Measured dose at the isocentre as well as isodose distributions were compared to those calculated by the TPS. The maximum percentage difference between measured and prescribed dose was less than 2.5% for all the simulated treatment plans. The mean (+/-SD) displacement between measured and calculated isodoses was, in the axial planes, 1.0 +/- 0.6 mm, 1.2 +/- 0.7 mm and 1.5 +/- 1.1 mm for 80%, 50% and 20% isodose curves, respectively, whereas in the sagittal planes it was 2.0 +/- 1.2 mm and 2.2 +/- 2 mm for 80% and 50% isodose curves, respectively. The results indicate that the accuracy of the 3D treatment planning system used with the DMLC is reasonably acceptable in clinical applications which require treatments with several non-coplanar arcs and small dynamic fields.  相似文献   

16.
目的:根据处方剂量与实际剂量的差距自动优化目标函数中体元的处方剂量,达到优化治疗计划质量的目的。方法:根据常规的处方剂量设置方法和基于体元的自适应处方剂量优化方法,选取病例进行计划设计和优化,并对比两种计划的剂量-体积直方图和相关剂量学参数。结果:相对于常规计划,自适应计划中靶区的最大剂量降低,热点减少,剂量分布更加均匀,并且危及器官受到的剂量减小,经过优化的计划所有参数均满足剂量目标。结论:自适应处方剂量优化方法能够优化放疗计划,可以被集成到计划系统中用于临床。  相似文献   

17.
Respiratory motion can introduce substantial dose errors during IMRT delivery. These errors are difficult to predict because of the nonsynchronous interplay between radiation beams and tissues. The present study investigates the impact of dose fractionation on respiratory motion induced dosimetric errors during IMRT delivery and their radiobiological implications by using measured 3D dose. We focused on IMRT delivery with dynamic multileaf collimation (DMLC-IMRT). IMRT plans using several beam arrangements were optimized for and delivered to a polystyrene phantom containing a simulated target and critical organs. The phantom was set in linear sinusoidal motion at a frequency of 15 cycles/min (0.25 Hz). The amplitude of the motion was +/- 0.75 cm in the longitudinal direction and +/- 0.25 cm in the lateral direction. Absolute doses were measured with a 0.125 cc ionization chamber while dose distributions were measured with transverse films spaced 6 mm apart. Measurements were performed for varying number of fractions with motion, with respiratory-gated motion, and without motion. A tumor control probability (TCP) model for an inhomogeneously irradiated tumor was used to calculate and compare TCPs for the measurements and the treatment plans. Equivalent uniform doses (EUD) were also computed. For individual fields, point measurements using an ionization chamber showed substantial dose deviations (-11.7% to 47.8%) for the moving phantom as compared to the stationary phantom. However, much smaller deviations (-1.7% to 3.5%) were observed for the composite dose of all fields. The dose distributions and DVHs of stationary and gated deliveries were in good agreement with those of treatment plans, while those of the nongated moving phantom showed substantial differences. Compared to the stationary phantom, the largest differences observed for the minimum and maximum target doses were -18.8% and +19.7%, respectively. Due to their random nature, these dose errors tended to average out over fractionated treatments. The results of five-fraction measurements showed significantly improved agreement between the moving and stationary phantom. The changes in TCP were less than 4.3% for a single fraction, and less than 2.3% for two or more fractions. Variation of average EUD per fraction was small (< 3.1 cGy for a fraction size of 200 cGy), even when the DVHs were noticeably different from that of the stationary tumor. In conclusion, IMRT treatment of sites affected by respiratory motion can introduce significant dose errors in individual field doses; however, these errors tend to cancel out between fields and average out over dose fractionation. 3D dose distributions, DVHs, TCPs, and EUDs for stationary and moving cases showed good agreement after two or more fractions, suggesting that tumors affected by respiration motion may be treated using IMRT without significant dosimetric and biological consequences.  相似文献   

18.
目的:探讨同时运用三维适形与调强的混合调强放疗(Hybrid-IMRT)与调强放疗(IMRT)用于脑转移瘤同期加量的剂量学差异。方法:选取20例进行头颅放疗的患者,分别设计Hybrid-IMRT计划和IMRT计划。Hybrid-IMRT计划包括全脑行三维适形(两野对穿)3 600 cGy/20 F、脑转移灶行IMRT同期加量至5 000 cGy/20 F;IMRT计划全程运用IMRT给予全脑照射3 600 cGy/20 F、脑转移灶5 000 cGy/20 F。在满足临床要求的前提下,比较两组计划靶区的均匀性指数、适形度指数、平均剂量和机器跳数,危及器官脑干、视神经、晶体、视交叉、眼球的最大剂量和平均剂量。结果:两种计划均能满足临床要求。Hybrid-IMRT计划的PGTV均匀性优于IMRT计划(P<0.001);Hybrid-IMRT计划的脑干、视交叉、左右晶体的最大剂量与平均剂量,左右眼球的平均剂量以及左右视神经的最大剂量均低于IMRT计划(P<0.05);Hybrid-IMRT计划的机器跳数比IMRT计划减少了约70%(P<0.001)。结论:两种计划均能满足临床要求,Hybrid-IMRT计划相较IMRT计划靶区剂量更加均匀,治疗时间缩短,也能更好地保护危及器官。  相似文献   

19.
Commercial multileaf collimator (MLC) systems can employ leaves with rounded ends. Treatment planning beam modelling should consider the effects of transmission through rounded leaf ends to provide accurate dosimetry for IMRT treatments delivered with segmented MLC. We determined that an MLC leaf gap reduction of 1.4 mm is required to obtain an agreement between calculated and measured profile 50% dose points. A head and neck dosimetry phantom, supplied by the Radiological Physics Center (RPC), was planned and irradiated as a necessary credentialing requirement for the RTOG H-0022 protocol. The agreement between the RPC TLD measurements and treatment planning calculations was within experimental error for the primary and secondary planning target volumes (PTVs); however, the calculated mean dose for the critical structure was approximately 9% lower than the RPC TLD measurements. RPC radiochromic film profile measurements also indicated significant discrepancies (>5%) with calculated values especially in the high dose gradient region in the vicinity of the critical structure. These results substantiate our own in-house phantom measurements, performed with the same IMRT fields as for the RPC phantom experiment, using Kodak EDR2 film to measure absolute dose. Our results indicate a maximum underestimate of calculated dose of 12% with no leaf gap reduction. The discrepancy between measured and calculated phantom values is reduced to +/- 5% when a leaf gap reduction of 1.4 mm is used. A further improvement in the accuracy of dose calculation is not possible without a more accurate modelling of the leaf end transmission by the planning system. In the absence of published dosimetric criteria for IMRT our results stress the need for stringent in-house dosimetric QA and validation for IMRT treatments. We found the dosimetric validation service provided by the RPC to be a valuable component of our IMRT validation efforts.  相似文献   

20.
Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号