首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
微波诱变及添加氯化镧筛选阿扎霉素B高产菌株   总被引:1,自引:0,他引:1  
目的 拟通过微波诱变和添加氯化镧对阿扎霉素B产生菌N98-1634进行选育,获得高产菌株.方法 对菌株进行40~240s的微波诱变,采用金黄色葡萄球菌抑菌圈法获得初筛通过株,并进行HPLC复筛获得高产菌株;在高产菌株发酵培养基中加入5~30mg/L的氯化镧考查其对阿扎霉素B合成的影响.结果 通过微波诱变选出l株阿扎霉素B产量达到945.0μg/mL的突变菌株MW-638,较出发菌株N98-1634的752.4μg/mL提高了25.6%,随后经过添加15mg/L氯化镧阿扎霉素B单位最终达到1413.8μg/mL.结论 微波诱变对提高菌株N98-1634阿扎霉素B发酵单位效果明显,诱变菌株添加适量氯化镧可以显著提高其产量.  相似文献   

2.
目的 通过对达托霉素产生菌进行诱变选育,并对其发酵条件优化,以提高其达托霉素发酵水平,降低生产成本。方法 以玫瑰孢链霉菌(DT-9#F2)为出发菌株,分别采用紫外诱变、微波诱变、LiCl诱变及复合诱变并结合链霉素抗性筛选进行菌株选育,同时,对其发酵培养基中氮源、碳源及生长因子进行优化,以进一步提高其发酵产量。结果 得到一株达托霉素高产突变株DT-37,其摇瓶发酵产量达到12.2mg/L,较出发菌株提高20.79%;优化后的发酵培养基为:酵母粉(YP300)1.65%、FeSO4 0.043%、葡萄糖1.50%、玉米淀粉7.20%、糖蜜0.72%,VB12 1.50μg/mL、硫辛酸5.00μg/mL。其摇瓶发酵产量达到30.56mg/L,较初始培养基提高了297.92%。经100L发酵罐上放大验证,达托霉素的产量达到了2872mg/L,较优化前提高了14.88%。结论 紫外、微波及LiCl复合诱变后经抗生素抗性筛选,结合发酵培养基优化,可有效提高菌株的达托霉素发酵产量。  相似文献   

3.
《中国抗生素杂志》2021,45(12):1232-1237
目的 通过对达托霉素产生菌进行诱变选育,并对其发酵条件优化,以提高其达托霉素发酵水平,降低生产成本。方法 以玫瑰孢链霉菌(DT-9#F2)为出发菌株,分别采用紫外诱变、微波诱变、LiCl诱变及复合诱变并结合链霉素抗性筛选进行菌株选育,同时,对其发酵培养基中氮源、碳源及生长因子进行优化,以进一步提高其发酵产量。结果 得到一株达托霉素高产突变株DT-37,其摇瓶发酵产量达到12.2mg/L,较出发菌株提高20.79%;优化后的发酵培养基为:酵母粉(YP300)1.65%、FeSO4 0.043%、葡萄糖1.50%、玉米淀粉7.20%、糖蜜0.72%,VB12 1.50μg/mL、硫辛酸5.00μg/mL。其摇瓶发酵产量达到30.56mg/L,较初始培养基提高了297.92%。经100L发酵罐上放大验证,达托霉素的产量达到了2872mg/L,较优化前提高了14.88%。结论  相似文献   

