首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Patients with primary hyperparathyroidism (PHPT) have higher bone turnover, lower bone mineral density (BMD), and an increased risk of fractures. They also have a high incidence of low vitamin D levels (25‐OH‐vitamin D <50 nmol/L) that could worsen the negative effect on the bone. In this double‐blinded clinical trial, 150 patients with PHPT were randomized, after successful parathyroidectomy (PTX), to 1‐year daily treatment with either cholecalciferol 1600 IU and calcium carbonate 1000 mg (D +) or calcium carbonate alone (D–). BMD was measured in the lumbar spine, femoral neck, total hip, distal and 33% radius using dual‐energy X‐ray absorptiometry (DXA) before surgery and after 1 year of study medication. Median age was 60 (range 30–80) years and there were 119 (79%) women and 31 (21%) men; 76% had 25‐OH‐D <50 nmol/L before PTX and 50% had persistent elevated parathyroid hormone (PTH) 6 weeks after PTX. A similar increase in BMD in the lumbar spine, femoral neck, and total hip was observed in both groups (D + : 3.6%, 3.2%, and 2.7%, p < 0.001, respectively; and D–: 3.0%, 2.3%, and 2.1%, respectively, p < 0.001). Patients with vitamin D supplementation also increased their BMD in distal radius (median 2.0%; interquartile range, ?1.7% to 5.4%; p = 0.013). The changes in BMD, especially in the hips, were correlated to the baseline concentrations of PTH, ionized calcium, and bone markers (p < 0.001). A benefit from vitamin D substitution was observed among patients with a persistent postoperative PTH elevation, who also improved their BMD at 33% radius and radius ultradistal (p < 0.05). In conclusion, except for a minor improvement of radius BMD, our data show no beneficial effect on BMD or bone turnover markers of vitamin D supplementation after PTX. Preoperative PTH seems to have the strongest association with improvement in BMD. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Changes in Bone Mass and Bone Turnover Following Ankle Fracture   总被引:6,自引:0,他引:6  
Bone loss and increased bone turnover are recognized local changes after a fracture, but the exact patterns of these changes after different fractures are unclear. We aimed to investigate the changes in bone density and biochemical markers following ankle fracture. Fourteen subjects (7 postmenopausal women and 7 men, mean age 63 years) were recruited following fracture of the distal tibia and fibula. Bone mineral density (BMD) of the ankle and proximal femur were measured by dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) of the calcaneus at 0, 6, 12, 26 and 52 weeks after fracture. Serum and urine samples were collected at 0, 3 and 7 days and at 2, 4, 6, 12, 26 and 52 weeks after fracture to measure markers of bone turnover. For bone formation we measured: bone alkaline phosphatase (iBAP), osteocalcin (Oc), procollagen type I N-terminal propeptide (PINP); and for bone resorption: tartrate-resistant acid phosphatase (TRAcP), deoxypyridinoline (iFDpd), N-telopeptides of type I collagen (NTx). We used the nonfractured limb to calculate values for baseline BMD and QUS. There was a significant decrease in BMD at the ultradistal ankle (p<0.001), the trochanteric region of the hip (p<0.01) and QUS of the heel after ankle fracture. This bone loss was maximal for ultradistal ankle BMD by 6 weeks at 13% (p<0.001) and for the trochanter by 26 weeks at 3% (p<0.01). The ankle BMD returned to baseline at 52 weeks but the trochanter BMD did not. Velocity of sound (VOS) decreased at 6 weeks by 2% (p<0.01) and broadband ultrasound attenuation (BUA) by 15% (p<0.01). VOS recovered completely by 52 weeks, but BUA did not return to baseline. Bone formation markers increased significantly between 1 and 4 weeks by 11–78% (p<0.01), and iBAP returned to baseline at 52 weeks but PINP and Oc remained elevated. Bone resorption markers did not increase and NTx was decreased at 52 weeks. We conclude that BMD decreased distal and immediately proximal to the fracture line when measured with DXA and QUS. Ankle BMD and heel VOS recovered at 52 weeks (trochanteric BMD and heel BUA did not) and the bone turnover markers returned toward baseline. Received: 27 January 1999 / Accepted: 19 April 1999  相似文献   

