首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the relationship between brain activity and visual motion perception, knowledge of the cortical areas participating in signal processing alone is insufficient. Rather knowledge on how responses vary with the characteristics of visual motion is necessary. In this study, we measured whole brain activity using magnetoencephalography in humans discriminating the global motion direction of a random dot kinematogram whose strength was systematically varied by the percentage of coherently moving dot elements. Spectral analysis revealed 2 components correlating with motion coherence. A first component in the low-frequency domain ( approximately 3 Hz), linearly increasing with motion coherence, could be attributed to visual cortex including human area middle temporal (MT) +. A second component oscillating in the alpha frequency range and emerging after stimulus offset showed the inverse dependence on motion coherence and arose from early visual cortex. Based on these results, we first of all conclude that motion coherence is reflected in the population response of human extrastriate cortex. Second, we suggest that the occipital alpha activity represents a gating mechanism protecting visual motion integration in later cortical areas from disturbing upcoming signals.  相似文献   

2.
Hearing lips: gamma-band activity during audiovisual speech perception   总被引:2,自引:0,他引:2  
Auditory pattern changes have been shown to elicit increases in magnetoencephalographic gamma-band activity (GBA) over left inferior frontal cortex, forming part of the putative auditory ventral "what" processing stream. The present study employed a McGurk-type paradigm to assess whether GBA would be associated with subjectively perceived changes even when auditory stimuli remain unchanged. Magnetoencephalograms were recorded in 16 human subjects during audiovisual mismatch perception. Both infrequent visual (auditory /ta/ + visual /pa/) and acoustic deviants (auditory/pa/ + visual /ta/) were compared with frequent audiovisual standards (auditory /ta/ and visual /ta/). Statistical probability mapping revealed spectral amplitude increases at approximately 75 and approximately 78 Hz to visual deviants. GBA to visual deviants peaked 160 ms after auditory stimulus onset over posterior parietal cortex, at 270 ms over occipital areas and at 320 ms over left inferior frontal cortex. The latter GBA enhancement was consistent with the increase observed previously to pure acoustic mismatch, supporting a role of left inferior frontal cortex for the representation of perceived auditory pattern change. The preceding gamma-band changes over posterior areas may reflect processing of incongruent lip movements in visual motion areas and back-projections to earlier visual cortex.  相似文献   

3.
In this study we used a modified double-label deoxyglucose procedure to investigate attention-dependent modulations of deoxyglucose uptake at the earliest stages of the macaque visual system. Specifically, we compared activity levels evoked during two tasks with essentially identical visual stimulation requiring different attentional demands. During a featural-attention task, the subjects had to discriminate the orientation of a grating; during a control spatial-attention task, they had to localize the position of a target point. Comparison of the resulting activity maps revealed attention-dependent changes in metabolic activity in portions of the magnocellular layers of the lateral geniculate nucleus, and the magnocellular-recipient layers 4Calpha and 4B of the striate cortex. In these early stages of the visual system, attention to the orientation of the grating suppressed the metabolic activity in a retinotopically specific band peripheral to the representation of the stimulus. These results favor an early selection model of attention. After a thalamic attention-dependent gating mechanism, irrelevant visual information outside the focus of attention may be suppressed at the level of the striate cortex, which would then result in an increased signal-to-noise ratio for the processing of the attended feature in higher-tier, less retinotopically organized, extrastriate visual areas.  相似文献   

4.
There is growing evidence that in primate cerebral cortex the areas along the 'dorsal pathway' are involved in the transformation of visual motion information towards a motor command. To pursue this cortical flow of information from visual motion areas to the motor cortex, single-cell activity was recorded from visual areas MT/MST (middle temporal area/medial superior temporal area) and from primary motor cortex (M1) while monkeys tracked moving targets with their right hand. Spike activity of 353 directionally tuned motor cortex cells was combined to a time-varying population vector, and similarly a time-resolved visual population vector was calculated from 252 MT/MST cells. Both population vectors code faithfully for the direction of the collinear motion of target and hand. For a given direction, the length of the population vectors varied over time during the performance of the task. The temporal evolution of both population responses reflects the different relationship between the early visual responses to the moving target and the directional motor command controlling the hand movement. The results indicate that during the visual tracking task visual and motor populations which code for similar directions of movement are co-activated with considerable temporal overlap. Despite this co-activation in both modalities, we failed to observe any significant synchronization between areas MT/MST and M1.  相似文献   

