首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diepoxybutane (DEB) is the most potent metabolite of the environmental chemical 1,3-butadiene (BD), which is prevalent in petrochemical industrial areas. BD is a known mutagen and human carcinogen, and possesses multiorgan systems toxicity that includes bone marrow depletion, spleen, and thymus atrophy. Toxic effects of BD are mediated through its epoxy metabolites. In working towards elucidating the cellular and molecular mechanisms of BD toxicity, we investigated the ability of DEB to induce apoptosis in human lymphoblasts. DEB induced a concentration and exposure time-dependent apoptosis, which accounted for the DEB-induced loss of cell viability observed in TK6 lymphoblasts. The DEB-induced apoptosis was inhibited by inhibitors of caspases 3 and 9. The role of p53 in mediating the DEB-induced apoptosis was also investigated. DEB induced elevated p53 levels in direct correlation to the extent of DEB-induced apoptosis, as the concentration of DEB increased up to 5 microM. The extent of DEB-induced apoptosis was dramatically higher in TK6 lymphoblasts as compared to the genetically paired p53-deficient NH32 lymphoblasts under the same experimental conditions. Our results confirm and extend observations on the occurrence of apoptosis in DEB exposed cells, and demonstrate for the first time the elevation of p53 levels in human lymphoblasts in response to DEB exposure. In addition, our results demonstrate for the first time that DEB-induced apoptosis is mediated by caspases 3 and 9, as well as the p53 protein. It is possible that DEB-induced apoptosis may explain BD-induced bone marrow depletion, spleen and thymus atrophy in BD-exposed animals.  相似文献   

2.
It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca(2+)-calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 microM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca(2+) chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O(2)(-)), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-l-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O(2)(-) formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca(2+)-calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are important for both pathways in Cr(VI)-induced apoptosis of U937 cell.  相似文献   

3.
Rosemary (Rosmarinus officinalis), a culinary spice and medicinal herb, has been widely used in European folk medicine to treat numerous ailments. Many studies have shown that rosemary extracts play important roles in anti-inflammation, anti-tumor, and anti-proliferation in various in vitro and in vivo settings. The roles of tumor suppression of rosemary have been attributed to the major components, including carnosic acid, carnosol, and rosmarinic acid, rosmanol, and ursolic acid. This study was to explore the effect of rosmanol on the growth of COLO 205 human colorectal adenocarcinoma cells and to delineate the underlying mechanisms. When treated with 50 μM of rosmanol for 24 h, COLO 205 cells displayed a strong apoptosis-inducing response with a 51% apoptotic ratio (IC50 ∼42 μM). Rosmanol increased the expression of Fas and FasL, led to the cleavage and activation of pro-caspase-8 and Bid, and mobilized Bax from cytosol into mitochondria. The mutual activation between tBid and Bad decreased the mitochondrial membrane potential and released cytochrome c and apoptosis-inducing factor (AIF) to cytosol. In turn, cytochrome c induced the processing of pro-caspase-9 and pro-caspase-3, followed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45). These results demonstrate that the rosmanol-induced apoptosis in COLO 205 cells is involvement of caspase activation and involving complicated regulation of both the mitochondrial apoptotic pathway and death receptor pathway.  相似文献   

4.
Curcumin, a well-known chemopreventive agent, has been shown to suppress the proliferation of a wide variety of tumor cells through a mechanism that is not fully understood. Cyclin E, a proto-oncogene that is overexpressed in many human cancers, mediates the G(1) to S transition, is a potential target of curcumin. We demonstrate in this report a dose- and time-dependent down-regulation of expression of cyclin E by curcumin that correlates with the decrease in the proliferation of human prostate and breast cancer cells. The suppression of cyclin E expression was not cell type dependent as down-regulation occurred in estrogen-positive and -negative breast cancer cells, androgen-dependent and -independent prostate cancer cells, leukemia and lymphoma cells, head and neck carcinoma cells, and lung cancer cells. Curcumin-induced down-regulation of cyclin E was reversed by proteasome inhibitors, lactacystin and N-acetyl-L-leucyl-L-leucyl-L-norleucinal, suggesting the role of ubiquitin-dependent proteasomal pathway. We found that curcumin enhanced the expression of tumor cyclin-dependent kinase (CDK) inhibitors p21 and p27 as well as tumor suppressor protein p53 but suppressed the expression of retinoblastoma protein. Curcumin also induced the accumulation of the cells in G1 phase of the cell cycle. Overall, our results suggest that proteasome-mediated down-regulation of cyclin E and up-regulation of CDK inhibitors may contribute to the antiproliferative effects of curcumin against various tumors.  相似文献   

