首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unilateral ureteral obstruction (UUO) results in widespread tubular apoptosis in obstructed kidneys of both adults and neonates. The oncoprotein bcl-2 inhibits many forms of apoptosis, whereas the related protein bax promotes apoptosis. To evaluate the interaction of bcl-2, bax, and apoptosis in the renal response to UUO, adult and neonatal rats were subjected to UUO or sham operation, and kidneys were harvested 14 days later. Apoptotic cells were identified by the Tunel technique, and the distribution of bcl-2 and bax was determined by immunochemistry. In both adults and neonates, tubular and interstitial apoptosis was present in the obstructed kidney, but not in intact kidneys. In both adults and neonates, there was diffuse tubular bcl-2 and bax staining of sham-operated and intact kidneys. While bcl-2 was increased in scattered nonapoptotic tubules of the obstructed kidney, there was minimal staining of dilated apoptotic tubules. These results are consistent with the premise that bcl-2 normally suppresses renal tubular apoptosis. The distribution of bax staining in tubules of the obstructed kidney overlapped that of bcl-2. We conclude that chronic UUO inhibits bcl-2 expression in selected tubules of the obstructed kidney which contributes to activation of apoptosis and progressive renal damage in either neonatal or adult kidneys. Dysregulation of apoptosis may be a response to renal injury similar to that underlying the development of cystic kidney disease or renal dysplasia.  相似文献   

2.
BACKGROUND: Epidermal growth factor (EGF) markedly attenuates tubular apoptosis induced by unilateral ureteral obstruction (UUO) in the neonatal rat, and reduces apoptosis induced by mechanical stretch of cultured rat tubular cells. METHODS: To investigate the role of EGF in modulating apoptosis resulting from UUO, neonatal wild type and mutant mice lacking EGF (knockout), or with diminished EGF receptor activity (waved-2 mutant) were compared to control mice for tubular apoptosis and atrophy. Rat and mouse kidneys were compared for localization of the EGF receptor. Apoptosis was also measured in cultured mouse tubular cells subjected to stretch and exposed to EGF. RESULTS: UUO reduced endogenous renal EGF expression in wild-type mice. Unlike the rat, exogenous EGF did not decrease tubular apoptosis or atrophy in the obstructed kidney, and significantly increased stretch-induced apoptosis of cultured mouse tubular cells. Tubular apoptosis was 50% lower in the obstructed kidney of EGF knockout and waved-2 mice relative to wild type and heterozygous animals. Exogenous EGF increased tubular apoptosis and doubled atrophy in the obstructed kidney of waved-2 mice. Species differences in EGF receptor localization were detected in 3-day-old kidneys. CONCLUSION: EGF acts as a survival factor in the neonatal rat, but potentiates tubular cell death in the neonatal mouse. Species differences are maintained in cultured cells, suggesting that differences in EGF receptor signaling underlie these opposing effects.  相似文献   

3.
BACKGROUND: The administration of insulin-like growth factor-1 (IGF-1) has been shown to ameliorate the renal injury resulting from ischemic acute renal failure. As there are a number of similarities between acute renal failure and obstructive nephropathy, we examined the effects of IGF-1 on the renal cellular response to unilateral ureteral obstruction (UUO) in the neonatal rat. METHODS: Forty-five rats were subjected to UUO or sham operation within the first 48 hours of life and received IGF-1 (2 mg/kg/day) or saline for the following three or seven days, after which kidneys were removed for study by morphometry and immunohistochemistry. To determine the effects of UUO on endogenous expression of IGF-1 and its receptor, six additional rats were subjected to UUO or sham operation, and mRNA was measured by solution hybridization. RESULTS: There was no effect of seven days of UUO on the renal expression of endogenous IGF-1 or its receptor. Moreover, seven days of exogenous IGF-1 did not improve the suppression of nephrogenesis, the delay in glomerular maturation, or the reduction in tubular proliferation induced by ipsilateral UUO. However, in the obstructed kidney, IGF-1 reduced tubular expression of vimentin, apoptosis, and tubular atrophy by 38 to 50% (P < 0.05). In addition, IGF-1 also decreased renal interstitial collagen deposition in the obstructed kidney by 44% (P < 0.05). Following three days of UUO, the administration of IGF-1 also reduced tubular apoptosis (P < 0.05), but did not alter tubular proliferation. CONCLUSIONS: IGF-1 has a profound salutary effect on the tubular and interstitial response to UUO in early development, without affecting glomerular injury or development. These results suggest that IGF-1 may have therapeutic potential in the management of congenital obstructive nephropathy.  相似文献   