5.
Unilateral ibotenic acid lesions of the lateral suprasylvian (LS) cortex severely impair the ability of cats to integrate local motion signals (measured as direction range thresholds) and to extract motion signals from noise (measured as motion signal thresholds) in their contra-lesional visual hemifields. These deficits were found up to several months after the lesions and were limited to thresholds measured with random-dot stimuli, while contrast sensitivity for discriminating the direction of motion of sine-wave gratings remained unaffected. Our goal was to determine whether deficits of complex motion perception could recover and whether the recovery was spontaneous or required retraining. In each cat, a single location in the impaired visual hemifield was selected for visual retraining, which required the animals to discriminate motion direction using random-dot stimuli in which the range of dot directions was varied. Fifteen to 40 days of intensive retraining led to a gradual, complete recovery of motion integration. The recovery was stimulus specific since it did not transfer from direction range to motion signal thresholds, and it was largely restricted to the visual field locations retrained. Delaying the onset of retraining by several days to several months had no significant impact on the extent or rate of recovery. Once recovery was achieved, performance remained stable over a period of several months. These results suggest that recovery of complex visual motion perception after lesions of extrastriate visual cortex is an active process that requires extensive, stimulus- and retinotopically-specific visual retraining.  相似文献   

6.
A series of recordings in cat visual cortex suggest that synchronous activity in neuronal cell ensembles serves to bind the different perceptual qualities belonging to one object. We provide evidence that similar mechanisms seem also to be observable in human subjects for the representation of supramodal entities. Electroencephalogram (EEG) was recorded from 19 scalp electrodes (10/20 system) in 19 human subjects and EEG amplitude and coherence were determined during presentation of objects such as house, tree, ball. Objects were presented in three different ways: in a pictorial presentation, as spoken words and as written words. In order to find correlates of modality-independent processing, we searched for patterns of activation common to all three modalities of presentation. The common pattern turned out to be an increase of coherence between temporal and parietal electrodes in the 13-18 Hz beta1 frequency range. This is evidence that population activity of temporal cortex and parietal cortex shows enhanced coherence during presentation of semantic entities. Coherent activity in this low-frequency range might play a role for binding of multimodal ensembles.  相似文献   

7.
Electrophysiological and neuroimaging studies have shown that attention to visual motion can increase the responsiveness of the motion- selective cortical area V5 and the posterior parietal cortex (PP). Increased or decreased activation in a cortical area is often attributed to attentional modulation of the cortical projections to that area. This leads to the notion that attention is associated with changes in connectivity. We have addressed attentional modulation of effective connectivity using functional magnetic resonance imaging (fMRI). Three subjects were scanned under identical stimulus conditions (visual motion) while varying only the attentional component of the task. Haemodynamic responses defined an occipito-parieto-frontal network, including the, primary visual cortex (V1), V5 and PR A structural equation model of the interactions among these dorsal visual pathway areas revealed increased connectivity between V5 and PP related to attention. On the basis of our analysis and the neuroanatomical pattern of projections from the prefrontal cortex to PP we attributed the source of modulatory influences, on the posterior visual pathway, to the prefrontal cortex (PFC). To test this hypothesis we included the PFC in our model as a 'modulator' of the pathway between V5 and PP, using interaction terms in the structural equation model. This analysis revealed a significant modulatory effect of prefrontal regions on V5 afferents to posterior parietal cortex.   相似文献   

8.
Visual and auditory motion information can be used together to provide complementary information about the movement of objects. To investigate the neural substrates of such cross-modal integration, functional magnetic resonance imaging was used to assess brain activation while subjects performed separate visual and auditory motion discrimination tasks. Areas of unimodal activation included the primary and/or early sensory cortex for each modality plus additional sites extending toward parietal cortex. Areas conjointly activated by both tasks included lateral parietal cortex, lateral frontal cortex, anterior midline and anterior insular cortex. The parietal site encompassed distinct, but partially overlapping, zones of activation in or near the intraparietal sulcus (IPS). A subsequent task requiring an explicit cross-modal speed comparison revealed several foci of enhanced activity relative to the unimodal tasks. These included the IPS, anterior midline, and anterior insula but not frontal cortex. During the unimodal auditory motion task, portions of the dorsal visual motion system showed signals depressed below resting baseline. Thus, interactions between the two systems involved either enhancement or suppression depending on the stimuli present and the nature of the perceptual task. Together, these results identify human cortical regions involved in polysensory integration and the attentional selection of cross-modal motion information.  相似文献   

