首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legionella pneumophila causes community-acquired pneumonia with high mortality, but little is known about its interaction with the alveolar epithelium. The aim of this study was to investigate whether L. pneumophila infection of lung epithelial cells (A549) resulted in pro-inflammatory activation. L. pneumophila infection induced liberation of interleukin (IL)-2, -4, -6, -8 and -17, monocyte chemoattractant protein-1, tumour necrosis factor-alpha, IL-1beta, interferon-gamma and granulocyte colony-stimulating factor, but not of IL-5, -7, -10, -12 (p70) or -13 or granulocyte-macrophage colony-stimulating factor. The present study focused on IL-8 and found induction by L. pneumophila strains 130b, Philadelphia 1, Corby and, to a lesser extent, JR32. Knockout of dotA, a central gene involved in type IVB secretion, did not alter IL-8 induction, whereas lack of flagellin significantly reduced IL-8 release by Legionella. Moreover, p38 mitogen-activated protein kinase (MAPK) was activated and kinase inhibition reduced secretion of induced cytokines, with the exception of IL-2 and granulocyte colony-stimulating factor. In contrast, inhibition of the MAPK kinase 1/extracellular signal-regulated kinase pathway only reduced the expression of a few cytokines. L. pneumophila also induced binding of nuclear factor-kappaB subunit RelA/p65 and RNA polymerase II to the il8 promoter, and a specific inhibitor of the inhibitor of nuclear factor-kappaB complex dose-dependently lowered IL-8 expression. Taken together, Legionella pneumophila activated p38 mitogen-activated protein kinase- and nuclear factor-kappaB/RelA pathway-dependent expression of a complex pattern of cytokines by human alveolar epithelial cells, presumably contributing to the immune response in legionellosis.  相似文献   

2.
M-Ras, a recently identified homologue of p21 Ras, is widely expressed, with levels of the 29-kD protein in spleen, thymus, and NIH 3T3 fibroblasts equaling or exceeding those of p21 Ras. A G22V mutant of M-Ras was constitutively active and its expression in an interleukin-3 (IL-3)-dependent mast cell/megakaryocyte cell line resulted in increased survival in the absence of IL-3, increased growth in IL-4, and, at high expression levels, in factor-independent growth. Expression of M-Ras G22V, however, had a negative effect on growth in the presence of IL-3, suggesting that M-Ras has both positive and negative effects on growth. Expression of M-Ras G22V in NIH-3T3 fibroblasts resulted in morphological transformation and growth to higher cell densities. M-Ras G22V induced activation of the c-fos promoter, and bound weakly to the Ras-binding domains of Raf-1 and RalGDS. Expression of a mutant of M-Ras G22V that was no longer membrane-bound partially inhibited (40%) activation of the c-fos promoter by N-Ras Q61K, suggesting that M-Ras shared some, but not all, of the effectors of N-Ras. An S27N mutant of M-Ras, like the analogous H-Ras S17N mutant, was a dominant inhibitor of activation of the c-fos promoter by constitutively active Src Y527F, suggesting that M-Ras and p21 Ras shared guanine nucleotide exchange factors and are likely to be activated in parallel. Moreover, M-Ras was recognized by the monoclonal anti-Ras antibody Y13-259, commonly used to study the function and activity of p21 Ras. Mammalian M-Ras and a Caenorhabditis elegans orthologue exhibit conserved structural features, and these are likely to mediate activation of distinctive signaling paths that function in parallel to those downstream of p21 Ras.  相似文献   

3.
The aim of this study is to investigate the induction of interleukin-34 (IL-34) and macrophage colony-stimulating factor (M-CSF) mRNA by inflammatory cytokines and the involvement of mitogen-activated protein kinases (MAPKs) in this signaling pathway in human osteoblasts as both IL-34 and M-CSF bind to the same receptor c-FMS. Among four inflammatory cytokines [(IL-1β, IL-6, IL-17, and tumor necrosis factor-α (TNF-α)], IL-34 mRNA expression level was dramatically induced by IL-1β (17-fold) and TNF-α (74-fold). IL-1β and TNF-α activated the intracellular mitogen-activated protein kinases (MAPKs): p44/42 MAPK, p38, and c-Jun N-terminal kinase (JNK) as well as nuclear factor-κB (NF-κB) in osteoblasts. IL-1β- and TNF-α-mediated induction of IL-34 mRNA expression was decreased by JNK inhibitor. Interestingly, although treatment of MEK-1/2 inhibitor showed no reduction in the increase of IL-34 mRNA expression by cytokines, combination of MEK-1/2 inhibitor and JNK inhibitor significantly inhibited IL-1β- and TNF-α-mediated IL-34 mRNA expression level compared to those by each inhibitor alone. On the other hand, M-CSF mRNA expression level was significantly induced by both IL-1β and TNF-α by up to 7- and 11-fold, respectively. IL-1β- and TNF-α-mediated induction of M-CSF mRNA was not affected by p38, JNK, and MEK-1/2 inhibitors. However, NF-κB inhibitor completely inhibited the elevation of M-CSF mRNA expression by these cytokines. These results showed that proinflammatory cytokines, IL-1β and TNF-α, induced the expression of IL-34 mRNA via JNK and p44/42 MAPK but not p38 in human osteoblasts while p38, JNK, and p44/42 MAPK were not involved in the induction of M-CSF mRNA expression by these cytokines.  相似文献   