5.
6.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to cause small intestinal damage but the pathogenesis of this toxicity is not well established. Intestinal epithelial cells are thought to be affected by these drugs in the course of their absorption. These cells are of different types, viz. villus, middle and crypt cells. There is little information on which of these cells, if any, are particularly vulnerable to the effects of NSAIDs. This paper aimed to study the effects of indomethacin, an NSAID commonly used in toxicity studies, on different populations of enterocytes. Effects of the drug were assessed in terms of oxidative damage, mitotic activity, mitochondrial function and lipid composition in enterocytes isolated from the small intestine of rats that had been orally administered indomethacin. In addition, the effects of arginine and zinc in protecting against such changes were assessed. Cell viability, tetrazolium dye (MTT) reduction and oxygen uptake were significantly reduced in villus tip cells from rats dosed with the drug. Thymidine uptake was higher in the crypt cell fraction from these rats. Similarly, products of lipid peroxidation were elevated in the villus tip cells with a corresponding decrease in the level of the anti-oxidant, alpha-tocopherol. In isolated mitochondrial preparations from various enterocyte fractions, significant functional impairment and altered lipid composition were seen mainly in mitochondria from villus cells. Arginine and zinc pre-treatment were found to protect against these effects. These results suggest for the first time that the villus tip cells are more vulnerable to the damaging effects of indomethacin and that oxidative stress is possibly involved in this damage.  相似文献   

7.
Sodium nitrite (NaNO2) is a flavoring, coloring and preservative agent in meat and fish products. The study aimed to evaluate the efficacy of l-arginine and l-glutamine supplementation as a potentially novel and useful strategy for the modulation of oxidative stress and toxicity induced by NaNO2 in male rats. Rats were divided into six groups each of 10 rats and treated for 6 weeks: group 1 as normal control; group 2 fed standard diet containing 0.2% NaNO2; group 3 and 4 fed the previous diet supplemented with 1% and 2% arginine, respectively; group 5 and 6 fed NaNO2 diet supplemented with 1% and 2% glutamine, respectively. NaNO2 treatment induced a significant increase in serum malondialdehyde, nitric oxide, arginase, glutathione-S-transferase activities, urea and creatinine as well as differential leucocytes%. However, a significant decrease was recorded in reduced glutathione, catalase activity, total protein, albumin and some hematological parameters as well as immunoglobulin G. On the other hand, arginine or glutamine showed a remarkable modulation of these abnormalities as indicated by reduction of malondialdehyde and improvement of the investigated antioxidant and hematological parameters. It can be concluded that arginine or glutamine supplementation may reduce oxidative stress and improve the hazard effects of NaNO2.  相似文献   

8.
Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of diabetic complications. Although some clinical evidences suggest the use of pyridoxal-5'-phosphate (PLP) in diabetes with nephropathy, the exact mechanism of PLP has not been fully understood. In the present study, the effect of PLP on 2-deoxy-D-ribose (dRib)-induced oxidative damages and apoptosis on human monocytic cells (U937) was investigated. U937 cells exposed to dRib (30 mM) exhibited abnormal properties, including loss pf cell viability, overproduction of reactive oxygen species (ROS), glutathione depletion and some biochemical features of apoptosis. Treatment with PLP at two effective concentrations (100 and 250 microM) strongly inhibited ROS production and glutathione depletion in dRib-treated U937 cells. The extent of Lipid peroxidation and protein oxidation was also decreased in the presence of PLP. In addition, PLP suppressed dRib-induced apoptotic criteria such as sub-G1 apoptotic population and annexin-V staining. The use of N-acetylcysteine (NAC), a thiol antioxidant and GSH precursor, prevented the extent of apoptosis. The results demonstrate that dRib induces the generation of ROS leading to dRib-mediated apoptosis which can be attenuated by PLP through antioxidant mechanisms.  相似文献   