4.
链霉菌702抗药性致死突变标志微波诱变筛选研究   总被引:3,自引:0,他引:3  
目的 筛选出产抗真菌活性物质的高产链霉菌702突变株.方法 分别以链霉菌702菌株为试验材料和以庆大霉素为敏感抗生素建立链霉菌702孢子致死突变标志的微波诱变筛选模型,通过微波对链霉菌702菌株孢子进行不同时间的诱变处理,将诱变处理后的孢予悬液涂布于含致死浓度的庆大霉素的PDA平板培养基上,获得抗庆大霉素突变株,分别挑取单个抗药性突变菌株进行摇瓶初筛和复筛.生物效价测定采用一剂量法.结果 微波处理30s对菌株的致死率可达70.53%,抗药性突变率高达23.13%,获得的抗药性突变株经过摇瓶初筛和复筛,获得高产突变株20-29-47菌株,产抗真菌活件物质的摇瓶发酵单位达到1478μg/ml,比出发菌株发酵单位986μg/ml提高T49.9%.结论 采用抗药性致死突变标志的微波诱变筛选模型可以获得产抗真菌活性物质的链霉菌702高产菌株.  相似文献   

5.
本文通过链霉素对梅岭霉素(meilingmycin)产生菌南昌链霉菌NS-41-80菌株孢子致死浓度的测定,采用诱变剂EMS四种不同诱变剂量对菌株的孢子进行诱变处理,诱变处理的孢子涂布在含链霉素致死浓度的高氏平板上,获得了大量的链霉素抗性基因(str)突变株。然后从链霉素抗性基因突变株进一步筛选到梅岭霉素高产菌株80-5.11-221,在摇瓶条件下,只产梅岭霉素不产南昌霉素,梅岭霉素活性效价达1500μg/ml,比出发菌株NS-41-80的摇瓶发酵效价855μg/ml提高了77.9%,该菌株连续传代六代进行摇瓶发酵,其F2代和F3代梅岭霉素发酵效价稳定,F4代至F6代随着传代数增加,其梅岭霉素发酵效价急速下降。通过EMS诱变剂量分别与抗药性突变率和链霉素抗性基因突变株产梅岭霉素产量的产势统计分析表明,菌株抗药性突变与产抗生素突变密切相关,产抗生素突变的EMS诱变剂量高于链霉素抗性基因突变诱变剂量。在0.03mol/L的EMS剂量作用下,菌株致死率为99.43%,而抗药性突变率为0.0440%,建立了梅岭霉素产生菌链霉素抗性基因突变筛选方法,为南昌链霉菌高产菌种选育研究作了有益的尝试,并有助于其它链霉菌属的抗生素产生菌育种研究。  相似文献   

6.
《中国抗生素杂志》2009,45(6):567-572
目的 结合各种诱变手段,获得细菌叶绿素a(bacteriochlorophyll a, Bchla)的高产菌株,并优化其发酵工艺,提高产量。方法 以球红假单胞菌ATCC17023为出发菌株,通过紫外、ARTP(常压室温等离子体)及亚硝基胍单独诱变或组合诱变,结合含氯化胆碱的抗性平板进行筛选。调整发酵培养基中碳氮源组分和比例,优化种龄、接种量、发酵pH、摇瓶装量、转速及温度等发酵培养条件。结果 通过多轮筛选,得到突变高产菌株,其发酵单位达到285.7μg/mL,为原始出发菌株的114倍。采用优化后的发酵工艺,经50L发酵罐放大培养,最高效价单位达到296.6μg/mL。结论  相似文献   

7.
目的 结合各种诱变手段,获得细菌叶绿素a(bacteriochlorophyll a, Bchla)的高产菌株,并优化其发酵工艺,提高产量。方法 以球红假单胞菌ATCC17023为出发菌株,通过紫外、ARTP(常压室温等离子体)及亚硝基胍单独诱变或组合诱变,结合含氯化胆碱的抗性平板进行筛选。调整发酵培养基中碳氮源组分和比例,优化种龄、接种量、发酵pH、摇瓶装量、转速及温度等发酵培养条件。结果 通过多轮筛选,得到突变高产菌株,其发酵单位达到285.7μg/mL,为原始出发菌株的114倍。采用优化后的发酵工艺,经50L发酵罐放大培养,最高效价单位达到296.6μg/mL。结论 获得Bchla的高产菌株和摇瓶发酵工艺,并经50L发酵罐放大验证,为大规模商业化生产奠定了良好的基础。  相似文献   