4.
5.
It is well documented that dendritic cells (DCs), representative antigen-presenting cells, are important sources of Th1-promoting cytokines and are actively involved in the regulation of T-helper-cell differentiation. However, the intracellular event that regulates this process is still largely unknown. In this study, we examined the role of Tyk2, a JAK kinase that is involved in the signaling pathway under IL-12 and IL-23, in DC functions. While the differentiation and maturation of DCs was normal in Tyk2-deficient (Tyk2(-/-)) mice, IL-12-induced Stat4 phosphorylation was diminished in Tyk2(-/-) DCs. IL-12-induced IFN-gamma production was also significantly diminished in Tyk2(-/-) DCs to levels similar to those in Stat4(-/-) DCs. Interestingly, Tyk2(-/-) DCs were defective in IL-12 and IL-23 production upon stimulation with CpG ODN. Furthermore, Tyk2(-/-) DCs were impaired in their ability to induce Th1-cell differentiation but not Th2-cell differentiation. Taken together, these results indicate that the expression of Tyk2 in DCs is crucial for the production of Th1-promoting cytokines such as IL-12 and IFN-gamma from DCs and thereby for the induction of antigen-specific Th1-cell differentiation.  相似文献   

6.
OBJECTIVE: To identify the genes up-regulated by interleukin-1 (IL-1) in combination with oncostatin M (OSM) in chondrocytes that may be involved in mechanisms of cartilage repair and degradation. METHODS: Gene microarray and real-time polymerase chain reaction (PCR) experiments were performed using RNA from SW1353 chondrocytes and primary human articular chondrocytes. Sections prepared from murine joints, injected with adenovirus vectors overexpressing IL-1 and/or OSM, were analyzed by immunohistochemistry for selected proteins. RESULTS: The combination of IL-1 and OSM markedly up-regulated the expression of various genes, including matrix metalloproteinases (MMPs), cytokines, chemokines, extracellular matrix components, and genes involved in signal transduction. Real-time PCR confirmed a synergistic induction of several MMPs, activin A, pentraxin 3 (PTX-3), and IL-8. The in vivo findings further indicated that stimulation with IL-1 plus OSM induced protein expression of activin A, PTX-3, and KC (the murine homolog of IL-8), as compared with the changes induced by individual cytokine treatment and unstimulated controls. CONCLUSION: The results confirm that the potent proinflammatory cytokine combination of IL-1 plus OSM synergistically and coordinately up-regulates many genes and several MMPs. Moreover, chondrocytes exhibit a potential repair response following this procatabolic stimulus such that the repair mechanisms are ultimately overwhelmed by degradative processes in the cartilage. This gene-profiling study provides insight into the complex processes that mediate joint disease in the inflammatory arthritides through the coordinated expression of multiple genes.  相似文献   

7.
The expression of TWEAK (TNFSF12) and TweakR/Fn14 was detected in regions rich in macrophage/foam cells in atherosclerotic plaques. The role of TWEAK in monocytes in relation to atherogenesis was investigated by analyzing the cellular events induced by TWEAK in a human macrophage-like cell line, THP-1. TWEAK induced various molecular mediators of atherogenesis, such as IL-6, MCP-1, IL-8 and MMP-9, and the induction was augmented by interferon-gamma. TWEAK-induced activation of MMP-9 was mediated by activation of NF-kappaB. These results suggest that TWEAK is involved in atherosclerosis by inducing pro-inflammatory cytokines and extracellular matrix degrading enzymes, which reduce plaque stability.  相似文献   

8.
Plasmacytoid dendritic cells (PDCs), which produce IFN-alpha in response to autoimmune complexes containing nuclear antigens, are thought to be critically involved in the pathogenesis of systemic lupus erythematosus (SLE). One of the immunostimulatory components of SLE immune complexes (SLE-ICs) is self DNA, which is recognized through Tlr9 in PDCs and B cells. Small nuclear ribonucleoproteins (snRNPs) are another major component of SLE-ICs in 30% to 40% of patients. In this study, we show that murine PDCs are activated by purified U1snRNP/anti-Sm ICs to produce IFN-alpha and proinflammatory cytokines and to up-regulate costimulatory molecules. The induction of IFN-alpha and IL-6 by U1snRNPs in murine bone marrow-derived PDCs required the presence of intact U1RNA and was largely dependent on Tlr7 but independent of Tlr3. Intracellularly delivered isolated U1snRNA and oligoribonucleotides derived from the stem loop regions and the Sm-binding site of U1snRNA efficiently induced IFN-alpha and IL-6 in Flt3L-cultured DCs in a Tlr7-dependent manner. The U1snRNA component of U1snRNP immune complexes, found in patients with SLE, acts as an endogenous "self" ligand for Tlr7 and triggers IFN-alpha and IL-6 production in PDCs.  相似文献   