4.
BACKGROUND: The obstructed kidney in unilateral ureteral obstruction (UUO) is characterized by renal atrophy and tissue loss, which is mediated by renal tubular apoptosis. We sought to determine whether NO is involved in renal tubular apoptosis in vitro and in vivo. METHODS: Rat renal tubular epithelial cells (NRK-52E) were subjected to mechanical stretch, and apoptosis and cell size were analyzed by flow cytometry. Furthermore, we studied UUO in mice lacking the gene for inducible nitric oxide synthase (iNOS-/-) and their wild-type littermates. Tubular apoptosis and proliferation were detected by immunostaining. NOS activity and NOS expression were assessed by a citrulline assay and Western blot, respectively. RESULTS: Stretching-induced apoptosis in NRK-52E, which was reduced when NO was increased; conversely, stretch-induced apoptosis was increased when a NOS inhibitor was added to the cells. Stretched cells are larger and more apoptotic than unstretched cells. In UUO, the obstructed kidney of iNOS-/- mice exhibited more apoptotic renal tubules than the wild-type mice through 14 days of UUO. The obstructed kidney of iNOS-/- mice at day 3 showed more proliferative tubules compared with wild type. The obstructed kidney of wild-type mice exhibited higher total NOS activity until day 7 after UUO compared with iNOS-/- mice. However, the obstructed kidney of day 14 wild-type mice exhibited significantly lower iNOS activity and protein compared with the day 0 kidney. CONCLUSION: These results suggest that mechanical stretch is related to renal tubular apoptosis and that NO plays a protective role in this system in UUO.  相似文献   

5.
BACKGROUND: Unilateral ureteral obstruction (UUO) is characterized by progressive renal atrophy, renal interstitial fibrosis, an increase in renal transforming growth factor-beta (TGF-beta), and renal tubular apoptosis. The present study was undertaken to determine the effect of a monoclonal antibody to TGF-beta (1D11) in UUO. METHODS: Mechanical stretch was applied to tubular epithelial cells (NRK-52E) by a computer-assisted system. Three doses of 1D11 (either 0.5, 2, or 4 mg/rat) were administered to rats one day prior to UUO and every two days thereafter, and kidneys were harvested at day 13. Fibrosis was assessed by measuring tissue hydroxyproline and mRNA for collagen and fibronectin. Apoptosis was assessed with the terminal deoxy transferase uridine triphosphate nick end-labeling assay. TGF-beta levels were determined by bioassay. Western blot and immunostaining were used to identify proliferating cell nuclear antigen (PCNA), p53, bcl-2, and inducible nitric oxide synthase (iNOS). RESULTS: Stretch significantly induced apoptosis in NRK-52E cells, which was accompanied by an increased release of TGF-beta; 1D11 (10 microg/mL) totally inhibited stretch-induced apoptosis. Control obstructed kidney contained 20-fold higher TGF-beta as compared with its unobstructed kidney; 1D11 neutralized tissue TGF-beta of the obstructed kidney. Control obstructed kidney exhibited significantly more fibrosis and tubular apoptosis than its unobstructed counterpart, which was blunted by 1D11. In contrast, 1D11 significantly increased tubular proliferation. p53 immunostaining was localized to renal tubular nuclei of control obstructed kidney and was diminished by 1D11. In contrast, bcl-2 was up-regulated in the 1D11-treated obstructed kidney. Total NOS activity and iNOS activity of the obstructed kidney were increased by 1D11 treatment. CONCLUSION: The present study strongly suggests that an antibody to TGF-beta is a promising agent to prevent renal tubular fibrosis and apoptosis in UUO.  相似文献   

