首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The antibacterial activity of fosfomycin-tobramycin combination was studied by time-kill assay in eight Pseudomonas aeruginosa clinical isolates belonging to the fosfomycin wild-type population (MIC = 64 μg/ml) but with different tobramycin susceptibilities (MIC range, 1 to 64 μg/ml). The mutant prevention concentration (MPC) and mutant selection window (MSW) were determined in five of these strains (tobramycin MIC range, 1 to 64 μg/ml) in aerobic and anaerobic conditions simulating environments that are present in biofilm-mediated infections. Fosfomycin-tobramycin was synergistic and bactericidal for the isolates with mutations in the mexZ repressor gene, with a tobramycin MIC of 4 μg/ml. This effect was not observed in strains displaying tobramycin MICs of 1 to 2 μg/ml due to the strong bactericidal effect of tobramycin alone. Fosfomycin presented higher MPC values (range, 2,048 to >2,048 μg/ml) in aerobic and anaerobic conditions than did tobramycin (range, 16 to 256 μg/ml). Interestingly, the association rendered narrow or even null MSWs in the two conditions. However, for isolates with high-level tobramycin resistance that harbored aminoglycoside nucleotidyltransferases, time-kill assays showed no synergy, with wide MSWs in the two environments. glpT gene mutations responsible for fosfomycin resistance in P. aeruginosa were determined in fosfomycin-susceptible wild-type strains and mutant derivatives recovered from MPC studies. All mutant derivatives had changes in the GlpT amino acid sequence, which resulted in a truncated permease responsible for fosfomycin resistance. These results suggest that fosfomycin-tobramycin can be an alternative for infections due to P. aeruginosa since it has demonstrated synergistic and bactericidal activity in susceptible isolates and those with low-level tobramycin resistance. It also prevents the emergence of resistant mutants in either aerobic or anaerobic environments.  相似文献   

2.
We determined the comparative activity of SMT19969 (SMT) against 162 strains representing 35 well-characterized Clostridium species in clusters I to XIX and 13 Clostridium species that had no 16S rRNA match. SMT MICs ranged from 0.06 to >512 μg/ml and were not species related. SMT might have less impact on normal gut microbiota than other Clostridium difficile infection (CDI) antimicrobials.  相似文献   

3.
Nitrofurantoin has been used for decades for the treatment of urinary tract infections (UTIs), but clinically significant resistance in Escherichia coli is uncommon. Nitrofurantoin concentrations in the gastrointestinal tract tend to be low, which might facilitate selection of nitrofurantoin-resistant (NIT-R) strains in the gut flora. We subjected two nitrofurantoin-susceptible intestinal E. coli strains (ST540-p and ST2747-p) to increasing nitrofurantoin concentrations under aerobic and anaerobic conditions. Whole-genome sequencing was performed for both susceptible isolates and selected mutants that exhibited the highest nitrofurantoin resistance levels aerobically (ST540-a and ST2747-a) and anaerobically (ST540-an and ST2747-an). ST540-a/ST540-an and ST2747-a (aerobic MICs of >64 μg/ml) harbored mutations in the known nitrofurantoin resistance determinants nfsA and/or nfsB, which encode oxygen-insensitive nitroreductases. ST2747-an showed reduced nitrofurantoin susceptibility (aerobic MIC of 32 μg/ml) and exhibited remarkable growth deficits but did not harbor nfsA/nfsB mutations. We identified a 12-nucleotide deletion in ribE, encoding lumazine synthase, an essential enzyme involved in the biosynthesis of flavin mononucleotide (FMN), which is an important cofactor for NfsA and NfsB. Complementing ST2747-an with a functional wild-type lumazine synthase restored nitrofurantoin susceptibility. Six NIT-R E. coli isolates (NRCI-1 to NRCI-6) from stools of UTI patients treated with nitrofurantoin, cefuroxime, or a fluoroquinolone harbored mutations in nfsA and/or nfsB but not ribE. Sequencing of the ribE gene in six intestinal and three urinary E. coli strains showing reduced nitrofurantoin susceptibility (MICs of 16 to 48 μg/ml) also did not identify any relevant mutations. NRCI-1, NRCI-2, and NRCI-5 exhibited up to 4-fold higher anaerobic MICs, compared to the mutants generated in vitro, presumably because of additional mutations in oxygen-sensitive nitroreductases.  相似文献   