9.
Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds, and exposure to it has been associated with a number of adverse health effects. However, the molecular mechanisms involved in PFOA toxicity are still not well characterized. In the present study, flow cytometry analysis revealed that PFOA induced oxidative stress, cell cycle arrest and apoptosis in human non-tumor hepatic cells (L-02). Furthermore, we investigated the alterations in protein profile within L-02 cells exposed to PFOA, aiming to explore the mechanisms underlying PFOA hepatotoxicity on the proteome level. Of the 28 proteins showing significant differential expression in response to PFOA, 24 were down-regulated and 4 were up-regulated. This proteomic study proposed that the inhibition of some proteins, including GRP78, HSP27, CTSD and hnRNPC may be involved in the activation of p53, which consequently triggered the apoptotic process in L-02 cells. Induction of apoptosis via the p53-dependent mitochondrial pathway is further suggested as one of the key toxicological events occurring in L-02 cells under PFOA stress. We hope these data will shed new light on the molecular mechanisms responsible for PFOA-mediated toxicity in human liver cells, and from such studies useful biomarkers indicative of PFOA exposure could be developed.  相似文献   

10.
1.?The extent of sulfoxidation of the drug, S-carboxymethyl-l-cysteine, has been shown to vary between individuals, with this phenomenon being mooted as a biomarker for certain disease states and susceptibilities. Studies in vitro have indicated that the enzyme responsible for this reaction was phenylalanine monooxygenase but to date no in vivo evidence exists to support this assumption. Using the mouse models of mild hyperphenylalaninamia (enu1 PAH variant) and classical phenylketonuria (enu2 PAH variant), the sulfur oxygenation of S-carboxymethyl-l-cysteine has been investigated.

2.?Compared to the wild type (wt/wt) mice, both the heterozygous dominant (wt/enu1 and wt/enu2) mice and the homozygous recessive (enu1/enu1 and enu2/enu2) mice were shown to have significantly increased Cmax, AUC(0–180?min) and AUC(0–∞?min) values (15?- to 20-fold higher). These results were primarily attributable to the significantly reduced clearance of S-carboxymethyl-l-cysteine (13?- to 22-fold lower).

3.?Only the wild type mice produced measurable quantities of the parent S-oxide metabolites. Those mice possessing one or more allelic variant showed no evidence of blood SCMC (R/S) S-oxides. These observations support the proposition that differences in phenylalanine hydroxylase activity underlie the variation in S-carboxymethyl-l-cysteine sulfoxidation and that no other enzyme is able to undertake this reaction.  相似文献   

11.
Abstract

1. Incubation of beagle hepatic cytosol, under conditions promoting phenylalanine hydroxylase activity, led to the formation of the sulfoxide derivatives of S-carboxymethyl-l-cysteine, N-acetyl-S-carboxymethyl-l-cysteine, S-methyl-l-cysteine and N-acetyl-S-methyl-l-cysteine. Thiodiglycolic acid was not a substrate. Enzyme kinetic parameters (Km, Vmax) were derived indicating S-carboxymethyl-l-cysteine had the greatest clearance; no enantioselective preference was observed for this S-oxygenation reaction.

2. Following oral administration of S-carboxymethyl-l-cysteine to beagle dogs, the parent substance and its sulfoxide were the only compounds identified in the plasma. Pharmacokinetic data have been obtained indicating that the small amount of sulfoxide formed persisted within the body for longer than the parent material, but that the majority of the ingested dose remained in the administered sulfide form.

3. The sulfide moiety within the muco-regulatory drug, S-carboxymethyl-l-cysteine, is thought to be vital as it acts as a free radical scavenger, resulting in the inactive sulfoxide. Additional extensive enyzme-mediated sulfoxidation would decrease the amount of active sulfide available. In the dog this appears to not be an issue, signalling possible exploitation for therapeutic benefit in treating airway disease.  相似文献   

12.
N-acetyl-l-aspartic acid (NAA) is a constituent of the mammalian central nervous system (CNS) that has been identified in a number of commonly consumed foods. The current study reports the outcome of acute and repeated dose oral toxicology studies conducted with NAA in Sprague-Dawley (SD) rats. No mortalities or evidence of adverse effects were observed in SD rats following acute oral administration of 2000mg/kg NAA. In a separate study, NAA was added to the diets of SD rats (n=10/sex group) at concentrations corresponding to daily doses of 10, 100, or 1000mg/kg/day for 14 consecutive days and 100, 500, and 1000mg/kg/day for another 14 days. All rats survived until scheduled sacrifice and no differences in body weights, feed consumption values, or clinical signs were observed in any of the treatment groups. No biologically significant differences were observed in functional observational battery (FOB), motor activity evaluations, ophthalmologic examinations, hematology, coagulation, clinical chemistry, or organ weights of any of the NAA treatment groups. Further, no test substance-related gross or microscopic changes were observed in NAA exposure groups. Based on these results, NAA was not considered acutely toxic following oral exposure to 2000mg/kg and the no-observed-adverse-effect-level (NOAEL) for systemic toxicity from repeated dose dietary exposure to NAA is 1000mg/kg/day.  相似文献   