6.
BACKGROUND: Unilateral ureteral obstruction (UUO) is characterized by progressive tubular atrophy and interstitial fibrosis. Rupture of the balance between cell proliferation and apoptosis plays a critical role in renal atrophy. Hepatocyte growth factor (HGF) is a cytokine function on cell survival and tissue regeneration. We studied the effects and possible mechanisms of HGF gene therapy on tubular cell survival and anti-fibrosis in chronic obstructed nephropathy. METHODS: An in vivo transfection procedure of repeatedly transducing skeletal muscles with the HGF gene using liposomes containing the hemagglutinating virus of Japan (HVJ liposome) was tested on UUO rats. Expression of HGF and c-Met were examined by in situ hybridization, ELISA, or immunohistochemical staining. Interstitial fibrosis and macrophage infiltration were evaluated by Masson's Trichrome staining, alpha-smooth muscle actin and ED-1 immunostaining. Cell survival indices including proliferating cell nuclear antigen (PCNA), Bcl-2, Bcl-xL and Bax were measured by immunohistochemistry and Western blots. Apoptosis was determined by the TUNEL method. RESULTS: After HVJ-HGF gene transfer, endogenous HGF and c-Met were up-regulated in UUO kidneys. Renal fibrosis, macrophage infiltration and tubular atrophy were suppressed both at day 14 and 28 after UUO (P < 0.05 or 0.01). Tubular cell proliferation was activated while apoptosis was inhibited, especially at the late stage of UUO. Bcl-2 was enhanced in the HGF-transfected UUO rats, while no changes of Bcl-xL and Bax were found. CONCLUSIONS: In vivo HGF gene transfection retards the progression of chronic obstructed nephropathy and protects tubular cell survival in the long-term UUO model. Bcl-2 rather than Bcl-xL or Bax may contribute to the anti-apoptotic function of HGF.  相似文献   

7.
BACKGROUND: Congenital obstructive nephropathy is a condition characterized by hydronephrosis, tubular dilatation, apoptosis, and atrophy, as well as interstitial cellular infiltration and progressive interstitial fibrosis. The renal consequences of chronic unilateral ureteral obstruction (UUO) in the neonatal rat are similar to those of clinical congenital obstructive nephropathy. METHODS: To define alterations in renal gene expression induced by chronic neonatal UUO, Sprague-Dawley rats were subjected to UUO or sham operation within the first 2 days of life, and kidneys were harvested after 12 days. RESULTS: Microarray analysis revealed that the mRNA expression of multiple immune modulators, including krox24, interferon-gamma regulating factor-1 (IRF-1), monocyte chemoattractant protein-1 (MCP-1), interleukin-1beta (IL-1beta), CCAAT/enhancer binding protein (C/EBP), p21, c-fos, c-jun, and pJunB, was significantly increased in obstructed compared to sham-operated kidneys (all P < 0.05). Western blot analysis revealed significant changes in immune modulator protein abundance in the obstructed versus sham-operated kidney for krox24 (P = 0.0004), IRF-1 (P = 0.005), MCP-1 (P = 0.01), and JunD (P = 0.0008). Alternatively, the abundance of all of the immune modulator proteins was similar in sham-operated and obstructed kidneys in rats subjected to acute (4 days) neonatal UUO. Microarray analysis studies also reveal that structural genes that comprise the cytoskeleton and cell matrix are significantly up-regulated by chronic neonatal UUO, including calponin, desmin, dynamin, and lumican (all P < 0.05). CONCLUSION: Multiple genes are aberrantly expressed in the kidney of rats subjected to chronic neonatal UUO. Elucidation of these genes involved in neonatal UUO may lead to new insight about congenital obstructive nephropathy.  相似文献   