4.
Susceptibility of Anaerobic Bacteria to Ten Antimicrobial Agents   总被引:5,自引:14,他引:5       下载免费PDF全文
The susceptibility pattern of 265 anaerobic bacteria from clinical isolates to 10 antimicrobial agents was investigated by the agar dilution technique. Penicillin G, in a concentration of 16 μg/ml, was active against most organisms, important exceptions being 12% of Bacteroides melaninogenicus and 24% of B. fragilis strains. The susceptibility of strains to ampicillin was similar to their susceptibility to penicillin G. Carbenicillin, at ≤128 μg/ml, inhibited all but a few strains. Cefamandole was less active than the penicillins; 82% of B. melaninogenicus, 32% of B. fragilis, and 75% of Fusobacterium strains were inhibited by ≤16 μg/ml. A trend towards tetracycline resistance was seen in many bacterial groups, especially Bacteroides, Fusobacterium, and Clostridium. All organisms were susceptible to chloramphenicol and clindamycin in concentrations of ≤16 μg/ml and ≤4 μg/ml, respectively. Erythromycin was less active than clindamycin against all strains tested. Metronidazole and tinidazole were active against most anaerobes, but resistance of a few strains in each group was encountered. The increased resistance of B. melaninogenicus strains to penicillin, and emergence of anaerobes resistant to >16 μg of imidazole per ml may have therapeutic implications.  相似文献   

5.
In Vitro Susceptibilities of Anaerobic Bacteria to Josamycin   总被引:2,自引:1,他引:1       下载免费PDF全文
A total of 132 strains of anaerobic bacteria were tested for susceptibility to josamycin, using a broth dilution technique. All strains of Peptococcus species, Peptostreptococcus species, and Bacteroides fragilis were inhibited by 2 μg or less per ml. Seventy percent of these susceptible strains were also killed by 2 μg or less of josamycin per ml. However, 2 of 12 Clostridium species and 6 of 10 Fusobacterium species had minimum inhibitory concentrations of 32 μg or more per ml.  相似文献   

6.
The minimal inhibitory concentrations of gentamicin and minocycline alone and in combination were determined by a broth microdilution method for 100 aerobic, facultative, and anaerobic isolates representative of pathogens recovered from patients with intra-abdominal sepsis. Gentamicin inhibited all strains of Klebsiella, Enterobacter, and Pseudomonas aeruginosa in concentrations of 0.4 to 3.1 μg/ml and all strains of Escherichia coli and Proteus mirabilis in concentrations of 0.8 to 12.5 μg/ml. Whereas minocycline did not consistently inhibit these organisms in concentrations of 1.6 μg or less/ml, it did act synergistically with gentamicin against 43% of the Enterobacteriaceae tested in clinically achievable concentrations; significant synergy was most common with E. coli (60%). Minocycline inhibited 62% of Bacteroides fragilis, 71% of Clostridium, 40% of anaerobic cocci, and 40% of enterococci tested in concentrations of 1.6 μg or less/ml. Whereas gentamicin rarely inhibited these organisms in concentrations of 6.2 μg or less/ml, it did act synergistically with minocycline against 20% of B. fragilis, 67% of Clostridium, 22% of anaerobic cocci, and 22% of enterococci (which had minimal inhibitory concentrations of minocycline within the range tested) at clinically achievable concentrations. Although only four (13%) of the 30 isolates resistant to both gentamicin and minocycline alone were inhibited by clinically achievable concentrations of the combination, the observed synergy, particularly against strains of E. coli, was considered to be of potential clinical usefulness. Antagonism between gentamicin and minocycline was not observed at the concentrations tested.  相似文献   

7.
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to many antibiotics. Among its primary mechanisms of resistance is expression of a chromosomally encoded AmpC β-lactamase that inactivates β-lactams. The mechanisms leading to AmpC expression in P. aeruginosa remain incompletely understood but are intricately linked to cell wall metabolism. To better understand the roles of peptidoglycan-active enzymes in AmpC expression—and consequent β-lactam resistance—a phenotypic screen of P. aeruginosa mutants lacking such enzymes was performed. Mutants lacking one of four lytic transglycosylases (LTs) or the nonessential penicillin-binding protein PBP4 (dacB) had altered β-lactam resistance. mltF and slt mutants with reduced β-lactam resistance were designated WIMPs (wall-impaired mutant phenotypes), while highly resistant dacB, sltB1, and mltB mutants were designated HARMs (high-level AmpC resistant mutants). Double mutants lacking dacB and sltB1 had extreme piperacillin resistance (>256 μg/ml) compared to either of the single knockouts (64 μg/ml for a dacB mutant and 12 μg/ml for an sltB1 mutant). Inactivation of ampC reverted these mutants to wild-type susceptibility, confirming that AmpC expression underlies resistance. dacB mutants had constitutively elevated AmpC expression, but the LT mutants had wild-type levels of AmpC in the absence of antibiotic exposure. These data suggest that there are at least two different pathways leading to AmpC expression in P. aeruginosa and that their simultaneous activation leads to extreme β-lactam resistance.  相似文献   

