首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Present and historical habitat of this species includes waterways that have been impacted by metals released from mining and mineral processing activities. We conducted paired bioassays with bull trout and rainbow trout (Oncorhynchus mykiss) to examine the relative sensitivity of each species to Cd and Zn independently and as a mixture. A total of 15 pairs of acute toxicity bioassays were completed to evaluate the effects of different water hardness (30 or 90 mg/L as CaCO3), pH (6.5 or 7.5), and temperature (8 or 12 degrees C) on Cd and Zn toxicity. For both species, the acute toxicity of both Cd and Zn was greater than previously observed in laboratory studies. Bull trout were about twice as tolerant of Cd and about 50% more tolerant of Zn than were rainbow trout. Higher hardness and lower pH water produced lower toxicity and slower rates of toxicity in both species. Elevated temperature significantly increased the sensitivity of bull trout to Zn but decreased the sensitivity (not significantly) of rainbow trout to Zn. At a hardness of 30 mg/L, the toxicity values (i.e., median lethal concentration; 120-h LC50) for both species were lower than the current U.S. national water quality criteria for protection of aquatic life, indicating that current national criteria may not be protective of sensitive salmonids--including the threatened bull trout--in low calcium waters.  相似文献   

2.
Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.  相似文献   

3.
Rainbow trout embryos and larvae were exposed to 0, 0.1, and 1 microg/L total silver (as AgNO3) in water of three different hardnesses (soft water [2 mg/L as CaCO3], moderately hard water [150 mg/L], and hard water [400 mg/L]) in a flow-through system from fertilization to swim-up (64 d). The objective of the study was to investigate the effects of water hardness on chronic silver toxicity. In the absence of silver, elevating hardness had a positive effect on early life stage survival and development, significantly decreasing mortality and accelerating time to 50% swim-up. Following hatch, exposure to 1 microg/L Ag significantly increased mortality relative to exposure to 0 microg/L Ag. No significant effects of silver on time to 50% hatch were observed; however, time to 50% swim-up was delayed, and 50% swim-up was not achieved over the course of the experiment during some exposures to 1 microg/L Ag. These results suggest that the current Canadian Water Quality Guideline (http://www.ccme.ca/assets/pdf/e1_062.pdf) of 0.1 microg/L Ag is sufficient in preventing mortality and altered development in early life stages of rainbow trout. Increasing water hardness from 2 to 150 or 400 mg/L was modestly protective against the mortality and delays in time to 50% swim-up associated with exposure to 1 microg/L Ag. The 150- and 400-mg/L hardnesses were equally protective against mortality, but 150-mg/L was more protective than 400-mg/L hardness against the delays in time to 50% swim-up. Overall, the protective effects of hardness on chronic silver toxicity in early life stages of rainbow trout are modest but similar to the protection afforded to acute silver toxicity in juvenile and adult rainbow trout.  相似文献   

4.
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.  相似文献   

5.
We conducted acute and chronic toxicity studies of the effects of picloram acid on the threatened bull trout (Salvelinus confluentus) and the standard coldwater surrogate rainbow trout (Oncorhynchus mykiss). Juvenile fish were chronically exposed for 30 days in a proportional flow-through diluter to measured concentrations of 0, 0.30, 0.60, 1.18, 2.37, and 4.75 mg/L picloram. No mortality of either species was observed at the highest concentration. Bull trout were twofold more sensitive to picloram (30-day maximum acceptable toxic concentration of 0.80 mg/L) compared to rainbow trout (30-day maximum acceptable toxic concentration of 1.67 mg/L) based on the endpoint of growth. Picloram was acutely toxic to rainbow trout at 36 mg/L (96-h ALC50). The acute:chronic ratio for rainbow trout exposed to picloram was 22. The chronic toxicity of picloram was compared to modeled and measured environmental exposure concentrations (EECs) using a four-tiered system. The Tier 1, worst-case exposure estimate, based on a direct application of the current maximum use rate (1.1 kg/ha picloram) to a standardized aquatic ecosystem (water body of 1-ha area and 1-m depth), resulted in an EEC of 0.73 mg/L picloram and chronic risk quotients of 0.91 and 0.44 for bull trout and rainbow trout, respectively. Higher-tiered exposure estimates reduced chronic risk quotients 10-fold. Results of this study indicate that picloram, if properly applied according to the manufacturer’s label, poses little risk to the threatened bull trout or rainbow trout in northwestern rangeland environments on either an acute or a chronic basis.  相似文献   

