首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this study, we explored the pharmacological and biophysical properties of voltage-activated Ca(2+) channels in human chromaffin cells using the perforated-patch configuration of the patch-clamp technique. According to their pharmacological sensitivity to Ca(2+) channel blockers, cells could be sorted into two groups of similar size showing the predominance of either N- or P/Q-type Ca(2+) channels. R-type Ca(2+) channels, blocked by 77% with 20 muM Cd(2+) and not affected by 50 muM Ni(2+), were detected for the first time in human chromaffin cells. Immunocytochemical experiments revealed an even distribution of alpha (1E) Ca(2+) channels in these cells. With regard to their biophysical properties, L- and R-type channels were activated at membrane potentials that were 15-20 mV more negative than P/Q- and N-type channels. Activation time constants showed no variation with voltage for the L-type channels, decreased with increasing potentials for the R- and P/Q-type channels, and displayed a bell shape with a maximum at 0 mV for the N-type channels. R-type channels were also the most inactivated channels. We thus show here that human chromaffin cells possess all the Ca(2+) channel types described in neurons, L, N, P/Q, and R channels, but the relative contributions of N and P/Q channels differ among cells. Given that N- and P/Q-type Ca(2+) channel types can be differentially modulated, these findings suggest the possibility of cell-specific regulation in human chromaffin cells.  相似文献   

2.
The Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, modulates a number of key Ca(2+) signaling pathways in neurons, and has been implicated in Ca(2+)-dependent negative feedback inactivation of N-methyl-D-aspartate receptors and voltage-sensitive Ca(2+) channels. In contrast, we report here that three mechanistically disparate calcineurin inhibitors, FK-506, cyclosporin A, and the calcineurin autoinhibitory peptide, inhibited high-voltage-activated Ca(2+) channel currents by up to 40% in cultured hippocampal neurons, suggesting that calcineurin acts to enhance Ca(2+) currents. This effect occurred with Ba(2+) or Ca(2+) as charge carrier, and with or without intracellular Ca(2+) buffered by EGTA. Ca(2+)-dependent inactivation of Ca(2+) channels was not affected by FK-506. The immunosuppressant, rapamycin, and the protein phosphatase 1/2A inhibitor, okadaic acid, did not decrease Ca(2+) channel current, showing specificity for effects on calcineurin. Blockade of L-type Ca(2+) channels with nimodipine fully negated the effect of FK-506 on Ca(2+) channel current, while blockade of N-, and P-/Q-type Ca(2+) channels enhanced FK-506-mediated inhibition of the remaining L-type-enriched current. FK-506 also inhibited substantially more Ca(2+) channel current in 4-week-old vs. 2-week-old cultures, an effect paralleled by an increase in calcineurin A mRNA levels. These studies provide the first evidence that calcineurin selectively enhances L-type Ca(2+) channel activity in neurons. Moreover, this action appears to be increased concomitantly with the well-characterized increase in L-type Ca(2+) channel availability in hippocampal neurons with age-in-culture.  相似文献   