13.
The effect of a lipophilic nitric oxide (NO)-releasing compound 5-amino-3-(3,4-dichlorophenyl) 1,2,3,4-oxatriazolium (GEA3162) on the spontaneous release of 5-hydroxytryptamine (5-HT) from human colonic mucosa was investigated in vitro. In the presence of tetrodotoxin, spontaneous outflow of 5-HT from the human colonic mucosa was measured by high-performance liquid chromatography with electrochemical detection. GEA3162 concentration-dependently suppressed the 5-HT outflow, but neither the NO-activated soluble guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor peroxynitrite scavenger ebselen affected the suppressant effect of GEA3162. Moreover, neither the L-type calcium channel blocker nicardipine, NO synthase inhibitor l-N(G)-nitroarginine methyl ester nor guanylate cyclase activator guanylin affected the spontaneous 5-HT outflow. These results indicate that human colonic mucosa is capable of eliciting tetrodotoxin-resistant and nicardipine-insensitive 5-HT release, and that GEA3162 can suppress the 5-HT release via an action on colonic mucosa through mechanism independent of ODQ-sensitive cyclic GMP system or peroxynitrite generation.  相似文献   

14.
Objective of the present study was to test the importance of tissue repair in the final outcome of S-(1,2-dichlorovinyl)-L-cysteine (DCVC)-induced nephrotoxicity using colchicine (CLC) intervention. Male Swiss Webster (SW) mice were administered a normally nonlethal dose of DCVC (30 mg/kg, i.p.) on day 0 and CLC (2 mg/kg, i.p.) at 42 and 66 h after administration of DCVC. The mice were observed for mortality and various renal injury and repair parameters were studied during a time course of 0-14 days. Administration of 30 mg DCVC/kg led to loss of renal architecture by day 1, which sustained until day 5, and regressed thereafter to reach normal architecture by day 10 resulting in 100% survival. Renal dysfunction as assessed by increases in plasma BUN and creatinine levels was concordant during this time course. Urinary volume increased significantly between days 10 and 14 with significant increases in urinary glucose concentrations on days 1-4. Calpain leakage increased from day 1 and remained so until day 5 before declining at later time points. In contrast, CLC intervention led to marked inhibition of S-phase DNA synthesis and 100% mortality by 120 h. H&E sections of kidneys revealed loss of renal architecture on day 1 which progressively worsened from day 2 to 4. Polyuria and glycosuria were evident during the first 2 and 3 days, respectively. Calpain immunohistochemistry revealed progressive leakage of calpain in the extracellular space during 2-4 days which lead to increased renal injury as evident from significant increases in calpain specific breakdown products (CSBPs) of alpha-fodrin during the same period of time. The group of mice receiving 2 mg CLC/kg alone showed a significant increase in urinary creatinine concentration on day 5. Neither the expression nor localization of aquaporin 1 was altered in any of the treatment groups. These results show that antimitotic intervention after DCVC-initiated renal injury leads to expansion and progression of that injury, which appears to be due to proteolytic destruction of neighboring cells mediated by calpain leaking out of necrosed renal tubular epithelial cells.  相似文献   