8.
高产纳他霉素的褐黄孢链霉菌选育   总被引:6,自引:1,他引:6  
目的 以褐黄孢链霉菌 (Streptomyces gilvosporeus) S- 71为出发菌株 ,筛选纳他霉素的高产菌株。方法 紫外线对孢子悬浮液照射 4 0 s后 ,分别用链霉素抗性和琼脂块法进行筛选纳他霉素高产菌株 ,之后对高产菌株进行生产稳定性实验。结果 通过链霉素抗性法筛选获得了约 10 %的正选率突变株 ,其中突变株SG- 5 6摇瓶效价单位为 2 4 10μg/ ml,为出发菌株的 14 6 % ;通过琼脂块筛选法获得了约 1%的正选率突变株 ,其中突变株 SG- 2 0 0 2摇瓶效价单位为 2 6 5 0μg/ ml,为出发菌株的 16 1% ,该菌株无链霉素抗性标记。结论 链霉素抗性筛选和琼脂块筛选均可以获得纳他霉素的高产菌株 ,其中链霉素抗性筛选法效率高 ,琼脂块法筛选全面。  相似文献   

9.
本实验室中保存的一株从土壤中分离得到的米尔贝链霉菌(Streptomyces milbemycinicus)27号菌株所产米尔贝霉素A3和A4的初始产量分别为61.0和23.8μg/mL。以该菌株为出发菌株,采用核糖体工程技术,结合紫外诱变技术,对米尔贝霉素产生菌米尔贝链霉菌进行诱变,并以链霉素耐受为筛选压力进行筛选。经过诱变后对单菌落进行摇瓶复筛,其中正突变株中米尔贝霉素产量最高的菌株编号是R2-6-5,其米尔贝霉素A3和A4的产量分别是105.2和38.8μg/mL,较原始菌株分别提高了72.5%和63.3%,且遗传稳定。最后,对产量变化较大的11株突变株基因组中rsmG基因和rspL基因进行突变位点分析,发现在rspL基因内均未发生突变,rsmG基因均发生突变。本研究表明,链霉素抗性降低的突变菌株确实都在相关基因内发生突变,且核糖体工程结合紫外诱变的诱变方式效果良好,能够快速有效的提高米尔贝链霉菌生物合成米尔贝霉素的能力。  相似文献   

10.
目的 筛选出那西肽高产菌株.方法 以活跃链霉菌CB040517作为出发菌株,通过紫外-氧化锂诱变处理,并结合前体复合氨基酸抗性筛选,选育那西肽高产菌.结果 通过致死率和正突变率的考察,确定紫外最佳诱变剂量为100s.在分离培养基上层加入氯化锂和底层加入复合氨基酸进行正突变株的定向筛选,选育得到那西肽高产菌株UV-19-A12,其摇瓶效价达904.00μg/mL,比出发菌株提高72.5%,经过五代斜面传代试验考察,该菌株遗传性状稳定.结论 紫外诱变和氨基酸抗性筛选可以获得那西肽高产菌株.  相似文献   

11.
目的 通过对埃莎霉素Ⅰ产生菌WSJ-IA进行诱变选育研究,以期获得埃莎霉素Ⅰ高产菌株。方法 使用多功能等离子体诱变系统(multifunctional plasma mutagenesis system, MPMS)对出发菌株的孢子进行等离子体和紫外复合诱变,设定不同的诱变时间处理孢子悬液,通过致死率确定合适的诱变条件,利用突变株摇瓶发酵效价筛选出正突变菌株。结果 在MPMS射频功率为100W,处理距离5mm,气体流量12.5SLM,等离子体-紫外辐射时间为50s时,菌株致死率为96.08%。在此诱变条件下,以突变株的初筛效价为指标的突变率、正突变率分别达到63.96%和22.52%,复筛效价是出发菌株1.5倍以上的有5株,占复筛菌株的9%。最终筛选出一株发酵单位比出发菌株提高221%、埃莎霉素Ⅰ组分含量提高192%的正突变株IA-425。42L自动发酵罐发酵结果表明,该菌株埃莎霉素Ⅰ产量达到(2000±200)μg/mL左右。结论 新型等离子体复合紫外诱变方式,可有效提高菌株的埃莎霉素Ⅰ发酵产量和组分含量。这为埃莎霉素Ⅰ的大规模发酵和临床前研究奠定了良好基础。  相似文献   