3.
We investigated the nature of afterdepolarizing potentials in AH neurons from the guinea-pig duodenum using whole-cell patch-clamp recordings in intact myenteric ganglia. Afterdepolarizing potentials were minimally activated following action-potential firing under normal conditions, but after application of charybdotoxin (40 nM) or tetraethyl ammonium (TEA; 10-20 mM) to the bathing solution, prominent afterdepolarizing potentials followed action potentials. The whole-cell current underlying afterdepolarizing potentials (I(ADP)) in the presence of TEA (10-20 mM) reversed at -38 mV and was not voltage-dependent. Reduction of NaCl in the bathing (Krebs) solution to 58 mM shifted the reversal potential of the I(ADP) to -58 mV, suggesting that the current underlying the afterdepolarizing potential was carried by a mixture of cations. The relative contributions of Na(+) and K(+) to this current were estimated to be about 1:5. Substitution of external Na(+) with N-methyl D-glucamine blocked the current while replacement of internal Cl(-) with gluconate did not block the I(ADP). The I(ADP) was also inhibited when CsCl-filled patch pipettes were used. The I(ADP) was blocked or substantially decreased in amplitude in the presence of N-type Ca(2+) channel antagonists, omega-conotoxin GVIA and omega-conotoxin MVIIC, respectively, and was eliminated by external Cd(2+), indicating that it was dependent on Ca(2+) entry. The I(ADP) was also inhibited by ryanodine (10-20 microM), indicating that Ca(2+)-induced Ca(2+) release was involved in its activation. Niflumic acid consistently inhibited the I(ADP) with an IC(50) of 63 microM. Using antibodies against the pore-forming subunits of L-, N- and P/Q-type voltage-gated Ca(2+) channels, we have demonstrated that myenteric AH neurons express N- and P/Q, but not L-type voltage-gated Ca(2+) channels. We conclude that the ADP in myenteric AH neurons, in the presence of an L-type Ca(2+)-channel blocker, is generated by the opening of Ca(2+)-activated non-selective cation channels following action potential-mediated Ca(2+) entry mainly through N-type Ca(2+) channels. Ca(2+) release from ryanodine-sensitive stores triggered by Ca(2+) entry contributes significantly to the activation of this current.  相似文献   

4.
BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channels during Ca2+ influx. Selective Ca2+ channel antagonists indicate the presence of at least four types of high-voltage-gated Ca2+ channels: L-, N-, P, and Q type. Mean amplitudes of the L-, N-, P-, and Q-type Ca2+ currents were 33, 21, 12, and 24% of the total Ca2+ current, respectively. Five-millisecond Ca2+ influx steps to 0 mV were employed to assay the contribution of Ca2+ influx through these Ca2+ channels to the activation of BK current. Blockade of L-type Ca2+ channels by 5 microM nifedipine or Q-type Ca2+ channels by 2 microM Aga IVA reduced BK current activation by 77 and 42%, respectively. In contrast, blockade of N-type Ca2+ channels by brief applications of 1-2 microM CnTC MVIIC or P-type Ca2+ channels by 50-100 nM Aga IVA reduced BK current activation by only 11 and 12%, respectively. Selective blockade of L- and Q-type Ca2+ channels also eliminated activation of BK current during action potentials, whereas almost no effects were seen by the selective blockade of N- or P-type Ca2+ channels. Finally, the L-type Ca2+ channel agonist Bay K 8644 promoted activation of BK current by brief Ca2+ influx steps by more than twofold. These data show that, despite the presence of at least four types of Ca2+ channels in rat chromaffin cells, BK channel activation in rat chromaffin cells is predominantly coupled to Ca2+ influx through L- and Q-type Ca2+ channels.  相似文献   

5.
Using dual whole cell patch-clamp recordings of monosynaptic GABAergic inhibitory postsynaptic currents (IPSCs) in cultured rat hippocampal neurons, we have previously demonstrated posttetanic potentiation (PTP) of IPSCs. Tetanic stimulation of the GABAergic neuron leads to accumulation of Ca2+ in the presynaptic terminals. This enhances the probability of GABA-vesicle release for up to 1 min, which underlies PTP. In the present study, we have examined the effect of altering the probability of release on PTP of IPSCs. Baclofen (10 microM), which depresses presynaptic Ca2+ entry through N- and P/Q-type voltage-dependent Ca2+ channels (VDCCs), caused a threefold greater enhancement of PTP than did reducing [Ca2+]o to 1.2 mM, which causes a nonspecific reduction in Ca2+ entry. This finding prompted us to investigate whether presynaptic L-type VDCCs contribute to the Ca2+ accumulation in the boutons during spike activity. The L-type VDCC antagonist, nifedipine (10 microM), had no effect on single IPSCs evoked at 0.2 Hz but reduced the PTP evoked by a train of 40 Hz for 2 s by 60%. Another L-type VDCC antagonist, isradipine (5 microM), similarly inhibited PTP by 65%. Both L-type VDCC blockers also depressed IPSCs during the stimulation (i.e., they increased tetanic depression). The L-type VDCC "agonist" (-)BayK 8644 (4 microM) had no effect on PTP evoked by a train of 40 Hz for 2 s, which probably saturated the PTP process, but enhanced PTP evoked by a train of 1 s by 91%. In conclusion, the results indicate that L-type VDCCs do not participate in low-frequency synchronous transmitter release, but contribute to presynaptic Ca2+ accumulation during high-frequency activity. This helps maintain vesicle release during tetanic stimulation and also enhances the probability of transmitter release during the posttetanic period, which is manifest as PTP. Involvement of L-type channels in these processes represents a novel presynaptic regulatory mechanism at fast CNS synapses.  相似文献   