8.
9.
BACKGROUND: Osteopontin is a macrophage adhesive protein that is expressed by renal tubules in tubulointerstitial disease. METHODS: To investigate the function of OPN, we induced tubulointerstitial disease in OPN null mutant (OPN-/-) and wild-type (OPN+/+) mice by unilateral ureteral ligation. Tissue was analyzed for macrophages (ED-1), types I and IV collagen deposition, TGF-beta expression, and for tubular and interstitial cell apoptosis. RESULTS: Obstructed kidneys from both OPN-/- and OPN+/+ mice developed hydronephrosis, tubular atrophy, interstitial inflammation and fibrosis. OPN was absent in OPN-/- kidneys but was increased in obstructed OPN+/+ kidneys. Macrophage influx, measured by computer-assisted quantitative immunostaining, was less in OPN-/- mice compared to OPN+/+ mice at day 4 (threefold, P < 0.02), day 7 (fivefold, P < 0.02), but not at day 14. Interstitial deposition of types I and IV collagen were also two- to fourfold less in obstructed OPN-/- kidneys (P < 0.02). There was also a reduction of TGF-beta mRNA expression in the interstitium at day 7 (by in situ hybridization) and a near significant 34% reduction in cortical TGF-beta activity (P = 0.06) compared to obstructed OPN+/+ kidneys at day 14. Obstructed kidneys from OPN-/- mice also had more interstitial and tubular apoptotic cells (TUNEL assay) compared to obstructed OPN+/+ mice at all time points. The ability of OPN to act as a cell survival factor was also documented by showing that the apoptosis of serum-starved NRK52E renal epithelial cells was markedly enhanced in the presence of neutralizing anti-OPN antibody. CONCLUSION: OPN mediates early interstitial macrophage influx and interstitial fibrosis in unilateral ureteral obstruction. OPN may also function as a survival factor for renal tubulointerstitial cells.  相似文献   

10.
PURPOSE: We determined whether the cyclooxygenase-2 inhibitor etodolac affects renal tubular damage and interstitial fibrosis in unilateral ureteral obstruction. MATERIALS AND METHODS: Etodolac (10 mg./kg.) was administered to rats 1 day before unilateral ureteral obstruction and every day thereafter. Kidneys were harvested at day 14 after unilateral ureteral obstruction. Tissue transforming growth factor-beta and prostaglandin E2 were measured by bioassay using mink lung epithelial cells and enzyme linked immunosorbent-sandwich assay. Renal tubular proliferation and apoptosis were detected by immunostaining with proliferating cellular nuclear antigen and by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling, respectively. Cyclooxygenase-2 expression was detected by immunohistochemistry. Fibrosis was assessed by measuring collagen deposition in trichrome stained slides. RESULTS: Bioassay showed that in the control group obstructed kidneys contained significantly higher mean transforming growth factor-beta1 than unobstructed kidneys (79.1 +/- 8.3 versus 33.6 +/- 4.2 ng./gm. tissue) and etodolac significantly decrease the mean value in obstructed kidneys (46.2 +/- 10.0 ng./gm. tissue). Assay demonstrated that obstructed control kidneys had significantly more mean tubular apoptosis than their unobstructed counterparts (26.6 +/- 5.4 versus 2.2 +/- 1.4 nuclei per high power field) and etodolac significantly decreased mean renal tubular apoptosis in the obstructed kidneys (16.2 +/- 1.9 nuclei per high power field). In addition, immunostaining with proliferating cellular nuclear antigen showed that obstructed kidneys in the control group had significantly more mean renal tubular proliferation than unobstructed kidneys (9.8 +/- 3.4 versus 3.9 +/- 0.1 per high power field) and etodolac significantly increased mean proliferating renal tubule in the obstructed kidneys (24.9 +/- 4.3 per high power field). Control obstructed kidneys had significantly more fibrosis and prostaglandin E2 production, which were also significantly blunted by etodolac. CONCLUSIONS: The cyclooxygenase-2 inhibitor etodolac significantly reduces tissue transforming growth factor-beta, resulting in decreased tubular damage and interstitial fibrosis. This finding suggests that etodolac is a promising agent for preventing renal tissue damage in unilateral ureteral obstruction.  相似文献   