8.
Gentamicin doses of 2 and 10 μg/ml were bactericidal against 64% and 100%, respectively, of gentamicin-susceptible KPC-2-producing Klebsiella pneumoniae strains. Treatment with the combination of doripenem (8 μg/ml) plus colistin (2 μg/ml) was inferior to treatment with gentamicin (2 μg/ml), doripenem-gentamicin, gentamicin-colistin, and doripenem-gentamicin-colistin against strains with glycine and aspartic acid insertions in OpmK36 porin at amino acid (aa) positions 134 and 135 (n = 9). Doripenem-colistin was comparable to other 2- or 3-drug regimens and superior to single drugs against wild-type/minor ompK36 mutants (n = 5). An algorithm incorporating ompK36 genotypes and susceptibility to gentamicin and doripenem may predict antimicrobial activity against KPC-producing K. pneumoniae.  相似文献   

9.
Several new beta-lactam antimicrobial agents have been introduced in the last few years. In this investigation, the in vitro activities of several recently introduced cephalosporins (cefoperazone, cefotaxime, ceftazidime, and ceftizoxime), moxalactam, and N-formimidoyl thienamycin were compared with those of cefoxitin, clindamycin, and metronidazole against 203 strains of anaerobic bacteria. At achievable serum levels, all of the antimicrobial agents were active against essentially 100% of the strains of anaerobic gram-positive cocci, Clostridium perfringens, Leptotrichia buccalis, and species of Selenomonas, Veillonella, and Eubacterium. Clindamycin, metronidazole, and N-formimidoyl thienamycin were the most active agents against the Bacteroides fragilis group, inhibiting all strains at concentrations which can be achieved in serum. Of the remaining agents tested against the B. fragilis group, cefoxitin (which required 64 μg/ml to inhibit 90% of the strains) was the most active, followed by cefoperazone (128 μg/ml), cefotaxime (128 μg/ml), moxalactam (128 μg/ml), ceftizoxime (256 μg/ml), and ceftazidime (>256 μg/ml). Important differences in cephalosporin susceptibility among species of the B. fragilis group were observed. Metronidazole and N-formimidoyl thienamycin were the most active drugs against species of clostridia other than C. perfringens; the other antibiotics displayed poor activity, although this is partly due to inclusion of a relatively large number of strains of Clostridium difficile which were very resistant to several of the cephalosporins. Only metronidazole was active against all species of Fusobacterium. Clindamycin and N-formimidoyl thienamycin displayed excellent activity against gram-positive, non-spore-forming bacilli, requiring ≤8 μg/ml to inhibit 100% of the strains. Ceftazidime, cefoperazone, and moxalactam were bactericidal for 25 strains of B. fragilis at concentrations equal or close to those required for inhibition. On the basis of its activity in vitro, N-formimidoyl thienamycin appears to be the most promising of the new beta-lactam antibiotics for the treatment of infections involving anaerobic bacteria.  相似文献   

10.
We evaluated the in vitro activity of delafloxacin against a panel of 117 Neisseria gonorrhoeae strains, including 110 clinical isolates collected from 2012 to 2015 and seven reference strains, compared with the activities of seven antimicrobials currently or previously recommended for treatment of gonorrhea. We examined the potential for delafloxacin to select for resistant mutants in ciprofloxacin-susceptible and ciprofloxacin-resistant N. gonorrhoeae. We characterized mutations in the gyrA, gyrB, parC, and parE genes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) by PCR and sequencing and by whole-genome sequencing. The MIC50, MIC90, and MIC ranges of delafloxacin were 0.06 μg/ml, 0.125 μg/ml, and ≤0.001 to 0.25 μg/ml, respectively. The frequency of spontaneous mutation ranged from 10−7 to <10−9. The multistep delafloxacin resistance selection of 30 daily passages resulted in stable resistant mutants. There was no obvious cross-resistance to nonfluoroquinolone comparator antimicrobials. A mutant with reduced susceptibility to ciprofloxacin (MIC, 0.25 μg/ml) obtained from the ciprofloxacin-susceptible parental strain had a novel Ser91Tyr alteration in the gyrA gene. We also identified new mutations in the gyrA and/or parC and parE genes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) of two mutant strains with elevated delafloxacin MICs of 1 μg/ml. Although delafloxacin exhibited potent in vitro activity against N. gonorrhoeae isolates and reference strains with diverse antimicrobial resistance profiles and demonstrated a low tendency to select for spontaneous mutants, it is important to establish the correlation between these excellent in vitro data and treatment outcomes through appropriate randomized controlled clinical trials.  相似文献   