3.
Alendronate significantly increases bone mass and reduces hip and spine fractures in postmenopausal women. To determine whether forearm densitometry could be used to monitor the efficacy of alendronate, we examined changes in bone mineral density (BMD) at the forearm (one-third distal, mid-distal, ultradistal radius) versus changes at the hip (femoral neck, total hip) and spine (posteroanterior and lateral) in a double-masked, randomized, placebo-controlled clinical trial of 120 elderly women (mean age 70 ± 4 years) treated with alendronate for 2.5 years. We found that among women in the treatment group, BMD increased by 4.0–12.2% at the hip and spine sites (all p<0.001), whereas BMD increased only nominally at the one-third distal radius (1.3%, p<0.001) and mid-radius (0.8%, p<0.05), and remained stable at the ultradistal radius. At baseline, forearm BMD correlated with that of the hip (r= 0.55–0.64, p<0.001), femoral neck (r= 0.54–0.61, p<0.001) and posteroanterior spine (r= 0.56–0.63, p<0.001). Changes in radial BMD after 1 year of therapy were not correlated with changes in hip and spine BMD after 2.5 years of therapy. In contrast, short-term changes in total hip and spine BMD were generally positively associated with long-term changes in total hip, femoral neck and spine BMD (r= 0.30–0.71, p<0.05). Furthermore, long-term BMD changes at the forearm did not correlate with long-term hip and spine BMD changes, in contrast to the moderate correlations seen between spine and hip BMD at 2.5 years (r= 0.38–0.45, p<0.01). We conclude that neither short- nor long-term changes in forearm BMD predict long-term changes in overall BMD for elderly women on alendronate therapy, suggesting that measurements of clinically relevant central sites (hip and spine) are necessary to assess therapeutic efficacy. Received: 18 February 1999 / Accepted: 20 May 1999  相似文献   

4.
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82–7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: −0.14 [−0.24, −0.05], p < 0.01) and lower cortical vBMD (−28.66 [−54.38, −2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

5.
Rheumatoid arthritis (RA) is a highly bone destructive disease. Although it is well established that RA leads to bone loss and increased fracture risk, current knowledge on the microstructural changes of bone in RA is still limited. The purpose of this study was to assess the microstructure of periarticular and nonperiarticular bone in female and male RA patients and compare it with respective healthy controls. We performed two high‐resolution peripheral quantitative computed tomography (HR‐pQCT; Xtreme‐CT) scans, one of the distal radius and one of the ultradistal radius in 90 patients with RA (60 females, 30 males) and 70 healthy controls (40 females, 30 males) matched for sex, age, and body mass index. Volumetric bone mineral density (vBMD), bone geometry, and bone microstructure including trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), cortical thickness (Ct.Th) and cortical porosity (Ct.Po) were assessed. At the distal and ultradistal radius, trabecular (p = 0.005 and p < 0.001) and cortical BMD (p < 0.001 and p < 0.001) were significantly decreased in male and female patients with RA, respectively. BV/TV was also decreased at both sites, based on lower Tb.N in female RA (p < 0.001 for both sites) and lower Tb.Th (p = 0.034 and p = 0.005) in male RA patients compared with respective healthy controls. Cortical thinning (p = 0.018 and p = 0.002) but not Ct.Po (p = 0.070 and p = 0.275) was pronounced in male and female RA patients at the distal radius. Cortical perimeter was increased in male and female RA patients at both sites. Multiple regression models showed that bone geometry (cortical perimeter) is predominantly influenced by age of the RA patient, cortical thickness by both age and disease duration, and trabecular microstructure predominantly by the disease duration. In summary, these data show profound deterioration of bone microstructure in the appendicular skeleton of RA patients at both periarticular and nonperiarticular sites. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
Changes in Bone Mass and Bone Turnover Following Distal Forearm Fracture   总被引:4,自引:0,他引:4  
Bone loss occurs close to a fracture and is associated with increased bone turnover. Fracture healing itself results in increased markers of bone turnover. But the exact patterns of these changes after different fractures are unclear. We aimed to investigate the changes in bone density and biochemical markers following distal forearm fracture. Twenty women (mean age 63 years) were recruited following fracture of the distal radius and ulna. Bone mineral density (BMD) of the hand and forearm were measured by dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) of the fingers was measured at 0, 6, 12, 26 and 52 weeks after fracture. Serum and urine samples were collected at 0, 3 and 7 days and at 2, 4, 6, 12, 26 and 52 weeks after fracture to measure markers of bone turnover. For bone formation we measured: bone alkaline phosphatase (iBAP), osteocalcin (Oc), procollagen type I N-terminal propeptide (PINP); and for bone resorption: tartrate-resistant acid phosphatase (TRAcP), free deoxypyridinoline (iFDpd), N-telopeptides of type I collagen (NTx). We used the nonfractured limb to calculate values for baseline BMD and amplitude-dependent speed of sound (AD-SoS). There was a decrease in BMD at the hand and in AD-SoS of the fingers after forearm fracture (p<0.001). This bone loss was maximal for BMD by 6 weeks at 9% (p<0.001) and remained decreased at 52 weeks. AD-SoS decreased at 12 weeks by 3% (p<0.01) and recovered completely by 52 weeks. Bone formation markers increased between 2 and 4 weeks by 13–52% (p<0.001), and were still elevated at 52 weeks. Bone resorption markers increased between 2 and 6 weeks by 18–35% and returned to baseline at 52 weeks (TRAcP remained elevated). We conclude that BMD decreased distal and immediately proximal to the fracture line when measured with DXA and QUS. Bone loss after distal forearm fracture did not recover by 52 weeks and most bone turnover markers did not return to baseline. Received: 27 January 1999 / Accepted: 19 April 1999  相似文献   