6.
The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (>or=90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 microg Cu/L for survival and from 4.6 to 8.5 microg Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 microg/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20 degrees C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested.  相似文献   

7.
The main objective of the study was to use a species comparison approach in order to understand sensitivity and tolerance differences to copper. We hypothesized that species differences in toxicity would be reflected by differences in copper binding to high-affinity sites on the gill. Specifically, the strength of copper binding (affinity, logK) and maximum number of binding sites (saturation, Bmax) for copper at the gill surface would vary among different species of fish. Two species that are different in their copper sensitivity are the rainbow trout (Oncorhynchus mykiss) and yellow perch (Perca flavescens). We explicitly compared acute toxicity (median lethal concentrations via 96-h LC50s) and whole-body Na+ loss in both organisms in two distinct water chemistries (i.e., hard and soft water). For both species, the copper binding sites at the gill surface were characterized for their affinity and saturability. The binding properties of the gill were quite similar between the two species in each water chemistry. Based on estimations of the free cupric ion concentration, the affinity, or logK, was 8.4 for both species in soft water, whereas in hard water, the affinity was higher (approximately 9.7). The Bmax value in soft water was 1.88 nmol/g for rainbow trout and yellow perch, while in hard water, saturation occurred at 3.63 nmol/g for rainbow trout and 9.01 nmol/g for yellow perch. More importantly, the amount of copper bound to the gills at 50% mortality (i.e., lethal accumulation; the LA50) was different between the two species (yellow perch LA50s were nine times higher than those of rainbow trout in soft water and hard water), indicating that the copper binding to the yellow perch gill must not have been 'biologically reactive.' According to 96-h LC50s, yellow perch were less sensitive to copper than were rainbow trout; however, the difference between the two species was similar in hard water (1.05 vs 4.16 microM) and soft water (approximately 0.10 vs 0.44 microM). Perch were more tolerant because they lost less sodium upon exposure to copper; yet this mechanism of tolerance was not reflected by the amount of copper at the gill surface. The influence of water chemistry on the binding properties of the gill demonstrates the dynamic nature of the gill in maintaining ionoregulatory homeostasis, a key issue in the future development of the chronic biotic ligand model.  相似文献   

8.
The chronic (early life stage) toxicity of silver to rainbow trout (Oncorhynchus mykiss) was determined in flow-through exposures. Rainbow trout embryos were exposed to silver (as AgNO3) from 48 h or less postfertilization to 30 d postswimup in soft water in the presence and absence of 49 mg/L of NaCl (30 mg/L of Cl). The studies determined effect levels for rainbow trout exposed throughout an extended development period and assessed possible protective effects of sodium chloride. Lowest-observed-effect concentrations were greater than 1.25 microg/L of dissolved silver for survival, mean day to hatch, mean day to swimup, and whole-body sodium content in both studies. Whole-body silver concentrations increased significantly at 0.13 microg/L of dissolved silver in unmodified water and at 1.09 microg/L of dissolved silver in amended water. The maximum-acceptable toxicant concentration for growth was greater than 1.25 microg/L of dissolved silver in unmodified water and 0.32 microg/L of dissolved silver in amended water. Whole-body silver concentrations were more sensitive than survival and growth end points in unmodified water. Interpretation of sodium chloride effects on chronic silver toxicity to rainbow trout was complicated by differences in measured effect levels that were potentially the result of strain differences between test organisms in the two studies.  相似文献   

9.
In this study, the toxicity of mercuric chloride (HgCl(2)), an important pollutant threatening water resources for many years, and the effects of water temperature and hardness on the toxicity in cultured rainbow trout Oncorhynchus mykiss (4.79 ± 0.16 g; 7.38 ± 0.24 cm; mean ± SD) were investigated at different temperatures (12 and 17°C) and hardness concentrations (35, 70 and 120 mg l(-1) as calcium carbonate, CaCO(3)). For this purpose, the acute toxicity tests were performed by 96-h static tests in different water temperatures and water hardness concentrations. For acute toxicity tests, solutions ranging from 0.4 to 1.2 mg l(-1) were used at 12°C and solutions ranging from 0.4 to 1.0 mg l(-1) at 17°C. The LC(50) values of HgCl(2) that killed 50% of rainbow trout within 96 h in the hardness concentrations of 35, 70 and 120 mg l(-1) CaCO(3) were calculated using probit analysis, and were found to be 0.725, 0.788, 0.855 mg l(-1) at 12°C and 0.670, 0.741, 0.787 mg l(-1) at 17°C, respectively. Consequently, the toxicity of HgCl(2) on rainbow trout decreased when the temperature decreased from 17 to 12°C. Toxicity increased when the hardness decreased from 120 to 35 mg l(-1) CaCO(3). In contrast to temperature, water hardness presents a negative effect on the toxicity of HgCl(2).  相似文献   