6.
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons possess both "big" and "small" types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM omega-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 microM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM omega-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 microM omega-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM omega-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly. The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

7.
Blocker-resistant Ca2+ currents in rat CA1 hippocampal pyramidal neurons   总被引:6,自引:0,他引:6  
Sochivko D  Chen J  Becker A  Beck H 《Neuroscience》2003,116(3):629-638
Ca(2+) currents resistant to organic Ca(2+) channel antagonists are present in different types of central neurons. Here, we describe the properties of such currents in CA1 neurons acutely dissociated from rat hippocampus. Blocker-resistant Ca(2+) currents were isolated by combined application of N-, P/Q- and L-type Ca(2+) current antagonists (omega-conotoxin GVIA 2 microM; omega-conotoxin MVIIC 3 microM; omega-agatoxin IVA 200 nM; nifedipine 10 microM) and constituted approximately 21% of the total Ba(2+) current.The blocker-resistant current showed properties similar to R-type currents in other cell types, i.e. voltages of half-maximal inactivation and activation of -76 and -17 mV, respectively, and strong inactivation during the test pulse. In addition, blocker-resistant Ca(2+) currents in CA1 neurons displayed a characteristically rapid deactivation. Application of mock action potentials revealed that charge transfer through blocker-resistant Ca(2+) channels is highly sensitive to action potential shape and changes in resting membrane voltage. Pharmacological experiments showed that these currents were highly sensitive to the divalent cation Ni(2+) (half-maximal block at 28 microM), but were relatively resistant to the spider toxin SNX-482 (8% and 52% block at 0.1 and 1 microM, respectively).In addition to the functional analysis, we examined the expression of pore-forming and accessory Ca(2+) channel subunits on the messenger RNA level in isolated CA1 neurons using quantitative real-time polymerase chain reaction. Of the pore-forming alpha subunits encoding high-threshold Ca(2+) channels, Ca(v)2.1, Ca(v)2.2 and Ca(v)2.3 messenger RNA levels were most prominent, corresponding to the high proportion of N-, P/Q- and R-type currents in these neurons.In summary, CA1 neurons display blocker-resistant Ca(2+) currents with distinctive biophysical and pharmacological properties similar to R-type currents in other neuron types, and express Ca(2+) channel messenger RNAs that give rise to R-type Ca(2+) currents in expression systems.  相似文献   