7.
Colles’ fracture (CF) in postmenopausal women has been linked to low bone mass at the lumbar spine and hip. However, the diverse methodological approaches of previous studies make the results difficult to compare and thus the implications of CF in osteoporosis daily clinical practice are not clear. We explored the association between CF and low bone mineral density (BMD) in an incident case-control study in 58 postmenopausal Spanish women aged 45–80 years with recent CF and in 83 population-based controls of the same age range. The BMD of ultradistal distal forearm, lumbar spine and hip was measured by dual-energy X-ray absorptiometry (DXA) and WHO criteria were used to define osteoporosis and osteopenia. BMD was significantly lower in cases for all three areas (p<0.001). Osteoporosis was more prevalent in cases than controls in the wrist (60% vs. 35%, p<0.001), lumbar spine (47% vs. 20%, p<0.005) and hip (19% vs. 6%, p<0.005). After adjusting for age, menopausal status and body mass index, osteoporosis and osteopenia remained significantly associated with CF only in women aged 65 years or less (ultradistal forearm OR 5.7 (95% CI 1.2–27.2), lumbar spine OR 3.9 (95% CI 1.1–14.3)). We conclude that CF in postmenopausal women aged 65 or less may be used as a sentinel finding to identify patients with generalized osteoporosis. Additionally, 70% of all CF patients regardless of their age had low bone mass (T-score<−1SD) in any studied site. Received: 3 December 2001 / Accepted: 22 May 2002  相似文献   

8.
This study investigated whether bone turnover influences the response to alendronate in women with postmenopausal osteoporosis. One hundred postmenopausal osteoporotic women were randomized to receive either alendronate (10 mg/day) plus calcium (1000 mg/day) (n = 50) or calcium alone (n = 50). Vertebral and radial bone density, measured by DXA, and markers of bone turnover were assessed at baseline and after 1 and 2 years. At the end of treatment, alendronate users showed an increase of 5.0% and 2.3%, respectively, at the lumbar spine and ultradistal radius; in the group treated only with calcium, bone mineral density (BMD) decreased by 1.6% at the lumbar spine and 1.3% at the ultradistal radius. The difference between the two groups was significant (P < 0.001). The patients were divided into high (HT) or low (LT) bone turnover groups, as assessed by 24-hour whole body retention (WBR%) of 99mTc-methylene-diphosphonate. The response to alendronate treatment was greater in HT patients compared with LT patients. In fact, at the end of the study period, BMD at the lumbar spine had increased by 7.9% in HT patients and by 3.0% in LT patients; the difference between the two groups was significant (P < 0.001). No significant difference between the two groups was found for BMD at the ultradistal radius. In conclusion, the present study demonstrates that 2-year treatment with alendronate has highly positive effects on bone mass at both the lumbar spine and ultradistal radius. The increase in bone mass, especially at the axial level, is influenced by bone turnover. Therefore, the evaluation of bone turnover may be useful in predicting the response to alendronate treatment. Received: 23 April 1998 / Accepted: 10 June 1999  相似文献   