12.
目的 采用甲基磺酸乙酯(EMS)、核糖体工程育种和常压室温等离子体(ARTP)方法处理产多杀菌素刺糖多孢菌 (Saccharopolyspora spinosa) SIIA-1802,采用含蛋氨酸培养基筛选得到高产菌株。方法 首轮采用EMS诱变;第二轮采用链霉 素抗性育种;第三轮采用ARTP诱变育种进一步巩固育种成效;采用对照和添加蛋氨酸的发酵培养基考察突变菌株的发酵水 平。结果 出发株刺糖多孢菌SIIA-1802经过EMS诱变、链霉素抗性筛选和ARTP诱变得到的突变株ESA-611,发酵水平提高了 671.8%,采用含有蛋氨酸的发酵培养基进行筛选,发酵水平进一步提高了57.6%。在ARTP诱变过程中,筛选到一株多杀菌素A 显著下降,但产生较高水平多杀菌素J的菌株ESA-598。结论 本方法简单经济,突变效率高,能够快速获得传代稳定的多杀菌 素高产突变株。另外,通过诱变拓宽了代谢产物谱,得到了具有更高潜在价值的组分。  相似文献   

13.
摘要:目的 通过测定左氧氟沙星对大肠埃希菌和肺炎克雷伯菌的最低抑菌浓度(MIC)和防耐药突变浓度(MPC),研究携 带耐药基因的肠杆菌科细菌对左氧氟沙星MPC的影响。方法 采用琼脂二倍稀释法测定左氧氟沙星对76株大肠埃希菌和60株 肺炎克雷伯菌的MIC、MPC并计算各自的MIC90、MPC90、SI(MPC/MIC)等值。采用PCR扩增超广谱β-内酰胺酶(ESBLs)和qnr耐 药基因,并统计分析产与非产ESBLs和带与不带qnr各组间MIC、MPC的差异。结果 左氧氟沙星对大肠埃希菌产ESBLs组和 非产ESBLs组的MIC90分别为4和1μg/mL,MPC90分别为10.24和3.2μg/mL。对肺炎克雷伯菌产ESBLs组和非产ESBLs组的MIC90 分别是1和0.0625μg/mL,MPC90分别为5.12和1.6μg/mL。左氧氟沙星对大肠埃希菌带qnr基因组和不带qnr基因组的MIC90分别为 0.5和1μg/mL,MPC90分别为12.8和4.096μg/mL。对肺炎克雷伯菌带qnr基因组和不带qnr基因组的MIC90均是0.5μg/mL,MPC90 分别为6.4和2.56μg/mL。产与非产ESBLs组和带与不带qnr基因组的MIC无统计学差异,但产ESBLs组的MPC明显高于非产组 (P<0.001),耐药基因qnr的存在亦显著提高了临床菌株的MPC值(P<0.05)。结论 本研究证明临床上产ESBLs和带qnr基因的肠 杆菌会增加MPC从而导致细菌耐药。测定致病菌的MPC,尽量延长治疗期间血药浓度高于MPC的时间,则最大程度上抑制了耐 药突变株的富集扩增。针对MIC在左氧氟沙星敏感折点以下的产ESBLs和/或带qnr基因的肠杆菌,应结合PK/PD特点和MSW理 论优化给药方案从而达到兼顾临床疗效和耐药预防的目的。  相似文献   

