共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Poisson与Cox回归模型是流行病学队列随访资料分析中常用的两类多变量分析方法。本文对有关这两类多变量回归模型的统计方法等问题进行了系统的回顾(相乘模型),并用一个实例的结果来说明两者的应用。从本文的结果和讨论来看,Poisson和Cox回归模型均适合于队列随访资料的分析,但两者各有一些优势和不足。最后,笔者就目前两者的应用情况和相互比较提出了一些看法。此外,还讨论了其它形式的回归模型(相加模型)及在回归模型中如何引入外部对照率等。 相似文献
6.
7.
Cox比例风险回归模型(Cox模型)是时间-事件数据分析中常用的多因素分析方法,拟合Cox模型时一个关键问题是如何选择合适的与结局事件发生相关的时间尺度。目前国内开展的队列研究在资料分析中较少关注Cox模型的时间尺度选择问题。本研究对文献报道中常见的几种时间尺度选择策略进行简要介绍和比较;并利用上海女性健康队列资料,以中心性肥胖与肝癌发病风险的关联为例,说明选择不同时间尺度的Cox模型对数据分析结果的影响;在此基础上提出几点Cox模型时间尺度选择上的建议,以期为队列研究资料的分析提供参考。 相似文献
8.
9.
Logistic和Cox回归模型在定群研究资料分析中的应用和对比 总被引:1,自引:0,他引:1
Logistic和Cox回归模型在定群研究资料分析中的应用和对比项永兵,高玉堂,金凡Logistic回归模型在流行病学研究资料分析中的应用众所周知 ̄[1,2]。Cox回归模型的应用也日益广泛,尤其在队列随访资料分析方面 ̄[3~10]。因而,两者在定群... 相似文献
10.
近视是中学生的常见病和多发病。其患病率居中学生常见病的首位,对于近视的影响因素,国内外学者用多种方法进行了研究.如双生子研究、Logistic回归分析等,但用Cox比例风险模型的研究尚未见报道,该文尝试应用这一方法对近视发病的影响因素进行分析,为近视的防治提供依据。 相似文献
11.
新发涂阳肺结核病人延误诊断影响因素分析 总被引:6,自引:1,他引:6
目的 探讨涂阳肺结核病人延误诊断治疗的影响因素,为早期控制传染源提供科学依据。方法 以2007年4~10月就诊于湖南省郴州市北湖区、桂阳、宜章、永兴、安仁5县(区)结防机构新发涂阳肺结核患者为研究对象,利用调查表收集相关资料,应用COX比例风险模型进行延误诊断治疗的影响因素分析。结果 患者延误、确诊延误、治疗延误、医疗机构延误及总延误时间中位数分别21,29,3,16,62d。患者延误的独立危险因素为不知晓结核病相关知识和首次症状有非肺结核主要症状;确诊延误的独立危险因素为首次就诊未进行痰涂片、X线电子计算机断层扫描(CT)和摄胸片检查;治疗延误的独立危险因素为农村户籍和首次就诊未进行痰涂片检查。医疗机构延误的独立危险因素为首次检查未进行痰涂片、摄胸片和CT检查、首诊医疗机构在村级或乡级医疗机构及首次无咯血症状;总延误的独立危险因素为男性、首次检查未进行胸透或CT检查。结论 患者延误诊断、治疗与患者肺结核知识、户口所在地、首诊时间、未进行痰涂片和X线检查有关。 相似文献
12.
目的 分析山东省HIV感染者艾滋病相关死亡的影响因素,为降低死亡风险及延长生存时间提供参考。方法 研究对象为2017-2021年山东省HIV感染者,采用Cox比例风险回归模型分析艾滋病相关死亡及确证1年内死亡的影响因素。结果 2017-2021年山东省报告的14 700例HIV感染者中,发生艾滋病相关死亡351例,占2.4%(351/14 700)。多因素Cox比例风险回归模型分析结果显示,HIV感染者艾滋病相关死亡的危险因素包括文化程度为初、高中/中专(aHR=1.37,95%CI:1.01~1.84)、样本来源自医疗机构(aHR=1.61,95%CI:1.22~2.12)、病程为艾滋病期(aHR=9.86,95%CI:6.86~14.19)、未检测基线CD4+T淋巴细胞(CD4)(aHR=3.93,95%CI:2.69~5.75)、抗病毒治疗(ART)时间<6个月(aHR=3.46,95%CI:2.42~4.93)和未ART(aHR=1.45,95%CI:1.02~2.07)、末次CD4<200个/μl(aHR=3.51,95%CI:2.18~5.65)和末次CD4未检测(aHR=10.58,95%CI:6.15~18.19)、末次病毒载量(VL)值为50~999拷贝数/ml、≥1 000拷贝数/ml和未检测(aHR=2.59,95%CI:1.07~6.26;aHR=9.50,95%CI:5.60~16.12;aHR=15.33,95%CI:8.91~26.36);HIV感染者确证1年内发生艾滋病相关死亡风险较高的因素包括样本来源自医疗机构(aHR=1.68,95%CI:1.19~2.36)、病程为艾滋病期(aHR=10.60,95%CI:7.13~15.75)、基线CD4未检测(aHR=3.71,95%CI:2.34~5.90)、ART时间<6个月(aHR=4.30,95%CI:2.85~6.49)和未ART(aHR=2.05,95%CI:1.35~3.13)、末次CD4<200个/μl(aHR=5.45,95%CI:2.04~14.60)和末次CD4未检测(aHR=20.95,95%CI:7.69~57.04)、末次VL值为50~999、≥1 000拷贝数/ml和未检测(aHR=15.21,95%CI:2.54~91.21;aHR=42.93,95%CI:9.64~191.20;aHR=61.35,95%CI:13.85~271.77)。结论 扩大检测覆盖面,促进早发现和早治疗,加强对HIV感染者的定期随访和检测,掌握病程进展并进行精准管理和治疗,对降低HIV感染者病死率和延长生存时间有重要作用。 相似文献
13.