9.
Bone loss occurs as early as the third decade and its cumulative effect throughout adulthood may impact risk for osteoporosis in later life, however, the genes and environmental factors influencing early bone loss are largely unknown. We investigated the role of genes in the change in bone mineral density (BMD) in participants in the San Antonio Family Osteoporosis Study. BMD change in 327 Mexican Americans (ages 25–45 years) from 32 extended pedigrees was calculated from DXA measurements at baseline and follow-up (3.5 to 8.9 years later). Family-based likelihood methods were used to estimate heritability (h 2) and perform autosome-wide linkage analysis for BMD change of the proximal femur and forearm and to estimate heritability for BMD change of lumbar spine. BMD change was significantly heritable for total hip, ultradistal radius, and 33% radius (h 2 = 0.34, 0.34, and 0.27, respectively; p < 0.03 for all), modestly heritable for femoral neck (h 2 = 0.22; p = 0.06) and not heritable for spine BMD. Covariates associated with BMD change included age, sex, baseline BMD, menopause, body mass index, and interim BMI change, and accounted for 6% to 24% of phenotype variation. A significant quantitative trait locus (LOD = 3.6) for femoral neck BMD change was observed on chromosome 1q23. In conclusion, we observed that change in BMD in young adults is heritable and performed one of the first linkage studies for BMD change. Linkage to chromosome 1q23 suggests that this region may harbor one or more genes involved in regulating early BMD change of the femoral neck.  相似文献   

10.
Previous studies have shown a relationship between osteoporosis and increased mortality risk. However, none of these studies performed a concomitant evaluation of the parathyroid hormone (PTH)‐calcium‐vitamin D axis and bone mass to accurately determine the contribution of each of these parameters to survival in older subjects. Thus, we sought to investigate the association between bone parameters and mortality in a longitudinal, prospective, population‐based cohort of 839 elderly subjects. Clinical data (including history of fractures and cardiovascular events) were assessed using a specific questionnaire. Laboratory exams, including serum 25OHD and PTH, were also performed. Bone mineral density (BMD) at the lumbar spine and hip were evaluated using DXA. All analyses were performed at baseline (2005 to 2007). Mortality was recorded during follow‐up. Multivariate Cox proportional regression was used to compute hazard ratios for all‐cause and cardiovascular mortality. Over a mean 4.06 ± 1.07 years, there were 132 (15.7%) deaths. These individuals were compared to 707 subjects who were alive at the end of the coverage period for mortality data collection. In a multivariate Cox proportional hazards model, age (HR 1.32; 95% CI, 1.13 to 1.55; p = 0.001, for each 5‐year increase), male gender (HR 1.90; 95% CI, 1.30 to 2.79; p = 0.001), recurrent falls (more than two in the previous year; HR 1.65; 95% CI, 1.06 to 2.56; p = 0.026), diabetes mellitus (HR 2.17; 95% CI, 1.46 to 3.21; p < 0.001), low physical activity score (HR 1.78; 95% CI, 1.14 to 2.79; p = 0.011), prior cardiovascular event (HR 1.76; 95% CI, 1.18 to 2.63; p = 0.006), total hip BMD (HR 1.41; 95% CI, 1.15 to 1.72; p = 0.001, per each 1 SD decrease), and intact PTH (iPTH) (HR 1.06; 95% CI, 1.04 to 1.08; p < 0.001, per each 10 pg/mL increase) were independently associated with all‐cause mortality. The subjects in the highest quartile of PTH (>49 pg/mL) were at a higher risk of cardiovascular death (HR 3.09; 95% CI, 1.36 to 6.99; p = 0.007) compared with the subjects in the lowest quartile (<26 pg/mL). Low BMD and higher PTH were significantly associated with mortality in community‐dwelling older adults. These findings support the notion that careful screening of these bone parameters might lead to better management of older patients and improve outcomes in this population. © 2016 American Society for Bone and Mineral Research.  相似文献   