15.
Glucose-fed rat is a model of insulin resistance that displays sensory polyneuropathy and hypertension. This study aimed at comparing the beneficial effects of N-Acetyl-L-Cysteine (NAC, antioxidant) and ramipril (angiotensin-1 converting enzyme inhibitor) on tactile and cold allodynia induced by chronic glucose feeding. Impact of these treatments was also assessed on hypertension, plasma glucose and insulin concentrations, insulin resistance and kinin B(1) receptor expression. Male Wistar rats (50-75 g) were given 10% d-glucose in their drinking water for 11 weeks or tap water (controls). Glucose-fed rats were treated either with NAC (1 g/kg/day, gavage), ramipril (1 mg/kg/day in drinking water) or no drug during the last 5 weeks. Glucose feeding for 6 weeks induced a significant increase in systolic blood pressure and hyperglycaemia which was accompanied by tactile and cold allodynia. At 11 weeks, plasma insulin, insulin resistance (HOMA index), kinin B(1) receptor mRNA in spinal cord and renal cortex and B(1) receptor binding sites in spinal cord were enhanced in glucose-fed rats. NAC and ramipril caused a progressive to complete inhibition of tactile and cold allodynia from 6 to 11 weeks. High systolic blood pressure, hyperinsulinemia, insulin resistance and kinin B(1) receptor expression were also normalized or attenuated in glucose-fed rats by either treatment. Results suggest that chronic treatment with an antioxidant or an ACE inhibitor provides similar beneficial effects on sensory polyneuropathy, hypertension and insulin resistance in glucose-fed rats. Both therapies were associated with a reduction of the expression of the pro-nociceptive kinin B(1) receptor.  相似文献   

16.
Cyclosporin A is known to decrease nitric oxide (NO) production in nervous tissues. The effects of systemic cyclosporine A on the induction and expression of morphine tolerance and dependence, acute morphine-induced antinociception, and the probable involvement of the L-arginine/nitric oxide pathway in these effects were assessed in mice. Cyclosporin A (20 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) and a combination of the two at lower and per se non-effective doses (5 and 3 mg/kg, respectively) showed a similar pattern of action, inhibiting the induction of tolerance to morphine-induced antinociception and increasing the antinociception threshold in the expression phase of morphine tolerance. These agents also inhibited the expression of morphine dependence as assessed by naloxone-precipitated withdrawal signs, while having no effect on the induction of morphine dependence. L-Arginine, at a per se non-effective dose (60 mg/kg), inhibited the effects of Cyclosporin A. Moreover, acute administration of Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) enhanced the antinociception induced by acute administration of morphine (5 mg/kg), while chronic pretreatment with Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) for 2 days (twice daily) did not affect morphine-induced antinociception. The inducible nitric oxide synthase inhibitor, aminoguanidine (100 mg/kg), did not alter morphine antinociception, tolerance or dependence. In conclusion, decreasing NO production through constitutive nitric oxide synthase may be a mechanism through which cyclosporin A differentially modulates morphine tolerance, dependence and antinociception.  相似文献   

17.
This study investigates the efficacy of surface-modified microspheres of hepatitis B surface antigen (HBsAg) in eliciting systemic and mucosal immune responses. Positively charged poly(d,l-lactic-co-glycolic acid) microspheres were prepared by a double-emulsion solvent-evaporation method with cationic agents—stearylamine and polyethylenimine—in the external aqueous phase. Formulations were characterized for morphology, size, density, aerodynamic diameter, entrapment efficiency and in vitro drug-release profile. Immunization was performed after pulmonary administration of the formulations to female Sprague–Dawley rats and the immune response was monitored by measuring IgG levels in serum and secretory (sIgA) levels in salivary, vaginal and bronchoalveolar lavage fluids. The cell-mediated immune response was studied by measuring cytokine levels in spleen homogenates, and a cytotoxicity study was performed with Calu-3 cell line. The aerodynamic diameter of the particles was within the respirable range, with the exception of stearylamine-modified particles. Zeta potential values moved from negative (−6.76 mV) for unmodified formulations to positive (+0.515 mV) for polyethylenimine-modified particles. Compared to unmodified formulations, polyethylenimine-based formulations showed continuous release of antigen over a period of 28–42 days and increased levels of IgG in serum and sIgA in salivary, vaginal and bronchoalveolar lavage. Further, cytokine levels—interferon γ and interleukin-2—were increased in spleen homogenates. The viability of Calu-3 cells was not adversely affected by the microparticles. In summation, this study establishes that positive surface charges on poly(d,l-lactic-co-glycolic acid) particles containing HBsAg enhances both the systemic and mucosal immune response upon immunization via the respiratory route.  相似文献   