11.
Tranilast ameliorates renal tubular damage in unilateral ureteral obstruction   总被引:12,自引:0,他引:12  
PURPOSE: We determined whether tranilast, the anti-allergic agent N-(3, 4-dimethoxyciannamoyl)-anthranilic acid, would diminish renal transforming growth factor-beta (TGF-beta) levels in unilateral ureteral obstruction and concomitantly affect renal tubular apoptosis and proliferation in that condition. MATERIALS AND METHODS: Tranilast (150 mg./kg.) was administered to rats 1 day before unilateral ureteral obstruction and each day thereafter. Kidneys were harvested day 14 after unilateral ureteral obstruction. Tissue TGF-beta was measured by bioassay using mink lung epithelial cells. Renal tubular proliferation and apoptosis were detected by immunostaining proliferating cell nuclear antigen and the terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling assay, respectively. Fibrosis was assessed by measuring collagen deposition with trichrome stained slides. RESULTS: TGF-beta bioassay showed that obstructed kidneys in controls contained significantly higher mean TGF-beta plus or minus standard deviation than unobstructed kidneys in controls (73.7 +/- 13.6 versus 14.1 +/- 5.5 pg./mg. tissue) and tranilast significantly decreased tissue TGF-beta in obstructed kidneys (15.9 +/- 4.8 pg./mg. tissue). The terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling assay demonstrated that obstructed kidneys in controls had significantly more mean tubular apoptosis than the unobstructed counterparts (36.6 +/- 6.7 versus 5.8 +/- 5.5 nuclei per high power field) and tranilast significantly decreased mean renal tubular apoptosis in obstructed kidneys (16.2 +/- 1.7 nuclei per high power field). In addition, immunostaining proliferating cell nuclear antigen showed that obstructed kidneys in controls had significantly more mean renal tubular proliferation than unobstructed kidneys (20.7 +/- 3.4 versus 6.2 +/- 2.1 per high power field) and tranilast significantly increased proliferating renal tubules in obstructed and unobstructed kidneys (26.5 +/- 8.3 and 14.5 +/- 3.4 per high power field, respectively). Control obstructed kidneys exhibited significantly more fibrosis, which was also blunted by tranilast. CONCLUSIONS: Tranilast significantly decreases tissue TGF-beta, resulting in a reduction in tubular apoptosis and an increase in tubular proliferation. This finding suggests that tranilast is a promising agent for preventing renal tubular damage in unilateral ureteral obstruction.  相似文献   

12.
BACKGROUND: Unilateral ureteral obstruction (UUO) could induce increased renal angiotensin II (ANG II), which enhances apoptosis of renal tubular cells and renal tissue loss. Systemic ANG II is also increased in UUO. There are no data available about whether UUO can induce apoptosis of circulating lymphocytes or not. METHODS: UUO or sham-operated male Wistar rats (n = 8 in each group) were fed a drinking solution containing water, angiotensin II receptor type 1 antagonist (ARA; losartan, 500 mg/L) or angiotensin-converting enzyme inhibitor (ACEI; enalapril: 200 mg/L) for 1 day or 7 days. Blood samples were collected and circulating lymphocyte cells were separated. The apoptotic cells were detected by in situ terminal deoxynucleotidyl transferase (TdT assay)-mediated digoxigenin/antidigoxigenin conjugated fluorescein method and counted under a fluorescence microscope. The apoptotic index was calculated. RESULTS: UUO caused marked increases in the apoptotic index of circulating lymphocytes in UUO rats at both 1 day and 7 days when compared with the respective sham groups (P < 0.001). Neither ARA nor ACEI treatment had an effect on the apoptotic index values in the UUO rats at 1 day. In the UUO rats at 7 days, the apoptosis of circulating lymphocytes was markedly decreased from 29.2 +/- 2.7% to 11.9 +/- 2.7% (P < 0.01) in the ARA-treated rats and to 7.6 +/- 2.7% (P < 0.001) in the ACEI-treated rats. CONCLUSION: UUO, via stimulation of ANG II, could promptly enhance apoptosis of circulating lymphocytes. The apoptosis persisted throughout the 7 days of the study. Prolonged UUO would impair lymphocyte cell immunity and the host defense mechanism. Continuous treatment with either ARA or ACEI could abrogate ANG II-stimulated circulating lymphocyte apoptosis.  相似文献   