11.
Parathyroid hormone‐related protein (PTHrP)(1‐36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but it has not been directly compared with parathyroid hormone (PTH)(1‐34). We performed a 3‐month randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis, comparing daily subcutaneous injections of PTHrP(1‐36) to PTH(1‐34). Thirty‐five women were randomized to each of three groups: PTHrP(1‐36) 400 µg/day; PTHrP(1‐36) 600 µg/day; and PTH(1‐34) 20 µg/day. The primary outcome measures were changes in amino‐terminal telopeptides of procollagen 1 (PINP) and carboxy‐terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2 vitamin D, and BMD. The increase in bone resorption (CTX) by PTH(1‐34) (92%) (p < 0.005) was greater than for PTHrP(1‐36) (30%) (p < 0.05). PTH(1‐34) also increased bone formation (PINP) (171%) (p < 0.0005) more than either dose of PTHrP(1‐36) (46% and 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (p < 0.05 for all). Total hip (TH) and femoral neck (FN) BMD increased equivalently in each group but were only significant for the two doses of PTHrP(1‐36) (p < 0.05) at the TH and for PTHrP(1‐36) 400 (p < 0.05) at the FN. PTHrP(1‐36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1‐36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1‐34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1‐36) and PTH(1‐34) cause similar increases in LS BMD. PTHrP(1‐36) also increased hip BMD. PTH(1‐34) induced greater changes in bone turnover than PTHrP(1‐36). PTHrP(1‐36) was associated with mild transient hypercalcemia. Longer‐term studies using lower doses of PTHrP(1‐36) are needed to define both the optimal dose and full clinical benefits of PTHrP. © 2013 American Society for Bone and Mineral Research. © 2013 American Society for Bone and Mineral Research.  相似文献   

12.
Summary Women with osteoporosis on raloxifene were randomized to 1-34hPTH + raloxifene or raloxifene alone for one year. In the PTH + raloxifene group, bone turnover increased 125–584%, spine BMD increased 9.6%, hip BMD increased 1.2–3.6% and radius BMD declined 4.3%. During the follow-up year, on continued raloxifene, BMD declined slightly at all sites except the femoral neck. Introduction The influence of prior antiresorptives on response to 1–34PTH and the ability to maintain BMD gains might differ for antiresorptive agents with different potencies. The objectives were to evaluate biochemical and bone density responses to 1–34PTH in patients on prior and ongoing raloxifene and to determine whether raloxifene maintains bone gains. Methods Forty-two postmenopausal women with osteoporosis on raloxifene were randomized to raloxifene alone or 1–34PTH daily for 12 months (continuing raloxifene). Women were then followed for 12 months on raloxifene alone. Bone turnover markers and BMD were measured at baseline and at 3, 6, 12, 18 and 24 months. Results Biochemical indices increased rapidly during PTH treatment with peak increments of 125–584% for the three markers (p < 0.001 vs. baseline). After one year of PTH, mean BMD increases were 9.6% for spine, 2.7% for total hip, 3.6% for trochanter (all p < 0.005) and 1.2% in femoral neck (NS), while BMD declined 4.3% in the radius (p = 0.003). After PTH withdrawal, on continued raloxifene, BMD declined slightly (0.7–2.9% losses; NS) at all sites, except the femoral neck, where BMD increased modestly (p = 0.04). At 24 months, spine and femoral neck BMD remained significantly higher than baseline, while radius BMD remained significantly lower (all p < 0.04). Conclusion Substantial gains in BMD of the spine and hip, but not the radius, are seen with one year of PTH treatment in patients on prior raloxifene. After PTH is discontinued, raloxifene partially maintains PTH-induced BMD gains in the spine and hip.  相似文献   