11.
The comparative in vitro activity of SMT19969, a novel, narrow-spectrum, nonabsorbable agent, was studied against 50 ribotype-defined Clostridium difficile strains, 174 Gram-positive and 136 Gram-negative intestinal anaerobes, and 40 Gram-positive aerobes. SMT19969 was one dilution more active against C. difficile isolates (MIC range, 0.125 to 0.5 μg/ml; MIC90, 0.25 μg/ml), including ribotype 027 strains, than fidaxomicin (range, 0.06 to 1 μg/ml; MIC90, 0.5 μg/ml) and two to six dilutions lower than either vancomycin or metronidazole. SMT19969 and fidaxomicin were generally less active against Gram-negative anaerobes, especially the Bacteroides fragilis group species, than vancomycin and metronidazole, suggesting that SMT19969 has a lesser impact on the normal intestinal microbiota that maintain colonization resistance. SMT19969 showed limited activity against other Gram-positive anaerobes, including Bifidobacteria species, Eggerthella lenta, Finegoldia magna, and Peptostreptococcus anaerobius, with MIC90s of >512, >512, 64, and 64 μg/ml, respectively. Clostridium species showed various levels of susceptibility, with C. innocuum being susceptible (MIC90, 1 μg/ml) and C. ramosum and C. perfringens being nonsusceptible (MIC90, >512 μg/ml). Activity against Lactobacillus spp. (range, 0.06 to >512 μg/ml; MIC90, >512 μg/ml) was comparable to that of fidaxomicin and varied by species and strain. Gram-positive aerobic cocci (Staphylococcus aureus, Enterococcus faecalis, E. faecium, and streptococci) showed high SMT19969 MIC90 values (128 to >512 μg/ml).  相似文献   

12.
Dalbavancin is a novel semisynthetic glycopeptide with enhanced activity against gram-positive species. Its comparative in vitro activities and those of nine comparator agents, including daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin, against 290 recent gram-positive clinical isolates strains, as determined by the NCCLS agar dilution method, were studied. The MICs of dalbavancin at which 90% of various isolates tested were inhibited were as follows: Actinomyces spp., 0.5 μg/ml; Clostridium clostridioforme, 8 μg/ml; C. difficile, 0.25 μg/ml; C. innocuum, 0.25 μg/ml; C. perfringens, 0.125 μg/ml; C. ramosum, 1 μg/ml; Eubacterium spp., 1 μg/ml; Lactobacillus spp., >32 μg/ml, Propionibacterium spp., 0.5 μg/ml; and Peptostreptococcus spp., 0.25 μg/ml. Dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains. Dalbavancin exhibited excellent activity against gram-positive strains tested and warrants clinical evaluation.  相似文献   

13.
Alternate mutations in the grlA and gyrA genes were observed through the first- to fourth-step mutants which were obtained from four Staphylococcus aureus strains by sequential selection with several fluoroquinolones. The increases in the MICs of gatifloxacin accompanying those mutational steps suggest that primary targets of gatifloxacin in the wild type and the first-, second-, and third-step mutants are wild-type topoisomerase IV (topo IV), wild-type DNA gyrase, singly mutated topo IV, and singly mutated DNA gyrase, respectively. Gatifloxacin had activity equal to that of tosufloxacin and activity more potent than those of norfloxacin, ofloxacin, ciprofloxacin, and sparfloxacin against the second-step mutants (grlA gyrA; gatifloxacin MIC range, 1.56 to 3.13 μg/ml) and had the most potent activity against the third-step mutants (grlA gyrA grlA; gatifloxacin MIC range, 1.56 to 6.25 μg/ml), suggesting that gatifloxacin possesses the most potent inhibitory activity against singly mutated topo IV and singly mutated DNA gyrase among the quinolones tested. Moreover, gatifloxacin selected resistant mutants from wild-type and the second-step mutants at a low frequency. Gatifloxacin possessed potent activity (MIC, 0.39 μg/ml) against the NorA-overproducing strain S. aureus NY12, the norA transformant, which was slightly lower than that against the parent strain SA113. The increases in the MICs of the quinolones tested against NY12 were negatively correlated with the hydrophobicity of the quinolones (correlation coefficient, −0.93; P < 0.01). Therefore, this slight decrease in the activity of gatifloxacin is attributable to its high hydrophobicity. Those properties of gatifloxacin likely explain its good activity against quinolone-resistant clinical isolates of S. aureus harboring the grlA, gyrA, and/or norA mutations.  相似文献   