13.
Induction of CD14 in tubular epithelial cells during kidney disease   总被引:5,自引:0,他引:5  
Analysis of gene expression in a mouse model of unilateral ureteral obstruction (UUO) revealed significant induction of CD14 mRNA in kidneys with obstructed ureters. Immunocytochemical analysis indicated that CD14 was upregulated in tubular epithelial cells and this upregulation was not attributable to infiltration of the kidneys by mononuclear cells. This induction of CD14 mRNA was found to occur in BALB/C, C57BL/6, C3H/HeN, and C3H/HeJ mice during UUO. Ischemia/reperfusion of kidneys also induced CD14 mRNA. Mice lacking either of the tumor necrosis factor-alpha receptor (TNFR) genes were also studied; the induction of CD14 was blunted in TNFR 1-knockout mice but not in TNFR2-knockout mice. Apoptosis of tubular cells in lipopolysaccharide-resistant CH3/HeJ mice was significantly (P: < 0. 05) less than that in lipopolysaccharide-responsive CH3/HeN mice during UUO. These results suggest that CD14 is acutely induced in tubular epithelial cells in two mouse models of renal injury. This induction is regulated by tumor necrosis factor-alpha, through TNFR1. CD14 may participate in the apoptosis of tubular epithelial cells on a more chronic basis by activating a pathway that is absent or deficient in C3H/HeJ mice.  相似文献   

14.
BACKGROUND: Exogenous growth factors administered during unilateral ureteral obstruction (UUO) in neonatal rats significantly reduce apoptosis and tubular atrophy. Because the mechanism underlying these salutary effects is largely unknown, we investigated signaling pathways potentially activated by growth factors to determine their roles in therapeutic action. METHODS: Mechanical strain was applied to confluent cultures of immortalized rat proximal tubule cells to simulate obstruction-induced stretch injury in vivo. Growth factors, inhibitory antibodies or pharmacological inhibitors were added to cultures that were subsequently processed for TUNEL analysis or immunoblots to identify signaling pathways that could be modulating cell survival. For in vivo studies, kidneys harvested from rats +/- UUO +/- epidermal growth factor (EGF) were fixed or frozen for immunohistochemistry or immunoblot analysis. RESULTS: Treatment with EGF or insulin-like growth factor-1 (IGF-1) during stretch decreased apoptosis by 50% (P < 0.001). Neutralizing antibodies (Abs) directed against either growth factor or its receptor blocked the reduction in apoptosis. Stretch decreased BAD phosphorylation by approximately 50% (P < 0.001) relative to unstretched cells and each growth factor restored phosphorylation to basal levels. Kinase-specific inhibitors that blocked growth factor-mediated BAD phosphorylation promoted apoptosis in vitro. BAD phosphorylation decreased by approximately 50% (P < 0.001) in the tubules of obstructed hydronephrotic rat kidneys and administration of EGF restored BAD phosphorylation to basal levels. CONCLUSIONS: Signaling pathways converging at BAD phosphorylation are key to growth factor-mediated attenuation of stretch-induced apoptosis in vitro and in vivo.  相似文献   