13.
Mild primary hyperparathyroidism (PHPT) is known to affect the skeleton, even though patients usually are asymptomatic. Treatment strategies have been widely discussed. However, long‐term randomized studies comparing parathyroidectomy to observation are lacking. The objective was to study the effect of parathyroidectomy (PTX) compared with observation (OBS) on bone mineral density (BMD) in g/cm2 and T‐scores and on biochemical markers of bone turnover (P1NP and CTX‐1) in a prospective randomized controlled study of patients with mild PHPT after 5 years of follow‐up. Of 191 patients with mild PHPT randomized to either PTX or OBS, 145 patients remained for analysis after 5 years (110 with validated DXA scans). A significant decrease in P1NP (p < 0.001) and CTX‐1 (p < 0.001) was found in the PTX group only. A significant positive treatment effect of surgery compared with observation on BMD (g/cm2) was found for the lumbar spine (LS) (p = 0.011), the femoral neck (FN) (p < 0.001), the ultradistal radius (UDR) (p = 0.042), and for the total body (TB) (p < 0.001) but not for the radius 33% (Rad33), where BMD decreased significantly also in the PTX group (p = 0.012). However, compared with baseline values, there was no significant BMD increase in the PTX group, except for the lumbar spine. In the OBS group, there was a significant decrease in BMD (g/cm2) for all compartments (FN, p < 0.001; Rad33, p = 0.001; UDR, p = 0.006; TB, p < 0.001) with the exception of the LS, where BMD was stable. In conclusion, parathyroidectomy improves BMD and observation leads to a small but statistically significant decrease in BMD after 5 years. Thus, bone health appears to be a clinical concern with long‐term observation in patients with mild PHPT. © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
Introduction: Bone loss occurs in the regional bone following tibial shaft fracture. An earlier cross-sectional study showed that measurements made at the metaphyseal region of the tibia using peripheral quantitative computed tomography (pQCT) and the ultradistal region of the tibia using dual-energy X-ray absorptiometry (DXA) were the most responsive at monitoring this bone loss. Biochemical markers of bone turnover enable us to assess the activity of bone formation and resorption during fracture healing. The aim of this longitudinal study was to determine the pattern and distribution of bone loss and bone turnover following a tibial shaft fracture treated with either plaster cast or intramedullary nail. Methods: Eighteen subjects underwent bone mass measurements using DXA at the tibia and hip and quantitative ultrasound (QUS) at the tibia and calcaneus of both limbs at 2 weeks, 8 weeks, 12 weeks and 24 weeks following fracture, with hip and tibia DXA measurements also performed at 52 weeks. Nine of the patients treated with plaster cast had pQCT measurements at the tibia at 24 weeks. We measured three bone formation markers, bone alkaline phosphatase (bone ALP), osteocalcin (OC) and procollagen type 1 N-terminal peptide (PINP), a marker of bone resorption, serum C-telopeptides of type 1 collagen (β-CTX) and a marker of collagen III turnover, procollagen type III N-terminal peptide (PIIINP) at 1 day, 3 days and 7 days and at 2, 4, 8, 12, 16 and 24 weeks following fracture. The greatest bone losses were observed at the ultradistal region of the tibia using DXA (28%, p <0.001) and the metaphyseal region of the tibia using pQCT (26–31%, p <0.001) at 24 weeks. In the hip, the greatest loss was in the trochanter region at 24 weeks (10%, p <0.001). The greatest loss at the calcaneus measured using QUS was for broadband ultrasound attenuation (BUA) measured using CUBA Clinical at 24 weeks (13%, p =0.01). Results: At 1 year, there was a small recovery in bone loss (ultradistal tibia DXA, 20%, p <0.01; trochanter DXA 9%, p <0.001). Bone turnover increased following fracture (PINP +72±21%, p <0.0001, bone ALP +199±22%, p =0.004, β-CTX +105±23%, p <0.0001, all at 24 weeks). There was a smaller +33±10% increase in osteocalcin at 24 weeks. PIIINP concentration peaked at week 8 (+57±9%, p <0.0001). The bone resorption marker β-CTX showed an earlier rise (week 2, 139±33%) than the bone formation markers. Conclusions: We conclude that: (1) bone loss following tibial shaft fracture occurs both proximal and distal to the fracture; (2) the decreased BMD is largest for trabecular bone in the tibia with similar measurements using DXA and pQCT; (3) there is limited recovery of bone lost at the hip and tibia at 1 year; (4) tibial speed of sound (SOS) demonstrated a greater decrease than calcaneal SOS when comparing z -scores; (5) BUA is the QUS variable that shows the biggest decrease of bone mass at the calcaneus; (6) increase in bone turnover occurs following fracture with an earlier increase in bone resorption markers and a later rise in bone formation markers.  相似文献   