14.
AN3365 (MIC50/90, 0.5/1 μg/ml) was active against Enterobacteriaceae, including a subset of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains (MIC50/90, 1/2 μg/ml). AN3365 inhibited 98.0 and 92.2% of wild-type (MIC50/90, 2/8 μg/ml) and carbapenem-resistant (MIC50/90, 4/8 μg/ml) Pseudomonas aeruginosa strains, respectively, at ≤8 μg/ml. AN3365 also demonstrated activity against wild-type Acinetobacter baumannii (MIC50/90, 2/8 μg/ml) and Stenotrophomonas maltophilia (MIC50/90, 2/4 μg/ml), while it was less active against multidrug-resistant A. baumannii (MIC50/90, 8/16 μg/ml) and Burkholderia cepacia (MIC50/90, 8/32 μg/ml).  相似文献   

15.
Members of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC of Escherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of the Enterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versus E. coli AB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) of E. coli AB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active against Enterobacteriaceae species and Pseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.  相似文献   

16.
Two plasmid-linked tetracycline resistance characters, tet A and tet B, were distinguishable in part, according to the level of resistance they conferred to minocycline (<3 μg/ml for tet A; >6 μg/ml for tet B). Escherichia coli K-12 strains that harbored the tet B character were also resistant to tetracycline but susceptible to chelocardin. In such tet B strains, subinhibitory concentrations of tetracycline could induce resistance to chelocardin as well as to otherwise inhibitory concentrations of tetracyclines. Chelocardin itself was ineffective as an inducer and therefore could be used to select constitutively resistant mutants. E. coli K-12 strains harboring the tet A character were also resistant to tetracycline and susceptible to chelocardin; tetracycline did not induce resistance to chelocardin in these strains.  相似文献   

17.
Doripenem-colistin exerts synergy against some, but not all, Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains in vitro. We determined if doripenem MICs and/or ompK36 porin gene mutations impacted the responses of 23 sequence type 258 (ST258), KPC-2-producing strains to the combination of doripenem (8 μg/ml) and colistin (2 μg/ml) during time-kill assays. The median doripenem and colistin MICs were 32 and 4 μg/ml. Doripenem MICs did not correlate with KPC-2 expression levels. Five and 18 strains had wild-type and mutant ompK36, respectively. The most common mutations were IS5 promoter insertions (n = 7) and insertions encoding glycine and aspartic acid at amino acid (aa) positions 134 and 135 (ins aa134-135 GD; n = 8), which were associated with higher doripenem MICs than other mutations or wild-type ompK36 (all P values ≤ 0.04). Bactericidal activity (24 h) was achieved by doripenem-colistin against 12%, 43%, and 75% of ins aa134-135 GD, IS5, and wild-type/other mutants, respectively (P = 0.04). Doripenem-colistin was more active in time-kill studies than colistin at 12 and 24 h if the doripenem MIC was ≤8 μg/ml (P = 0.0007 and 0.09, respectively), but not if the MIC was >8 μg/ml (P = 0.10 and 0.16). Likewise, doripenem-colistin was more active at 12 and 24 h against the wild type/other mutants than ins aa134-135 GD or IS5 mutants (P = 0.007 and 0.0007). By multivariate analysis, the absence of ins aa134-135 GD or IS5 mutations was the only independent predictor of doripenem-colistin responses at 24 h (P = 0.002). In conclusion, ompK36 genotypes identified ST258 KPC-K. pneumoniae strains that were most likely to respond to doripenem-colistin.  相似文献   