10.
Clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) is a pyridine herbicide frequently used to control invasive, noxious weeds in the northwestern United States. Clopyralid exhibits low acute toxicity to fish, including the rainbow trout (Oncorhynchus mykiss) and the threatened bull trout (Salvelinus confluentus). However, there are no published chronic toxicity data for clopyralid and fish that can be used in ecological risk assessments. We conducted 30-day chronic toxicity studies with juvenile rainbow trout exposed to the acid form of clopyralid. The 30-day maximum acceptable toxicant concentration (MATC) for growth, calculated as the geometric mean of the no observable effect concentration (68 mg/L) and the lowest observable effect concentration (136 mg/L), was 96 mg/L. No mortality was measured at the highest chronic concentration tested (273 mg/L). The acute:chronic ratio, calculated by dividing the previously published 96-h acutely lethal concentration (96-h ALC50; 700 mg/L) by the MATC was 7.3. Toxicity values were compared to a four-tiered exposure assessment profile assuming an application rate of 1.12 kg/ha. The Tier 1 exposure estimation, based on direct overspray of a 2-m deep pond, was 0.055 mg/L. The Tier 2 maximum exposure estimate, based on the Generic Exposure Estimate Concentration model (GEENEC), was 0.057 mg/L. The Tier 3 maximum exposure estimate, based on previously published results of the Groundwater Loading Effects of Agricultural Management Systems model (GLEAMS), was 0.073 mg/L. The Tier 4 exposure estimate, based on published edge-of-field monitoring data, was estimated at 0.008 mg/L. Comparison of toxicity data to estimated environmental concentrations of clopyralid indicates that the safety factor for rainbow trout exposed to clopyralid at labeled use rates exceeds 1000. Therefore, the herbicide presents little to no risk to rainbow trout or other salmonids such as the threatened bull trout.  相似文献   

11.
While it is generally accepted that water hardness affects copper toxicity, the major ions that contribute to water hardness (calcium [Ca] and magnesium [Mg]) may affect copper toxicity differently. This is important because the Ca:Mg ratio in standard laboratory-reconstituted waters often differs from the ratio in natural surface waters. Copper toxicity was assessed for five different aquatic species: rainbow trout (RBT), fathead minnow (FHM), Ceriodaphnia dubia, Daphnia magna, and an amphipod (Gammarus sp.) under different Ca:Mg ratios (4:0, 3:1, 1:1, 1:3, and 1:4 mass basis) at a common hardness (180 mg/L as CaCO3) and alkalinity (120 mg/L as CaCO3). Copper toxicity increased at lower Ca:Mg ratios for RBT but increased at higher Ca:Mg ratios for D. magna. Fathead minnows (<24 h old) were more sensitive to copper in 1:1 Ca:Mg waters compared to 3:1 Ca:Mg waters. The toxicity of copper did not vary under different Ca:Mg ratios for Gammarus sp., C. dubia, and 28-d-old FHM. The effect of Ca:Mg ratios on copper toxicity changed for D. magna in softer water (90 mg/L as CaCO3) compared with hard water studies.  相似文献   

12.
Fire-retardant chemicals often are applied in relatively pristine and environmentally sensitive areas that are potentially inhabited by endangered or threatened aquatic species. Avoidance of contaminants is an adaptive behavior that may reduce exposure to harmful conditions. We evaluated the avoidance responses of rainbow trout (Oncorhynchus mykiss) to concentrations of fire-retardant chemicals and alternate constituent formulations ranging from 0.65 to 26 mg/L. Countercurrent avoidance chambers were used in a flow-through design with receiving water at each end and a drain at the center to create a distinct boundary between treatment water and reference water. Rainbow trout consistently avoided water treated with retardants at all concentrations tested. The magnitude of the avoidance response did not appear to follow a concentration-response relationship, but rather was an all-or-none response.  相似文献   