15.
Introduction : Growth hormone (GH) replacement improves target organ sensitivity to PTH, PTH circadian rhythm, calcium and phosphate metabolism, bone turnover, and BMD in adult GH‐deficient (AGHD) patients. In postmenopausal women with established osteoporosis, GH and insulin like growth factor‐1 (IGF‐1) concentrations are low, and administration of GH has been shown to increase bone turnover and BMD, but the mechanisms remain unclear. We studied the effects of GH administration on PTH sensitivity, PTH circadian rhythm, and bone mineral metabolism in postmenopausal women with established osteoporosis. Materials and Methods : Fourteen postmenopausal women with osteoporosis were compared with 14 healthy premenopausal controls at baseline that then received GH for a period of 12 mo. Patients were hospitalized for 24 h before and 1, 3, 6, and 12 mo after GH administration and half‐hourly blood and 3‐h urine samples were collected. PTH, calcium (Ca), phosphate (PO4), nephrogenous cyclic AMP (NcAMP), β C‐telopeptide of type 1 collagen (βCTX), procollagen type I amino‐terminal propeptide (PINP), and 1,25‐dihydroxyvitamin D [1,25(OH)2D] were measured. Circadian rhythm analysis was performed using Chronolab 3.0 and Student's t‐test and general linear model ANOVAs for repeated measures were used where appropriate. Results : IGF‐1 concentration was significantly lower in the women with established osteoporosis compared with controls (101.5 ± 8.9 versus 140.9 ± 10.8 μg/liter; p < 0.05) and increased significantly after 1, 3, 6, and 12 mo of GH administration (p < 0.001). Twenty‐four‐hour mean PTH concentration was higher in the osteoporotic women (5.4 ± 0.1 pM) than in healthy controls (4.4 ± 0.1 pM, p < 0.001) and decreased after 1 (5.2 ± 0.1 pM, p < 0.001), 3 (5.0 ± 0.1 pM, p < 0.001), 6 (4.7 ± 0.1 pM, p < 0.001), and 12 mo (4.9 ± 0.1 pM, p < 0.05) of GH administration compared with baseline. NcAMP was significantly lower in osteoporotic women (17.2 ± 1.2 nM glomerular filtration rate [GFR]) compared with controls (21.4 ± 1.4 nM GFR, p < 0.05) and increased after 1 (24.2 ± 2.5 nM GFR, p < 0.05), 3 (27.3 ± 1.5 nM GFR, p < 0.001), and 6 mo (32.4 ± 2.5 nM GFR, p < 0.001) compared with baseline. PTH secretion was characterized by two peaks in premenopausal women and was altered in postmenopausal women with a sustained increase in PTH concentration. GH administration also restored a normal PTH secretory pattern in the osteoporotic women. The 24‐h mean adjusted serum calcium (ACa) concentration increased at 1 and 3 mo (p < 0.001) and PO4 at 1, 3, 6, and 12 mo (p < 0.001). 1,25(OH)2D concentration increased after 3, 6, and 12 mo of GH (p < 0.05). An increase in urine Ca excretion was observed at 3 and 6 mo (p < 0.05), and the renal threshold for maximum tubular phosphate reabsorption rate (TmPO4/GFR) increased after 1, 3, 6, and 12 mo (p < 0.05). βCTX concentration increased progressively from 0.74 ± 0.07 μg/liter at baseline to 0.83 ± 0.07 μg/liter (p < 0.05) at 1 mo and 1.07 ± 0.09 μg/liter (p < 0.01) at 3 mo, with no further increase at 6 or 12 mo. PINP concentration increased progressively from baseline (60 ± 5 μg/liter) to 6 mo (126 ± 11 μg/liter, p < 0.001), with no further increase at 12 mo. The percentage increase in PINP concentration was significantly higher than βCTX (p < 0.05). Conclusions : Our study shows that GH has a regulatory role in bone mineral metabolism. GH administration to postmenopausal osteoporotic women improves target organ sensitivity to PTH and bone mineral metabolism and alters PTH secretory pattern with greater increases in bone formation than resorption. These changes, resulting in a net positive bone balance, may partly explain the mechanism causing the increase in BMD after long‐term administration of GH in postmenopausal women with osteoporosis shown in previous studies and proposes a further component in the development of age‐related postmenopausal osteoporosis.  相似文献   

16.
Parathyroid hormone (PTH) may be an important determinant of cortical bone remodeling in the elderly. Vitamin D status is one of the determining factors in this relationship. The aim of this study was to quantify the relationship between serum PTH, vitamin D and bone mineral density (BMD) in elderly women in Reykjavik (64° N), where daily intake of cod liver oil is common and mean calcium intake is high. ln PTH correlated inversely with 25(OH)D (r=−0.26, p<0.01). In multivariate analysis PTH correlated inversely with whole body BMD (mostly cortical bone) (R 2= 2.2%, p = 0.04) but not with the lumbar spine BMD, reflecting more cancellous bone. No association was found between 25(OH)D levels and BMD at any site in univariate or multivariate analysis. Osteocalcin, a measure of bone turnover, was negatively associated with BMD and this association remained significant when corrected for PTH levels. In summary, in this fairly vitamin D replete population with high calcium intake, PTH was negatively associated with total body BMD. We infer that suppression of PTH may reduce cortical bone loss, but other factors are likely to contribute to age-related bone remodeling and osteoporosis. Received: 3 January 2000 / Accepted: 10 April 2000  相似文献   