14.
目的 利用等离子体诱变,结合抗生素抗性筛选,获得西索米星高产菌株。方法 首先通过链霉素抗性筛选,获得一株比出发菌株产抗能力高的S4;随后以S4为出发菌株,经等离子体处理40s,借助巴龙霉素抗性筛选,得到双重抗性菌株。最后对突变株进行再次诱变,并结合高浓度链霉素抗性筛选。结果 获得一株高产突变株M. inyoensis SAAP22,比出发菌株效价提高了38.18%,具有稳定的遗传性能。结论 通过等离子体诱变,结合抗生素抗性筛选,可有效提升伊尼奥小单孢菌的西索米星合成能力,所得高产菌株具有潜在应用价值。  相似文献   

15.
目的 利用诱变结合抗性筛选方法选育多杀菌素高产菌株,并通过发酵培养基优化进一步提高多杀菌素产量。方法 分别确定链霉素、安普霉素和鼠李糖3种抗性的最小抑菌浓度(minimal inhibitory concentration, MIC),然后以S.s1-4为出发菌株,通过紫外(UV)结合链霉素、安普霉素、鼠李糖抗性因子诱变选育,在此基础上利用亚硝基胍(NTG)结合上述抗性因子诱变选育,并利用响应面实验设计对发酵培养基中葡萄糖、糊精、棉籽蛋白3种成分进行优化。结果 出发菌株经过紫外照射30s,涂布于抗性平板上,筛选得到S.s2-21,S.s2-21再用NTG处理30min,涂布于抗性平板上,最终获得1株遗传性状稳定的菌株S.s3-37,产量为78.26mg/L,提高了45.71%;发酵培养基优化后,其产量达83.00mg/L。结论 利用紫外和NTG结合抗性复合诱变选育获得多杀菌素高产菌株是有效的,通过发酵培养基优化,其产量较出发菌株提高了54.55%,获得良好的效果。  相似文献   

16.
摘要:目的 通过对新硫肽类抗生素166A产生菌小单孢菌TMD166进行诱变选育研究,以期获得产166A的高产菌株。方 法 使用多功能等离子体诱变系统(multifunctional plasma mutagenesis system, MPMS)对出发菌株TMD166的孢子进行等离子体-紫 外(MPMS-UV)复合诱变,单孢子悬液经照射处理、涂布培养后获得单菌落,并以牛津杯固体发酵高通量筛选方法对菌株进行初 筛,之后对高产菌株进行摇瓶复筛,利用突变株摇瓶发酵的化学效价筛选出正突变菌株。结果 对比MPMS-UV不同诱变剂量发 现,MPMS105s-UV60s复合诱变剂量获得的正突变率最高,达到41.43%,相应致死率为99.88%。最终筛选出一株166A高产突 变株TMD166-MU1,在培养温度为28℃、210 r/min的条件下,经过96~120 h培养后,166A产量相比出发菌株提高了7.47倍。结 论 采用MPMS-UV复合诱变方式,再结合牛津杯固体发酵高通量筛选方法和摇瓶复筛,可高效筛选获得166A高产菌株。  相似文献   

17.
产腺苷蛋氨酸酵母菌株的选育   总被引:1,自引:1,他引:1  
目的筛选产腺苷蛋氨酸(SAM)的酵母菌并进行诱变育种。方法以选择性培养基筛选酵母菌株并用高效液相色谱检测SAM。利用紫外线和γ-射线处理对菌株进行诱变。结果从34份土样中筛选到1株产SAM的酵母菌Q95菌株,经过5轮紫外线诱变和1轮γ-射线诱变,筛选到1株SAM产量显著提高的正突变株Q6-13。摇瓶发酵27 h后,其SAM产量达到1860μg/mL,与Q95相比提高了86.9%。在15 L外循环气升式生物反应器中补料发酵22 h后,Q6-13的SAM产量达到2540μg/mL。结论通过筛选和诱变,得到了1株高产SAM的酵母菌突变株,为SAM的微生物发酵法规模化生产奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号