8.
Presynaptic GABA(B) receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABA(B)-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+ channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+ channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+ channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by omega-conotoxin GVIA (< or = 72%), mibefradil (< or = 52%), and omega-agatoxin TK (< or = 15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+ influx and resting Ca2+ concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+ nor high extracellular K+ modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+ channels, and possibly by activation of 4-AP-sensitive K+ channels, but not by inhibition of R- and L-type Ca2+ channels or by Kir3 channel activation.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) dementia is the commonest form of dementia in North American people less than 60 years of age. HIV-1 envelope glycoprotein gp120 has been implicated in the neurotoxicity observed in, and the pathogenesis of, HIV-1 dementia. Recombinant gp120 (gp120) was pressure-applied on to cultured human fetal neurons and astrocytes and, by using single-cell calcium imaging, we determined the mechanisms responsible for gp120-induced increases in the levels of intracellular calcium ([Ca2+]i). Significant dose-related increases in [Ca2+]i were observed in neurons and astrocytes. In neurons, 5 pM gp120 increased [Ca2+]i by 290+/-13 nM and increases of 2210+/-211 nM were found at 209 nM, the highest concentration of gp120 tested. The apparent EC50 value for gp120 of 223+/-40 pM in neurons was not significantly different from that in astrocytes. Immunoelution of gp120 with polyclonal anti-gp120 and Ca2+-free conditions blocked increases in [Ca2+]i by gp120. Increases in [Ca2+]i were significantly (P < 0.005) attenuated by the Na+/H+ exchange blocker 5-(N-methyl-N-isobutyl)-amiloride in neurons and astrocytes. The L-type calcium channel blockers nimodipine, diltiazem and CdCl2 + NiCl2 significantly (P < 0.005) reduced increases in [Ca2+]i in neurons, but not astrocytes. Increases in [Ca2+]i by gp120 were not significantly affected by blockers of N-, P- and Q-type calcium channels. The N-methyl-D-aspartate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid (AP5), memantine and dizocilpine significantly (P < 0.01) lowered gp120-induced increases in [Ca2+]i in neurons. AP5 and memantine, but not dizocilpine, significantly (P < 0.01) reduced increases in [Ca2+]i by gp120 in astrocytes. Gp120 appears to activate astrocyte Na+/H+ exchangers to release glutamate and potassium and, subsequent to this, increases in [Ca2+]i in neurons and astrocytes result from activation of excitatory amino acid receptors on astrocytes and neurons, and voltage-operated calcium channels on neurons. Drugs that block gp120-induced changes in [Ca2+]i in neurons and astrocytes may help in the treatment of HIV-1 dementia.  相似文献   

10.
《Neuroscience》1999,95(3):745-752
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons posses both “big” and “small” types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM ω-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 μM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM ω-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 μM ω-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM ω-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly.The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.  相似文献   

11.
Wu ZZ  Chen SR  Pan HL 《Neuroscience》2008,153(4):1256-1267
Both mu- and delta-opioid agonists selectively inhibit nociception but have little effect on other sensory modalities. Voltage-activated Ca(2+) channels in the primary sensory neurons are important for the regulation of nociceptive transmission. In this study, we determined the effect of delta-opioid agonists on voltage-activated Ca(2+) channel currents (I(Ca)) in small-diameter rat dorsal root ganglion (DRG) neurons that do and do not bind isolectin B(4) (IB(4)). The delta-opioid agonists [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE) and deltorphin II produced a greater inhibition of high voltage-activated I(Ca) in IB(4)-negative than IB(4)-positive neurons. Furthermore, DPDPE produced a greater inhibition of N-, P/Q-, and L-type I(Ca) in IB(4)-negative than IB(4)-positive neurons. However, DPDPE had no significant effect on the R-type I(Ca) in either type of cells. We were surprised to find that DPDPE failed to inhibit either the T-type or high voltage-activated I(Ca) in all the DRG neurons with T-type I(Ca). Double immunofluorescence labeling showed that the majority of the delta-opioid receptor-immunoreactive DRG neurons had IB(4) labeling, while all DRG neurons immunoreactive to delta-opioid receptors exhibited Cav(3.2) immunoreactivity. Additionally, DPDPE significantly inhibited high voltage-activated I(Ca) in Tyrode's or N-methyl-d-glucamine solution but not in tetraethylammonium solution. This study provides new information that delta-opioid agonists have a distinct effect on voltage-activated Ca(2+) channels in different phenotypes of primary sensory neurons. High voltage-activated Ca(2+) channels are more sensitive to inhibition by delta-opioid agonists in IB(4)-negative than IB(4)-positive neurons, and this opioid effect is restricted to DRG neurons devoid of functional T-type Ca(2+) currents.  相似文献   