17.
Bone mineral density (BMD) at the lumbar spine and the neck of femur and serum concentrations of 25-hydroxyvitamin D (25OHD), intact parathyroid hormone (PTH), alkaline phosphatase, calcium, albumin, creatinine and phosphate were measured in a group of 166 postmenopausal women (30–79 years) attending a bone clinic for bone density measurements. Four subjects with suspected primary hyperparathyroidism were excluded from analysis. BMD at the lumbar spine was correlated with body mass index (BMI) (r=0.278,p=0.0003), age (r=−0.194,p=0.0134) and serum 25OHD (r=0.188,p=0.0167). BMD at the neck of femur correlated with BMI (r=0.391,p<0.0001), age (r=−0.356,p<0.0001), PTH (r=−0.156,p=0.047) and serum 25OHD (r=0.231,p=0.0031). Stepwise multiple regression analysis showed that age, BMI and serum 25OHD contributed to the variation in BMD at lumbar spine. At the neck of femur, PTH was an additional contributor. We conclude that serum 25OHD makes a contribution to BMD a lumbar spine and neck of femur.  相似文献   

18.
Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: −5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

19.
Introduction This study examined the distribution and determinants of serum 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) and their associations with bone mineral density (BMD) at the hip and spine in 414 older men (mean age 74 years) living in southern California.Methods At a clinic visit (1997–2000), demographic and lifestyle information, fracture history, and medication use were recorded; venous blood for serum 25OHD and PTH was obtained; and BMD was measured at the hip and spine.Results Only one man had vitamin D deficiency (25OHD <20 nmol/l), but 15.5% of the men had high parathyroid levels (PTH ≥65 pg/ml). The mean 25OHD and PTH levels were 109.0 nmol/l and 50.3 pg/ml, respectively. Overall, 21.5% used calcium and 9.7% used vitamin D supplements. Serum 25OHD decreased with age and was lowest in the winter; levels were higher in supplement users (vitamin D and/or calcium; p<0.01). Serum PTH did not vary by age or season, and it was lower in supplement users (p<0.01). After excluding 12 men who were outliers for serum 25OHD and PTH, there was no significant correlation between serum 25OHD and PTH (r=−0.05, p=0.3). In multiple adjusted models, serum 25OHD was positively associated with BMD at the hip (p=0.01) and spine (p=0.001). Serum PTH was moderately and inversely associated with BMD at the hip (p=0.04) but not at the spine (p=0.77).Conclusion We conclude that serum 25OHD is associated with bone health in older, community-dwelling men.  相似文献   

20.
Vitamin D deficiency, persistent hyperparathyroidism, and bone loss are common after kidney transplantation (KTx). However, limited evidence exists regarding the effects of cholecalciferol supplementation on parathyroid hormone (PTH) and bone loss after KTx. In this prespecified secondary endpoint analysis of a randomized controlled trial, we evaluated changes in PTH, bone metabolic markers, and bone mineral density (BMD). At 1 month post-transplant, we randomized 193 patients to an 11-month intervention with cholecalciferol (4000 IU/d) or placebo. The median baseline 25-hydroxyvitamin D (25[OH]D) level was 10 ng/mL and 44% of participants had osteopenia or osteoporosis. At the end of the study, the median 25(OH)D level was increased to 40 ng/mL in the cholecalciferol group and substantially unchanged in the placebo group. Compared with placebo, cholecalciferol significantly reduced whole PTH concentrations (between-group difference of −15%; 95% confidence interval [CI] −25 to −3), with greater treatment effects in subgroups with lower 25(OH)D, lower serum calcium, or higher estimated glomerular filtration rate (pint < 0.05). The percent change in lumbar spine (LS) BMD from before KTx to 12 months post-transplant was −0.2% (95% CI −1.4 to 0.9) in the cholecalciferol group and −1.9% (95% CI −3.0 to −0.8) in the placebo group, with a significant between-group difference (1.7%; 95% CI 0.1 to 3.3). The beneficial effect of cholecalciferol on LS BMD was prominent in patients with low bone mass pint < 0.05). Changes in serum calcium, phosphate, bone metabolic markers, and BMD at the distal radius were not different between groups. In mediation analyses, change in whole PTH levels explained 39% of treatment effects on BMD change. In conclusion, 4000 IU/d cholecalciferol significantly reduced PTH levels and attenuated LS BMD loss after KTx. This regimen has the potential to eliminate vitamin D deficiency and provides beneficial effects on bone health even under glucocorticoid treatment. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号