15.
Angiotensin II has been implicated in mediating renal vasoconstriction resulting from chronic unilateral ureteral obstruction (UUO) in both mature and developing animals. We have previously shown that chronic neonatal UUO results in increased distribution of renin and its mRNA in the obstructed kidney, as well as of immunoreactive renin in the intact opposite kidney. The present study was designed to evaluate the effects of 24 hours versus 4 weeks of UUO on the distribution of renin mRNA and its protein in the adult rat kidney. Renin was detected by immunocytochemistry using a polyclonal anti-rat renin antibody. Renin mRNA was localized by in situ hybridization to an oligonucleotide complementary to renin mRNA. UUO of 24 hours' or 4 weeks' duration did not alter the distribution of renin and its mRNA in the obstructed kidneys as compared with sham-operated kidneys, although kidneys obstructed for 4 weeks had a significant increase in the percent of renin-containing juxtaglomerular apparatuses (JCA) when compared with the intact opposite kidneys (P less than 0.05). Compensatory hypertrophy was not present in the intact opposite kidneys after 24 hours of UUO and distribution of renin gene expression was not altered at that time. However, 4 weeks following contralateral UUO, the intact kidneys were hypertrophied and showed a decrease in renin gene expression relative to the obstructed and sham-operated kidneys. We conclude that unlike UUO during early development, chronic UUO in the mature animal does not activate renin gene expression nor alter renin distribution in the obstructed kidneys. Renin gene expression is suppressed in the hypertrophied kidney with prolonged contralateral UUO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary: Cytokines, including transforming growth factor (TGF)-β1, contribute to the tubulointerstitial fibrosis of ureteral obstruction. Tumour necrosis factor (TNF)-α, a proinflammatory cytokine produced by multiple cells including macrophages and resident renal cells, has a role in inflammatory cell recruitment in glomerular injury. We measured TNF-α mRNA in the renal cortex of rats at different times after the onset of unilateral ureteral obstruction (UUO) and determined whether angiotensin II (AngII) inhibition or total body irradiation affects the mRNA levels of TNF-α. Rats were killed at 1, 2, 4, 24, 72 and 120h after UUO. Levels of TNF-α mRNA increased significantly in the obstructed kidney at 1h (X 2), 2h (X 2.7), 4h (X 3.6), 24h (X 2.7), 72h (X 1.8) and 120h (X 2.8) after ureteral ligation when compared to the contralateral kidney of the same animals or to control (normal) kidneys. Tumour necrosis factor-α mRNA increased in renal cortical tubules but not in glomeruli. Treatment with enalapril, an angiotensin-converting enzyme (ACE) inhibitor, before and after UUO decreased TNF-α mRNA levels in the obstructed kidney by about 40% at 4h after the onset of UUO, but at 120h there was no difference in TNF-α levels in the obstructed kidney of treated and untreated animals. Total body irradiation, which depletes macrophages in the obstructed kidney, did not prevent the upregulation of TNF-α mRNA expression at 4 h after UUO. Thus, TNF-α may have a role in initiating tubulointerstitial injury in the obstructed kidney. Leucocytes infiltrating the renal interstitium of the obstructed kidney do not appear to contribute to the increased mRNA expression of TNF-α. Angiotensin II may contribute, at least in part, to the early increased expression of TNF-α mRNA in the obstructed kidney.  相似文献   

17.
Shin GT  Kim WH  Yim H  Kim MS  Kim H 《Kidney international》2005,67(3):897-908
BACKGROUND: Angiotensin II (Ang II) mediates the up-regulation of fibrogenic factors such as transforming growth factor-beta1 (TGF-beta1) in chronic renal diseases. In addition, it has been proposed that the intrarenal renin-angiotensin system (RAS) is as important as the systemic RAS in kidney disease progression. METHODS: We suppressed angiotensinogen (AGT) gene expression in the kidney by transferring recombinant adenoviral vectors carrying a transgene expressing AGT antisense mRNA, and determined the effect of the local inhibition of the RAS on TGF-beta1 synthesis in the kidneys of rats with unilateral ureteral obstruction (UUO). Immediately after UUO, recombinant adenovirus vectors were injected intraparenchymally into the cortex of obstructed kidneys. RESULTS: beta-galactosidase (beta-gal)-stained kidney sections revealed the efficient transduction of the recombinant adenoviral vectors into tubular epithelial cells. Kidney cortex injected with AGT antisense showed significantly lower native AGT mRNA and protein expressions than control UUO kidneys at 24 hours and 5 days post-UUO. TGF-beta1 was significantly up-regulated in the renal cortex 24 hours and 5 days post-UUO, whereas AGT antisense-injected UUO rats showed significantly reduced TGF-beta1 expression compared to control UUO rats. Both fibronectin and collagen type I expressions were increased 24 hours and 5 days post-UUO, and these augmentations were considerably reduced by AGT antisense RNA treatment. CONCLUSION: This study demonstrates that the suppression of intrarenal RAS prevents the formation of renal cortical TGF-beta1, and of related fibrogenic factors, in early UUO.  相似文献   