13.
White sturgeon (Acipenser transmontanus) populations throughout western North America are in decline, likely as a result of overharvest, operation of dams, and agricultural and mineral extraction activities in their watersheds. Recruitment failure may reflect the loss of early-life stage fish in spawning areas of the upper Columbia River, which are contaminated with metals from effluents associated with mineral-extraction activities. Early-life stage white sturgeon (A. transmontanus) from the Columbia River and Kootenai River populations were exposed to copper during 96-h flow-through toxicity tests to determine their sensitivity to the metal. Similar tests were conducted with rainbow trout (RBT [Oncorhynchus mykiss]) to assess the comparative sensitivity of this species as a surrogate for white sturgeon. Exposures were conducted with a water quality pH 8.1-8.3, hardness 81-119?mg/L as CaCO(2), and dissolved organic carbon 0.2-0.4?mg/L. At approximately 30?days posthatch (dph), sturgeon were highly sensitive to copper with median lethal concentration (LC(50)) values ranging from 4.1 to 6.8?μg/L compared with 36.5?μg/L for 30?dph RBT. White sturgeon at 123-167?dph were less sensitive to copper with LC(50) values ranging from 103.7 to 268.9?μg/L. RBT trout, however, remained more sensitive to copper at 160?dph with an LC(50) value of 30.9?μg/L. The results indicate that high sensitivity to copper in early-life stage white sturgeon may be a factor in recruitment failure occurring in the upper Columbia and Kootenai rivers. When site-specific water-quality criteria were estimated using the biotic ligand model (BLM), derived values were not protective of early-life stage fish, nor were estimates derived by water-hardness adjustment.  相似文献   

14.
Acute toxicity of hydrogen cyanide was determined at various temperatures from 4 degrees to 30 degrees C and oxygen concentrations of 3.36 to 9.26 mg/L on different life history stages of five species of fish: fathead minnow, Pimephales promelas Refinesque; bluegill, Lepomis macrochirus Rafinesque; yellow perch, Perca flavescens (Mitchill); brook trout, Salvelinus fontinalis (Mitchill); and rainbow trout, Salmo gairdneri Richardson. Median lethal threshold concentrations and 96-hr LC50's were established by flow-through type biassays. Acute toxicity varied from 57 microgram/L for juvenile rainbow trout to 191 microgram/L for field stocks of juvenile fathead minnows. Juvenile fish were more sensitive at lower temperatures and at oxygen levels below 5 mg/L. For most species juveniles were most sensitive and eggs more resistant.  相似文献   

15.
Numerous state and federal agencies are increasingly concerned with the rapid expansion of invasive, noxious weeds across the United States. Herbicides are frequently applied as weed control measures in forest and rangeland ecosystems that frequently overlap with critical habitats of threatened and endangered fish species. However, there is little published chronic toxicity data for herbicides and fish that can be used to assess ecological risk of herbicides in aquatic environments. We conducted 96-h flowthrough acute and 30-day chronic toxicity studies with swim-up larvae and juvenile rainbow trout (Onchorhyncus mykiss) exposed to the free acid form of 2,4-D. Juvenile rainbow trout were acutely sensitive to 2,4-D acid equivalent at 494 mg/L (95% confidence interval [CI] 334–668 mg/L; 96-h ALC50). Accelerated life-testing procedures, used to estimate chronic mortality from acute data, predicted that a 30-day exposure of juvenile rainbow trout to 2,4-D would result in 1% and 10% mortality at 260 and 343 mg/L, respectively. Swim-up larvae were chronically more sensitive than juveniles using growth as the measurement end point. The 30-day lowest observable effect concentration (LOEC) of 2,4-D on growth of swim-up larvae was 108 mg/L, whereas the 30-day no observable effect concentration (NOEC) was 54 mg/L. The 30-day maximum acceptable toxicant concentration (MATC) of 2,4-D for rainbow trout, determined as the geometric mean of the NOEC and the LOEC, was 76 mg/L. The acute:chronic ratio was 6.5 (i.e., 494/76). We observed no chronic effects on growth of juvenile rainbow trout at the highest concentration tested (108 mg/L). Worst-case aquatic exposures to 2,4-D (4 mg/L) occur when the herbicide is directly applied to aquatic ecosystems for aquatic weed control and resulted in a 30-day safety factor of 19 based on the MATC for growth (i.e., 76/4). Highest nontarget aquatic exposures to 2,4-D applied following terrestrial use is calculated at 0.136 mg/L and resulted in a 30-day safety factor of 559 (e.g., 76/0.163). Assessment of the exposure and response data presented herein indicates that use of 2,4-D acid for invasive weed control in aquatic and terrestrial habitats poses no substantial risk to growth or survival of rainbow trout or other salmonids, including the threatened bull trout (Salvelinus confluentus).  相似文献   