14.
Lynn E. Eberly James S. Hodges Kay Savik Olga Gurvich Donna Z. Bliss Christine Mueller 《Statistics in medicine》2013,32(23):4006-4020
The Peters–Belson (PB) method was developed for quantifying and testing disparities between groups in an outcome by using linear regression to compute group‐specific observed and expected outcomes. It has since been extended to generalized linear models for binary and other outcomes and to analyses with probability‐based sample weighting. In this work, we extend the PB approach to right‐censored survival analysis, including stratification if needed. The extension uses the theory and methods of expected survival on the basis of Cox regression in a reference population. Within the PB framework, among the groups to be compared, one group is chosen as the reference group, and outcomes in that group are modeled as a function of available predictors. By using this fitted model's estimated parameters, and the predictor values for a comparator group, the comparator group's expected outcomes are then calculated and compared, formally with testing and informally with graphics, with their observed outcomes. We derive the extension, show how we applied it in a study of incontinence in nursing home elderly, and discuss issues in implementing it. We used the ‘survival’ package in the R system to do computations. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
The proportional hazards model assumes that the log hazard ratio is a linear function of parameters. In the current paper, we model the log relative risk as an inverse polynomial, which is particularly suitable for modeling bounded and asymmetric functions. The parameters estimated by maximizing the partial likelihood are consistent and asymptotically normal. The advantages of the inverse polynomial model over the ordinary polynomial model and the fractional polynomial model for fitting various asymmetric log relative risk functions are shown by simulation. The utility of the method is further supported by analyzing two real data sets, addressing the specific question of the location of the minimum risk threshold. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Analyzing Data in Which the Outcome is Time to an Event Part II: The Presence of Multiple Covariates
AbstractIn this article, the second of a series on the analysis of time to event data, we address the case in which multiple predictors (covariates) that may influence the time to an event are taken into account. The hazard function is introduced, and is given in a form useful for assessing the impact of multiple covariates on time to an event. Methods for the assessment of model fitting are also discussed and an example with cancer survival as outcome with the presence or absence of multiple genes as covariates is presented. 相似文献
17.
When fitting generalized linear models or the Cox proportional hazards model, it is important to have tools to test for lack of fit. Because lack of fit comes in all shapes and sizes, distinguishing among different types of lack of fit is of practical importance. We argue that an adequate diagnosis of lack of fit requires a specified alternative model. Such specification identifies the type of lack of fit the test is directed against so that if we reject the null hypothesis, we know the direction of the departure from the model. The goodness‐of‐fit approach of this paper allows to treat different types of lack of fit within a unified general framework and to consider many existing tests as special cases. Connections with penalized likelihood and random effects are discussed, and the application of the proposed approach is illustrated with medical examples. Tailored functions for goodness‐of‐fit testing have been implemented in the R package globaltest . Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
We describe a bootstrap investigation of the stability of a Cox proportional hazards regression model resulting from the analysis of a clinical trial of azathioprine versus placebo in patients with primary biliary cirrhosis. We have considered stability to refer both to the choice of variables included in the model and, more importantly, to the predictive ability of the model. In stepwise Cox regression analyses of 100 bootstrap samples using 17 candidate variables, the most frequently selected variables were those selected in the original analysis, and no other important variable was identified. Thus there was no reason to doubt the model obtained in the original analysis. For each patient in the trial, bootstrap confidence intervals were constructed for the estimated probability of surviving two years. It is shown graphically that these intervals are markedly wider than those obtained from the original model. 相似文献
19.
估计多水平影响因素的相对危险,以便消除人为选择对照组造成的偏倚.通过浮动绝对危险方法 比较多水平影响因素任意两水平间RR值及其95%CI.文中通过英国国家对照研究小组的实例分析,利用浮动绝对危险方法 可以得到多水平危险因素各水平间的RR值及其95%CI.该方法 可以消除人为选择对照组的偏倚,以便无偏的比较多水平影响因素任意两水平RR值的95%CI,该方法 在流行病学研究中具有推广价值. 相似文献