12.
13.
Low-threshold L-type calcium channels in rat dopamine neurons   总被引:6,自引:0,他引:6  
Ca(2+) channel subtypes expressed by dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) were studied using whole cell patch-clamp recordings and blockers selective for different channel types (L, N, and P/Q). Nimodipine (Nim, 2 microM), omega-conotoxin GVIA (Ctx, 1 microM), or omega-agatoxin IVA (Atx, 50 nM) blocked 27, 36, and 37% of peak whole cell Ca(2+) channel current, respectively, indicating the presence of L-, N-, and P-type channels. Nim blocked approximately twice as much Ca(2+) channel current near activation threshold compared with Ctx or Atx, suggesting that small depolarizations preferentially opened L-type versus N- or P-type Ca(2+) channels. N- and L-channels in DA neurons opened over a significantly more negative voltage range than those in rat dorsal root ganglion cells, recorded from using identical conditions. These data provide an explanation as to why Ca(2+)-dependent spontaneous oscillatory potentials and rhythmic firing in DA neurons are blocked by L-channel but not N-channel antagonists and suggest that pharmacologically similar Ca(2+) channels may exhibit different thresholds for activation in different types of neurons.  相似文献   

14.
Dextran-conjugated Ca(2+) indicators were injected into the accessory olfactory bulb of frogs in vivo to selectively fill presynaptic terminals of mitral cells at their termination in the ipsilateral amygdala. After one to three days of uptake and transport, the forebrain hemisphere anterior to the tectum was removed and maintained in vitro for simultaneous electrophysiological and optical measurements. Ca(2+) influx into these terminals was compared to synaptic transmission between mitral cells and amygdala neurons under conditions of reduced Ca(2+) influx resulting from reduced extracellular [Ca(2+)], blockade of N- and P/Q-type channels, and application of the cholinergic agonist carbachol. Reducing extracellular [Ca(2+)] had a non-linear effect on release; release was proportional to Ca(2+) influx raised to the power of approximately 3.6, as observed at numerous other synapses. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1 microM), blocked 77% of Ca(2+) influx and 88% of the postsynaptic field potential. The P/Q-type Ca(2+) channel blocker, omega-agatoxin-IVA (200 nM), blocked 19% of Ca(2+) influx and 25% of the postsynaptic field, while the two toxins combined to block 92% of Ca(2+) influx and 97% of the postsynaptic field. The relationship between toxin blockade of Ca(2+) influx and synaptic transmission was therefore only slightly non-linear; release was proportional to Ca(2+) influx raised to the power approximately 1.4. Carbachol (100 microM) acting via muscarinic receptors had no effect on the afferent volley, but rapidly and reversibly reduced Ca(2+) influx through both N- and P/Q-type channels by 51% and postsynaptic responses by 78%, i.e. release was proportional to Ca(2+) raised to the power approximately 2.5.The weak dependence of release on changes in Ca(2+) when channel toxins block channels suggests little overlap between Ca(2+) microdomains from channels supporting release or substantial segregation of channel subtypes between terminals. The proportionately greater reduction of transmission by muscarinic receptors compared to Ca(2+) channel toxins suggests that they directly affect the release machinery in addition to reducing Ca(2+) influx.  相似文献   