9.
Visual changes in feature movies, like in real-live, can be partitioned into global flow due to self/camera motion, local/differential flow due to object motion, and residuals, for example, due to illumination changes. We correlated these measures with brain responses of human volunteers viewing movies in an fMRI scanner. Early visual areas responded only to residual changes, thus lacking responses to equally large motion-induced changes, consistent with predictive coding. Motion activated V5+ (MT+), V3A, medial posterior parietal cortex (mPPC) and, weakly, lateral occipital cortex (LOC). V5+ responded to local/differential motion and depended on visual contrast, whereas mPPC responded to global flow spanning the whole visual field and was contrast independent. mPPC thus codes for flow compatible with unbiased heading estimation in natural scenes and for the comparison of visual flow with nonretinal, multimodal motion cues in it or downstream. mPPC was functionally connected to anterior portions of V5+, whereas laterally neighboring putative homologue of lateral intraparietal area (LIP) connected with frontal eye fields. Our results demonstrate a progression of selectivity from local and contrast-dependent motion processing in V5+ toward global and contrast-independent motion processing in mPPC. The function, connectivity, and anatomical neighborhood of mPPC imply several parallels to monkey ventral intraparietal area (VIP).  相似文献   

10.
We used reversible cooling deactivation to compare the functionsof cortices lining the middle suprasylvian (MS) sulcus and formingthe ventral portion of the posterior suprasylvian (vPS) gyrus.A battery of attentional, motion and mnemonic processing taskswere used and performance was examined during deactivation ofeach region. The results show a clear dissociation of functions.Deactivation of MS cortex resulted in profound deficits on avisual orienting task and on the discrimination of directionof motion, whereas deactivation of vPS cortex severely impairedboth retention and learning of novel and overlearned objectdiscriminations. In addition, deactivation of either MS or vPScortex impaired discrimination of learned patterns when componentsof the patterns were in motion, whereas only deactivation ofvPS cortex impaired the discrimination when all components werestatic. Together, these results show that a region of parietalcortex contributes to the processing of visual motion and toattentional processes, whereas a region of temporal cortex contributesto the learning and recognition of three-dimensional objectsand two-dimensional patterns. This functional dissociation islinked to differences in underlying visual pathways, which havemany features in common with the parietal and temporal visualprocessing streams previously identified in monkeys and humans.Furthermore, the broad similarity in neural operations carriedout in parietal and temporal cortices of cats, monkeys and humanssuggests the existence of a common plan for cortical processingmachinery within mammals with well developed cerebral cortices.  相似文献   

11.
A central goal in systems neuroscience is to understand how the brain encodes the intensity of sensory features. We used whole-head magnetoencephalography to investigate whether frequency-specific neuronal activity in the human visual cortex is systematically modulated by the intensity of an elementary sensory feature such as visual motion. Visual stimulation induced a tonic increase of neuronal activity at frequencies above 50 Hz. In order to define a functional frequency band of neuronal activity, we parametrically investigated which frequency band displays the strongest monotonic increase of responses with strength of visual motion. Consistently in all investigated subjects, this analysis resulted in a functional frequency band in the high gamma range from about 60 to 100 Hz in which activity reliably increased with visual motion strength. Using distributed source reconstruction, we found that this increase of high-frequency neuronal activity originates from several extrastriate cortical regions specialized in motion processing. We conclude that high-frequency activity in the human visual motion pathway may be relevant for encoding the intensity of visual motion signals.  相似文献   

12.
The medial parieto-occipital cortex is a central node in the dorsomedial visual stream. Recent physiological studies in the macaque monkey have demonstrated that the medial parieto-occipital cortex contains two areas, the visual area V6 and the visuomotor area V6A. Area V6 is a retinotopically organized visual area that receives form and motion information directly from V1 and is heavily connected with the other areas of the dorsal visual stream, including V6A. Area V6A is a bimodal visual/somatosensory area that elaborates visual information such as form, motion and space suitable for the control of both reaching and grasping movements. Somatosensory and skeletomotor activities in V6A affect the upper limbs and involve both the transport phase of reaching and grasping movements. Finally, V6A is strongly and reciprocally connected with the dorsal premotor cortex controlling arm movements. The picture emerging from these data is that the medial parieto-occipital cortex is well equipped to control both proximal and distal movements in the online visuomotor guidance of prehension. In agreement with this view, selective V6A lesions in monkey produce misreaching and misgrasping with the arm contralateral to the lesion in visually guided movements. These deficits are similar to those observed in optic ataxia patients and suggest that human and monkey superior parietal lobules are homologous structures, and that optic ataxia syndrome is the result of the lesion of a 'human' area V6A.  相似文献   