18.
Sensory abnormality is one of the serious complications in diabetes. Since the effective therapeutic regimen to ameliorate the diabetic sensory abnormality is very few, the present study was then designed to investigate the effect of zinc l-carnosine on the changes of nociceptive threshold in diabetic mice. Zinc l-carnosine (75–300 mg/kg, p.o.) was administered once daily from 1 day after streptozotocin treatment. Diabetic mice showed shorter tail-flick latency at 1–4 weeks after streptozotocin treatment and longer tail-flick latency at 6–9 weeks after its treatment. The shortened tail-flick latency in early stage of diabetic mice was ameliorated by treatment with zinc l-carnosine. Moreover, zinc l-carnosine also slowed the onset of hypoalgesia in diabetic mice. Tail-flick latency in non-diabetic mice was not affected by the zinc l-carnosine treatment, indicating that zinc l-carnosine did not affect normal nociceptive transmission. Moreover, l-carnosine, but not zinc sulfate, ameliorated the abnormal sensory perception in diabetic mice. Interestingly, the ameliorative effect of zinc l-carnosine on the abnormal sensory perception in diabetic mice is much stronger than that of l-carnosine. These results provide the evidence of the ameliorative potential of zinc l-carnosine on the progressive diabetic neuropathy. Moreover, l-carnosine combined with zinc shows more potent amelioration of abnormal sensory perception in diabetic mice than by itself.  相似文献   

19.
Insulin resistance is an important feature of type 2 diabetes and obesity. The underlying mechanisms of insulin resistance are still unclear and may involve pathological changes in multiple tissues. Mitochondrial dysfunction, including mitochondrial loss and over-production of oxidants, has been suggested to be involved in the development of insulin resistance. Increasing evidence suggests that targeting mitochondria to protect mitochondrial function as a unique measure, i.e. mitochondrial medicine, could prevent and ameliorate various diseases associated with mitochondrial dysfunction. In this review, we have summarized recent progress in pharmaceutical and nutritional studies of drugs and nutrients to targeting mitochondria by stimulating mitochondrial metabolism (biogenesis and degradation) to improve mitochondrial function and decrease oxidative stress for preventing and ameliorating insulin resistance. We have focused on nutrients from natural sources to stimulating mitochondrial biogenesis in cellular systems and in animal models. The in vitro and in vivo studies, especially our own work on the effects and mechanisms of mitochondrial targeting nutrients or their combinations, may help us to understand the importance and mechanisms of mitochondrial biogenesis in insulin resistance, and provide hope for developing mitochondria-targeting agents for preventing and treating insulin resistance in type 2 diabetes and obesity.  相似文献   

20.
The effect of (mu(3)-diethylentriamino)-chloro-palladium(II)-chloride ([PdCl(dien)]Cl) on the activity of Na/K-ATPase from porcine cerebral cortex was studied in vitro, in the absence and presence of -SH containing ligands L-cysteine and glutathione (GSH). The aim of the study was to elucidate the mechanism of [PdCl(dien)](+) induced inhibition of the enzyme activity and to examine the ability of thiols to prevent and recover the inhibition. The coordinative interaction between [PdCl(dien)](+) and enzyme was verified by UV and (1)H NMR spectra. The semblance in the changes in absorption spectra of [PdCl(dien)](+) in the presence of Na/K-ATPase and thiols (L-cysteine and GSH) suggested that the complex ion interacts with enzymatic sulfhydryl groups. [PdCl(dien)](+) inhibited the enzyme activity in a dose-dependent manner. The Hill analysis of the inhibition curve yielded the half-maximum inhibitory activity value, IC(50)=1.21 x 10(-4)M, and Hill coefficient, n=0.7, suggesting the negative cooperation for binding of [PdCl(dien)](+) to the enzyme. Dependence of the initial reaction rate on the concentration of MgATP(2-) exhibited typical Michelis-Menten kinetics in the absence and presence of the inhibitor. Kinetic analysis showed that [PdCl(dien)](+) inhibited Na/K-ATPase by reducing the maximum reaction rate (V(max)), rather than changing the affinity to the substrate (K(m)). Kinetic parameters derived using Lineweaver-Burk transformation of experimental data indicated the non-competitive nature of Na/K-ATPase inhibition. The inhibitory constant, K(i)=1.05 x 10(-4)M, was determined from secondary replot of Lineweaver-Burk graph, and correlated with stability constants of [Pd(dien)(thiol)] complexes. 1 x 10(-3)M L-cysteine or GSH prevented the enzyme inhibition induced by Pd(II) complex cation when present below 1 x 10(-4)M. The both thiols completely reversed the inhibited activity in the concentration dependent manner, due to the complex formation with [PdCl(dien)](+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号