15.
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization. Ca2+ channels are composed of a large pore-forming subunit, called the alpha1 subunit, and several accessory subunits. Ten different alpha1 subunit genes have been identified and classified into three families, Ca(v1-3) (Dunlap et al. 1995, Catterall 2000). Each alpha1 gene produces a unique Ca2+ channel. Although chromaffin cells express several different types of Ca2+ channels, this review will focus on the Cav(2.1) and Cav(2.2) channels, also known as P/Q- and N-type respectively (Nowycky et al. 1985, Llinas et al. 1989b, Wheeler et al. 1994). These channels exhibit physiological and pharmacological properties similar to their neuronal counterparts. N-, P/Q and to a lesser extent R-type Ca2+ channels are known to regulate neurotransmitter release (Hirning et al. 1988, Horne & Kemp 1991, Uchitel et al. 1992, Luebke et al. 1993, Takahashi & Momiyama 1993, Turner et al. 1993, Regehr & Mintz 1994, Wheeler et al. 1994, Wu & Saggau 1994, Waterman 1996, Wright & Angus 1996, Reid et al. 1997). N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they colocalize with synaptic vesicles. Similarly, these channels play a role in neurotransmitter release in chromaffin cells (Garcia et al. 2006). N- and P/Q-type channels are subject to many forms of regulation (Ikeda & Dunlap 1999). This review pays particular attention to the regulation of N- and P/Q-type channels by heterotrimeric G-proteins, interaction with SNARE proteins, and channel inactivation in the context of stimulus-secretion coupling in adrenal chromaffin cells.  相似文献   

16.
Polo-Parada L  Chan SA  Smith C 《Neuroscience》2006,143(2):445-459
Chromaffin cells of the adrenal medulla represent a primary output of the sympathetic nervous system. Their electrical stimulation evokes the fusion of large dense core granules with the cell membrane and the exocytic release of multiple transmitter molecules into the circulation. There the transmitters contribute to the regulation of basic metabolism of the organism. Under physiological activity, granule fusion and transmitter release are limited by activity-dependent Ca(2+) influx, entering through multiple isoforms of voltage-gated calcium channels. In this study we utilize perforated-patch voltage-clamp recordings and depolarize mouse chromaffin cells in situ with action potential-like waveforms to mimic physiological firing. We measure calcium influx through specific isoforms and measure cell capacitance as an index of granule fusion. Combining these approaches we calculate specific stimulus-secretion efficiencies for L-type, N-type, P/Q-type and R-type calcium channels under varied physiological activity levels. Current influx through all channel subtypes exhibited an activity-dependent depression. As expected P/Q-type channels, while responsible for modest Ca(2+) influx, are tightly coupled to catecholamine secretion under all conditions. We further find that stimulation designed to match sympathetic input under the acute stress response recruits L-type channels to a state of enhanced stimulus-secretion efficiency. N- and R-type channels do not undergo activity-dependent recruitment and remain loosely coupled to the secretion. Thus, only L-type channels exhibit activity-dependent changes in their stimulus-secretion function under physiological stimulation. Lastly, we show that treatment with the beta-adrenergic agonist, isoproterenol, specifically blocks the increase in the stimulus-secretion function of L-type channels. Thus, increased cell firing specifically enhances stimulus-secretion coupling of L-type Ca(2+) channels in chromaffin cells in situ. This mechanism is regulated by an adrenergic signaling pathway.  相似文献   

17.
Voltage-gated calcium channels in autonomic neuroeffector transmission   总被引:3,自引:0,他引:3  
Calcium influx through voltage-gated calcium channels (VGCCs) is required for neurotransmitter release. Recent research has characterised several pharmacologically and electrophysiologically distinct VGCC subtypes, some of which are involved in neurotransmitter release. Transmitter release from autonomic neurons can be coupled to calcium entry through N-, P/Q- and/or R-type VGCCs; the precise combination of VGCC subtypes appears to vary according to the neurotransmitter, tissue and species. L-type channels rarely appear to be important in autonomic neurotransmitter release. There does not appear to be a general rule regarding the nature of the VGCCs coupled to release of a particular transmitter in different tissues or species. Release of the same neurotransmitter from different populations of neurons often reveals a different pattern of involvement of VGCCs. Transmitters released from the same population of neurons are sometimes coupled to calcium influx through different VGCC subtypes. However, release of transmitters thought to be co-localised within vesicles is coupled to calcium influx through the same VGCCs. The role of VGCC subtypes in transmitter release can be altered by mode of nerve stimulation. Different VGCC subtypes may be coupled to transmitter release at low versus high electrical stimulation frequencies, or in response to potassium depolarization or chemical stimulation. In certain disease processes, voltage-gated calcium channels on autonomic neurons can be targeted; for example antibodies to P/Q-type VGCCs in Lambert-Eaton myasthenic syndrome downregulate VGCCs, thereby inhibiting autonomic neuroeffector transmission.  相似文献   