13.
Priming of motion direction and area V5/MT: a test of perceptual memory   总被引:2,自引:2,他引:0  
Presentation of supraliminal or subliminal visual stimuli that can (or cannot) be detected or identified can improve the probability of the same stimulus being detected over a subsequent period of seconds, hours or longer. The locus and nature of this perceptual priming effect was examined, using suprathreshold stimuli, in subjects who received repetitive pulse transcranial magnetic stimulation over the posterior occipital cortex, the extrastriate motion area V5/MT or the right posterior parietal cortex during the intertrial interval of a visual motion direction discrimination task. Perceptual priming observed in a control condition was abolished when area V5/MT was stimulated but was not affected by magnetic stimulation over striate or parietal sites. The effect of transcranial magnetic stimulation (TMS) on priming was specific to site (V5/MT) and to task - colour priming was unaffected by TMS over V5/MT. The results parallel, in the motion domain, recent demonstrations of the importance of macaque areas V4 and TEO for priming in the colour and form domains.  相似文献   

14.
We examined fluctuations in band-limited power (BLP) of local field potential (LFP) signals recorded from multiple electrodes in visual cortex of the monkey during different behavioral states. We asked whether such signals demonstrated coherent fluctuations over time-scales of seconds and minutes, and would thus serve as good candidates for direct comparison with data obtained from functional magnetic resonance imaging (fMRI). We obtained the following results. (i) The BLP of the local field displayed fluctuations at many time-scales, with particularly large amplitude at very low frequencies (<0.1 Hz). (ii) These fluctuations exhibited high coherence between electrode pairs, particularly for BLP signals derived from the gamma frequency range. (iii) Coherence in the BLP, unlike that in the raw LFP, did not fall off sharply as a function of cortical distance. (iv) The structure and coherence of BLP changes were highly similar under distinctly different behavioral states. These results demonstrate the existence of widespread coherent activity fluctuations in the brain of the awake monkey over very long time-scales. We propose that such signals may make a significant contribution to the high variability observed in the time course of physiological signals, including those measured with functional imaging techniques. The results are discussed in the context of combined fMRI/electrophysiological recordings.  相似文献   

15.
Motion processing regions apart from V5+/MT+ are still relatively poorly understood. Here, we used functional magnetic resonance imaging to perform a detailed functional analysis of the recently described cingulate sulcus visual area (CSv) in the dorsal posterior cingulate cortex. We used distinct types of visual motion stimuli to compare CSv with V5/MT and MST, including a visual pursuit paradigm. Both V5/MT and MST preferred 3D flow over 2D planar motion, responded less yet substantially to random motion, had a strong preference for contralateral versus ipsilateral stimulation, and responded nearly equally to contralateral and to full-field stimuli. In contrast, CSv had a pronounced preference to 2D planar motion over 3D flow, did not respond to random motion, had a weak and nonsignificant lateralization that was significantly smaller than that of MST, and strongly preferred full-field over contralateral stimuli. In addition, CSv had a better capability to integrate eye movements with retinal motion compared with V5/MT and MST. CSv thus differs from V5+/MT+ by its unique preference to full-field, coherent, and planar motion cues. These results place CSv in a good position to process visual cues related to self-induced motion, in particular those associated to eye or lateral head movements.  相似文献   

16.
During locomotion, an observer sees a large and complex pattern of visual motion called optic flow. This phenomenon is characterized by elements in the environment accelerating and expanding as they move peripherally. In cats, previous studies have indicated that the posteromedial part of the lateral suprasylvian (PMLS) cortex may be involved in the processing of optic flow fields. We further addressed this issue by studying the importance of specific parameters of the optic flow patterns and investigating whether cell responses to these stimuli depend on receptive field (RF) location in the visual field. Results can be summarized as follows: approximately two-thirds of PMLS cells responded to optic flow fields and a subset of these (84/153) showed a clear direction selectivity for motion along the frontal axis. Of these units, the majority responded preferentially to expansion rather than contraction of the pattern. Cells' responses depend on RF location in the visual field. For centrally located RFs, tested both when the origin of motion was within the RF or at the area centralis, responses were generally comparable whether or not size or speed gradients were removed from the optic flow pattern. A different tendency was observed for peripherally located RFs. In general, these cells exhibited a preferred direction almost exclusively when the origin of motion was placed at the area centralis, and neuronal discharges and direction selectivity for many of them were reduced when the optic flow cues were removed from the pattern. The results of this study suggest that there may be functional differences in response properties between PMLS cells located in the central and peripheral parts of the visual field that may reflect a specialization of the PMLS cortex in optic flow processing.  相似文献   