18.
The role of autophagy in unilateral ureteral obstruction rat model   总被引:1,自引:0,他引:1  
Aim: Autophagy is a cellular process of degradation of damaged cytoplasmic components and regulates cell death or proliferation. Unilateral ureteral obstruction (UUO) is a model of progressive renal fibrosis in the obstructed kidney. And UUO is followed by compensatory cellular proliferation in the contralateral kidney. We investigate the role of autophagy in the obstructed kidney and contralateral kidney after UUO. Methods: To obtain the evidence and the patterns of autophagy during UUO, the rats were sacrificed 3, 7 and 14 days after UUO. To examine the efficacy of the autophagy inhibitors, 3‐methyladenine (3‐MA), the rats were treated daily with intraperitoneal injection of 3‐MA (30 mg/kg per day) for 7 days. Results: After UUO, autophagy was induced in the obstructed kidney in a time‐dependent manner. Inhibition of autophagy by 3‐MA enhanced tubular cell apoptosis and tubulointerstitial fibrosis in the obstructed kidney after UUO. In the contralateral kidney, autophagy was also induced and prolonged during UUO. Inhibition of autophagy by 3‐MA increased the protein expression of proliferating cell nuclear antigen significantly in the contralateral kidney after UUO. The Akt‐mammalian target of rapamycin (mTOR) signalling pathway was involved in the induction of autophagy after UUO in both kidneys. Conclusion: Our present results support that autophagy induced by UUO has a renoprotective role in the obstructed kidney and regulatory role of compensatory cellular proliferation in the contralateral kidney through Akt‐mTOR signalling pathway.  相似文献   

19.
Background: Urinary tract obstruction has a marked effect on renal function. Activation of phospholipases which results in incremental production of vasoactive eicosanoids may contribute to the hemodynamic changes characteristic of an obstructed kidney. G proteins play an important role in transmembrane signal transduction, which controls phospholipase activities and eicosanoid production. The present study was designed to determine the presence of G proteins in obstructed kidneys in rats, and to characterize the differences between unilateral ureteral obstruction (UUO) and bilateral ureteral obstruction (BUO).
Methods: Several G-protein α subunits (Gas, Gαi1,2, and Gαi3) and the β subunit (Gβ) were determined by immunoblotting and immunocytochemical techniques using specific antibodies against these G proteins.
Results: lmmunoblots demonstrated a decreased Gαi3 content in the outer medullary tubules and a significantly lower Gβ level in the glomeruli of UUO. In BUO, there was an increased leeel of Gβ in the cortical tubules, and the Gαs level was markedly reduced in the inner medullary tubules.
Immunocytochemical studies revealed that these G proteins were predominantly localized in the brush border side of the cortical tubules. However, we could not demonstrate staining differences between UUO and BUO.
Conclusions: These results indicate that a modulation of G-protein-coupled transmembrane signal transduction may contribute to the renal functional changes in an obstructed kidney. A different level of expression of G-protein subunits between UUO and BUO may be a factor in the differences of hemodynamics and renal tubular damage between UUO and BUO.  相似文献   

20.
PURPOSE: Renal epidermal growth factor (EGF) is suppressed by unilateral ureteral obstruction (UUO), and we reported previously that exogenous EGF attenuates renal injury due to UUO in the neonatal rat. In this study, we wished to determine whether administration of epidermal growth factor (EGF) improves long-term renal cellular recovery after relief of obstruction. MATERIALS AND METHODS: One ureter of 1 day-old rats was occluded or sham-operated, and rats received daily injections of EGF, 0.1 mg./kg., or saline for the following 7 days. Five days following UUO, the obstruction was removed. Kidneys were removed 28 days following release of UUO or sham operation, and processed for histomorphometry and immunohistochemistry. RESULTS: Kidney weight and the number of glomeruli were reduced in the postobstructed kidney regardless of administration of EGF. However, EGF reduced tubular vimentin by 36% and clusterin expression by 70% (markers of tubular injury), and decreased tubular atrophy by 50% in the postobstructed kidney compared with saline-treated rats. EGF also reduced interstitial alpha-smooth muscle actin and interstitial collagen deposition by 50% in the postobstructed kidney. CONCLUSIONS: Short-term administration of EGF markedly attenuates both tubular and interstitial injury one month following the release of UUO in the neonatal rat. This suggests therapeutic potential for targeted delivery of growth factors to optimize recovery after release of urinary tract obstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号