18.
19.
Neuronal L-type Ca(2+) channels play pivotal roles in regulating gene expression, cell survival, and synaptic plasticity. The Ca(V)1.2 and Ca(V)1.3 channels are 2 main subtypes of neuronal L-type Ca(2+) channels. However, the specific roles of Ca(V)1.2 and Ca(V)1.3 in L-type Ca(2+) channel-mediated neuronal responses and their cellular mechanisms are poorly elucidated. On the basis of our previous study demonstrating a physical interaction between the Ca(V)1.3 channel and GABA(B) receptor (GABA(B)R), we further examined the involvement of Ca(V)1.2 and Ca(V)1.3 in the GABA(B)R-mediated activation of ERK(1/2), a kinase involved in both CREB activation and synaptic plasticity. After confirming the involvement of L-type Ca(2+) channels in baclofen-induced ERK(1/2) phosphorylation, we examined a specific role of Ca(V)1.2 and Ca(V)1.3 channels in the baclofen effect. Using siRNA-mediated silencing of Ca(V)1.2 or Ca(V)1.3 messenger, we determined the relevance of each channel subtype to baclofen-induced ERK(1/2) phosphorylation in a mouse hippocampal cell line (HT-22) and primary cultured rat neurons. In the detailed characterization of each subtype using HEK293 cells transfected with Ca(V)1.2 or Ca(V)1.3, we found that GABA(B)R can increase ERK(1/2) phosphorylation and Ca(V)1.3 channel activity through direct interaction with Ca(V)1.3 channels. These results suggest a functional interaction between Ca(V)1.3 and GABA(B)R and important implications of Ca(V)1.3/GABA(B)R clusters for translating synaptic activity into gene expression alterations.  相似文献   

20.
Electrically excitable cells have voltage-dependent ion channels on the plasma membrane that regulate membrane permeability to specific ions. Voltage-gated Ca(2+) channels (VGCCs) are especially important as Ca(2+) serves as both a charge carrier and second messenger. Zebrafish (Danio rerio) are an important model vertebrate for studies of neuronal excitability, circuits, and behavior. However, electrophysiological properties of zebrafish VGCCs remain largely unexplored because a suitable preparation for whole cell voltage-clamp studies is lacking. Rohon-Beard (R-B) sensory neurons represent an attractive candidate for this purpose because of their relatively large somata and functional homology to mammalian dorsal root ganglia (DRG) neurons. Transgenic zebrafish expressing green fluorescent protein in R-B neurons, (Isl2b:EGFP)(ZC7), were used to identify dissociated neurons suitable for whole cell patch-clamp experiments. Based on biophysical and pharmacological properties, zebrafish R-B neurons express both high- and low-voltage-gated Ca(2+) current (HVA- and LVA-I(Ca), respectively). Ni(+)-sensitive LVA-I(Ca) occur in the minority of R-B neurons (30%) and ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels underlie the vast majority (90%) of HVA-I(Ca). To identify G protein coupled receptors (GPCRs) that modulate HVA-I(Ca), a panel of neurotransmitters was screened. Application of GABA/baclofen or serotonin produced a voltage-dependent inhibition while application of the mu-opioid agonist DAMGO resulted in a voltage-independent inhibition. Unlike in mammalian neurons, GPCR-mediated voltage-dependent modulation of I(Ca) appears to be transduced primarily via a cholera toxin-sensitive Gα subunit. These results provide the basis for using the zebrafish model system to understanding Ca(2+) channel function, and in turn, how Ca(2+) channels contribute to mechanosensory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号