16.
Diesel is a complex mixture containing polycyclic aromatic hydrocarbons, which persist after a spill, pass readily from water into tissues, and are toxic to early life stages of fish. The bioavailability and chronic toxicity of hydrocarbons dissolved into water from floating diesel (water-accommodated fraction) and chemically dispersed diesel (chemically enhanced water-accommodated fraction) were measured by the extent of ethoxyresorufin-O-deethylase (EROD) induction in juvenile rainbow trout (Oncorhynchus mykiss) and by the severity of blue sac disease in embryos. The water-accommodated fraction of floating diesel was virtually nontoxic to embryos at nominal concentrations up to 1,000 mg/L, causing only small weight changes. Liver EROD induction in juvenile trout was only observed at the highest nominal water-accommodated fraction concentration (10,000 mg/L). Chemical dispersion increased the bioavailability and toxicity of diesel to trout by 100-fold. Diesel chemically enhanced water-accommodated fraction induced EROD activity, caused blue sac disease, and impaired development and growth of embryonic trout at nominal concentrations as low as 10 mg/L; 88% mortality occurred at 100 mg/L. However, when total hydrocarbon concentrations were measured, differences between dispersed and undispersed diesel disappeared, with a median lethal concentration of 8 mg/L of total hydrocarbons and sublethal median effective concentrations ranging from 1.3 to 6.1 mg/L. Dispersion of diesel by high-energy mechanical mixing was recently reported to cause acute lethality to juvenile trout between 40 and 200 mg/L. Therefore, dispersion of oil by any means increases the bioavailability and apparent toxicity of diesel to fish embryos without changing the toxicity of its components. Nevertheless, in an actual spill, dispersion of diesel increases the effects of oil on fish populations.  相似文献   

17.
Fingerling rainbow trout were fed semipurified diets containing graded levels of supplemental riboflavin (3, 35, 42, 49, 56, 63, 70, 100 and 600 mg/kg of diet) to determine if dietary riboflavin in excess of requirements decreases growth. In three trials with three sizes of fish (mean initial weights, 0.5, 3.2 and 4.3 g) and two water temperatures (8.3 degrees and 15 degrees C), no significant diet-related growth inhibition was detected. The results suggest that rainbow trout, like other animals, are insensitive to excesses of dietary riboflavin and that the growth depression reported by other workers was the result of some other dietary influence or of faulty experimental design.  相似文献   

18.
Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.  相似文献   

19.
The lethal toxicity (96-hr LC50) of cyanide (HCN) to juvenile rainbow trout (Salmo gairdneri) varied seasonally and with exercise (swimming at one body length/sec). The trout were acclimated to the 12C test temperature for 3–4 weeks, under a 12 hr photoperiod before being tested at different times of the year. In summer, there was no significant difference of sensitivity between exercised and non-exercised trout. From summer to winter, the 96-hr LC50 for exercised trout remained unchanged at 0.052 mg/L HCN while the LC50 of the non-exercised trout dropped significantly to 0.043 mg/L HCN. The median survival times of the two groups of trout were the same in the summer, but in winter the exercised fish survived twice as long as the non-exercised fish. A longer acclimation period of the non-exercised trout from 4 weeks to 10 weeks during the winter increased resistance to cyanide.  相似文献   

20.
A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate species, safety factors, and species sensitivity distributions (SSDs) of chemical toxicity; however, the protectiveness of these approaches can be uncertain. We comprehensively evaluated the protectiveness of SSD first and fifth percentile hazard concentrations (HC1, HC5) relative to the application of safety factors using 68 SSDs generated from 1,482 acute (lethal concentration of 50%, or LC50) toxicity records for 291 species, including 24 endangered species (20 fish, four mussels). The SSD HC5s and HCls were lower than 97 and 99.5% of all endangered species mean acute LC50s, respectively. The HC5s were significantly less than the concentrations derived from applying safety factors of 5 and 10 to rainbow trout (Oncorhynchus mykiss) toxicity data, and the HCls were generally lower than the concentrations derived from a safety factor of 100 applied to rainbow trout toxicity values. Comparison of relative sensitivity (SSD percentiles) of broad taxonomic groups showed that crustaceans were generally the most sensitive taxa and taxa sensitivity was related to chemical mechanism of action. Comparison of relative sensitivity of narrow fish taxonomic groups showed that standard test fish species were generally less sensitive than salmonids and listed fish. We recommend the use of SSDs as a distribution-based risk assessment approach that is generally protective of listed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号