18.
Ceftazidime-avibactam is active against most Enterobacteriaceae isolates with KPC carbapenemases. We investigated whether this activity could be compromised by mutation. Single-step and multistep selections were attempted using ceftazidime-avibactam (avibactam fixed at 1 or 4 μg/ml) versus two strains each of Enterobacter cloacae and Klebsiella pneumoniae, all with the KPC-3 enzyme. Mutant blaKPC alleles were sequenced, and their parentage was confirmed by typing. Ceftazidime-avibactam selected mutants at up to 16× MIC, with frequencies of ca. 10−9. This contrasted with previous experience for ceftaroline-avibactam, where mutant frequencies under similar conditions were <10−9. The MICs of ceftazidime with 1 μg/ml avibactam for the ceftazidime-avibactam-selected mutants rose from 1 to 8 μg/ml to 16 to >256 μg/ml and those of ceftazidime with 4 μg/ml avibactam from 0.25 to 1 μg/ml to 4 to 128 μg/ml; ceftaroline-avibactam MICs rose less, typically from 0.5 to 1 μg/ml to 1 to 8 μg/ml. The MICs of carbapenems and cephalosporins except ceftazidime and piperacillin-tazobactam were reduced for many mutants. Sequencing of blaKPC revealed point and insertion changes in 12/13 mutants investigated, representing all four parents; one mutant lacked blaKPC changes and possibly had reduced permeability. Amino acid changes commonly involved Ω loop alterations or 1 to 6 amino acid insertions immediately C-terminal to this loop. The most frequent change, seen in four mutants from three strains, was Asp179Tyr, replacing a residue that ordinarily forms a salt bridge to stabilize the Ω loop. Since ceftaroline-avibactam was less affected than ceftazidime-avibactam, we postulate that these mutations increase ceftazidimase specificity rather than conferring avibactam resistance. The clinical relevance remains uncertain.  相似文献   

19.
AM-715 [1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid] is a new nalidixic acid analog. AM-715 has a broad spectrum of antibacterial activity against gram-positive and gram-negative bacteria. The antibacterial activity of AM-715 was greater than those of pipemidic acid and nalidixic acid. AM-715 had higher antibacterial activity against Pseudomonas aeruginosa than did gentamicin. Most nalidixic acid-resistant bacteria were susceptible to AM-715, and cross-resistance was not observed between AM-715 and various antibiotics. The minimal concentration of AM-715 required to inhibit the growth of 75% of the total number of clinical isolates was as follows: Escherichia coli, 0.04 μg/ml; Klebsiella pneumoniae, 0.1 μg/ml; Serratia marcescens, 0.88 μg/ml; Enterobacter spp., 0.076 μg/ml; Staphylococcus aureus, 1.10 μg/ml; P. aeruginosa, 0.38 μg/ml; and nalidixic acid-resistant strains of gram-negative bacteria, 0.62 μg/ml. AM-715 at minimal inhibitory concentrations or at slightly higher concentrations had bactericidal activity against various species of bacteria. The effect of inoculum sizes on minimal inhibitory concentrations and minimal bactericidal concentrations of AM-715 against gram-negative bacteria was smaller than on those of pipemidic acid and nalidixic acid. The dose-response curve of AM-715 indicated a steep gradient, and the 50% inhibited doses of AM-715 were 0.014 μg/ml against E. coli ML4707 and 0.21 μg/ml against P. aeruginosa NC-5.  相似文献   

20.
The L2 reference strain of Chlamydia trachomatis was exposed to subinhibitory concentrations of ofloxacin (0.5 μg/ml) and sparfloxacin (0.015 μg/ml) to select fluoroquinolone-resistant mutants. In this study, two resistant strains were isolated after four rounds of selection. The C. trachomatis mutants presented with high-level resistance to various fluoroquinolones, particularly to sparfloxacin, for which a 1,000-fold increase in the MICs for the mutant strains compared to the MIC for the susceptible strain was found. The MICs of unrelated antibiotics (doxycycline and erythromycin) for the mutant strains were identical to those for the reference strain. The gyrase (gyrA, gyrB) and topoisomerase IV (parC, parE) genes of the susceptible and resistant strains of C. trachomatis were partially sequenced. A point mutation was found in the gyrA quinolone-resistance-determining region (QRDR) of both resistant strains, leading to a Ser83→Ile substitution (Escherichia coli numbering) in the corresponding protein. The gyrB, parC, and parE QRDRs of the resistant strains were identical to those of the reference strain. These results suggest that in C. trachomatis, DNA gyrase is the primary target of ofloxacin and sparfloxacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号