17.
We used positron emission tomography (PET) to investigate the neural correlates of selective attention in humans. We examined the effects of attending to one side of space versus another (spatial selection) and to one sensory modality versus another (intermodal selection) during bilateral, bimodal stimulation of vision and touch. Attention toward one side resulted in greater activity in several contralateral areas. In somatosensory cortex, these spatial attentional modulations were found only when touch was relevant. In the intraparietal sulcus, spatial attentional effects were multimodal, independent of the modality attended. In occipital areas, spatial modulations were also found during both visual and tactile attention, indicating that tactile attention can affect activity in visual cortex; but occipital areas also showed more activity overall during visual attention. This suggests that while spatial attention can exert multimodal influences on visual areas, these still maintain their specificity for the visual modality. Additionally, irrespective of the attended side, attending to vision activated posterior parietal and superior premotor cortices, while attending to touch activated the parietal operculi. We conclude that attentional selection operates at multiple levels, with attention to locations and attention to modalities showing distinct effects. These jointly contribute to boost processing of stimuli at the attended location in the relevant modality.  相似文献   

18.
Sign language activates the auditory cortex of deaf subjects, which is evidence of cross-modal plasticity. Lip-reading (visual phonetics), which involves audio-visual integration, activates the auditory cortex of hearing subjects. To test whether audio-visual cross-modal plasticity occurs within areas involved in cross-modal integration, we used functional MRI to study seven prelingual deaf signers, 10 hearing non-signers and nine hearing signers. The visually presented tasks included mouth-movement matching, random-dot motion matching and sign-related motion matching. The mouth-movement tasks included conditions with or without visual phonetics, and the difference between these was used to measure the lip-reading effects. During the mouth-movement matching tasks, the deaf subjects showed more prominent activation of the left planum temporale (PT) than the hearing subjects. During dot-motion matching, the deaf showed greater activation in the right PT. Sign-related motion, with or without a lexical component, activated the left PT in the deaf signers more than in the hearing signers. These areas showed lip-reading effects in hearing subjects. These findings suggest that cross-modal plasticity is induced by auditory deprivation independent of the lexical processes or visual phonetics, and this plasticity is mediated in part by the neural substrates of audio-visual cross-modal integration.  相似文献   

19.
Novel mapping stimuli composed of biological motion figures were used to study the extent and layout of multiple retinotopic regions in the entire human brain and to examine the independent manipulation of retinotopic responses by visual stimuli and by attention. A number of areas exhibited retinotopic activations, including full or partial visual field representations in occipital cortex, the precuneus, motion-sensitive temporal cortex (extending into the superior temporal sulcus), the intraparietal sulcus, and the vicinity of the frontal eye fields in frontal cortex. Early visual areas showed mainly stimulus-driven retinotopy; parietal and frontal areas were driven primarily by attention; and lateral temporal regions could be driven by both. We found clear spatial specificity of attentional modulation not just in early visual areas but also in classical attentional control areas in parietal and frontal cortex. Indeed, strong spatiotopic activity in these areas could be evoked by directed attention alone. Conversely, motion-sensitive temporal regions, while exhibiting attentional modulation, also responded significantly when attention was directed away from the retinotopic stimuli.  相似文献   

20.
Top-down controlled visual dimension weighting: an event-related fMRI study   总被引:3,自引:0,他引:3  
Target detection in visual singleton feature search is slowed when consecutive targets are defined in different visual dimensions. Behavioral data provide evidence that attentional weight needs to be shifted between dimension-specific processing modules. We found similar dimension-specific change effects in a conjunction search task, in which observers searched for an odd-one-out target defined by a unique combination of size and color or, respectively, size and motion direction. Changes of the secondary target dimension (color or motion) across trials, but not target feature changes within a dimension, increased the time required to detect the target. Dimensional change costs were greatly increased for singleton conjunction search compared to singleton feature search. This suggests involvement of top-down control processes in dimensional change in conjunction search, in contrast to stimulus-driven dimensional change in singleton feature search. The functional anatomical correlates of top-down controlled visual dimension changes were investigated in two event-related functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, dimensional change in singleton conjunction search was accompanied by transient activations in a fronto-posterior network of brain areas that was largely non-overlapping with the general network activated during visual search. Experiment 2, which contrasted singleton feature and conjunction search within the same session, revealed a double dissociation in anterior prefrontal cortex: left frontopolar cortex was selectively involved in stimulus-driven dimension changes but not in top-down controlled dimension changes, whereas the reverse was observed in frontomedian cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号