9.
Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells   总被引:11,自引:2,他引:11  
The p21 RAS product has been implicated as part of the downstream signaling of certain nonreceptor tyrosine kinase oncogenes and several growth factor receptor-ligand interactions. We have reported that the chronic myelogenous leukemia oncogene p210 bcr-abl transforms a growth- factor-dependent myeloid cell line NFS/N1.H7 to interleukin-3 (IL-3) independence. In these p210 bcr-abl-transformed cells (H7 bcr-abl.A54) and in two other murine myeloid cell lines transformed to IL-3 independence by p210 bcr-abl, endogenous p21 RAS is activated as determined by an elevated ratio of associated guanosine triphosphate (GTP)/guanosine diphosphate (GDP), assayed by thin-layer chromatography of the nucleotides eluted from p21 RAS after immunoprecipitation with the Y13-259 antibody. Treatment of p210 bcr-abl-transformed cells with a specific tyrosine kinase inhibitor herbimycin A resulted in diminished tyrosine phosphorylation of p210 bcr-abl and associated proteins, without major reduction in expression of the p210 bcr-abl protein itself. Inhibition of p210 bcr-abl-dependent tyrosine phosphorylation resulted in a reduction of active p21RAS-GTP complexes in the transformed cells, in diminished expression of the nuclear early response genes c-jun and c-fos, and in lower cellular proliferation rate. To further implicate p21 RAS in these functional events downstream of p210 bcr-abl tyrosine phosphorylation, we targeted G- protein function directly by limiting the availability of GTP with the inosine monophosphate dehydrogenase inhibitor, tiazofurin (TR). In p210 bcr-abl-transformed cells treated for 4 hours with TR, in which the levels of GTP were reduced by 50%, but GDP, guanosine monophosphate, and adenosine triphosphate (ATP) were unaffected, p210 bcr-abl tyrosine phosphorylation was at control levels. However, expression of c-fos and c-jun nuclear proto-oncogenes were strongly inhibited and p21 RAS activity was downregulated. These findings show that p210 bcr-abl transduces proliferative signals, in part, through downstream activation of p21 RAS. Furthermore, p21 RAS activity is linked to pathways that regulate c-jun and c-fos expression.  相似文献   

10.
11.
12.
Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.  相似文献   

13.
K Oritani  T Kaisho  K Nakajima  T Hirano 《Blood》1992,80(9):2298-2305
We established a radiation-induced murine hematopoietic cell line, Y6, that could be induced to differentiate into macrophages by interleukin-6 (IL-6). IL-6 also induced growth inhibition and apoptosis in Y6 cells. Retinoic acid (RA) inhibited such effects of IL-6 on Y6 cells. The inhibitory effect of RA on the effects of IL-6 was not caused by the downregulation of the IL-6 receptor, because RA neither affected the expression of IL-6 receptor mRNA nor the expression of IL-6 receptor molecule on the cell surface. Furthermore, RA did not inhibit the IL-6-induced expression of junB mRNA, indicating that the expression of functionally active IL-6 receptor and the signal transduction pathway activating the junB gene are not inhibited by RA. IL-6-induced macrophage differentiation of Y6 cells was preceded by the downregulation of the c-myc gene, which was also prevented by RA. Because the inhibitory effect of RA on Y6 cells was reversible and seemed not to require de novo protein synthesis, the RA receptor by itself might be directly involved in the inhibition of the IL-6 signal transduction pathway. The results indicated that the IL-6 signal transduction pathways leading to the induction of macrophage differentiation and junB gene expression can be dissected by RA.  相似文献   

14.
15.
To identify the molecular basis underlying the functions of tumor-associated macrophages (TAMs), we characterized the gene expression profile of TAMs isolated from a murine fibrosarcoma in comparison with peritoneal macrophages (PECs) and myeloid suppressor cells (MSCs), using a cDNA microarray technology. Among the differentially expressed genes, 15 genes relevant to inflammation and immunity were validated by real-time polymerase chain reaction (PCR) and protein production. Resting TAMs showed a characteristic gene expression pattern with higher expression of genes coding for the immunosuppressive cytokine IL-10, phagocytosis-related receptors/molecules (Msr2 and C1q), and inflammatory chemokines (CCL2 and CCL5) as expected, as well as, unexpectedly, IFN-inducible chemokines (CXCL9, CXCL10, CXCL16). Immunohistology confirmed and extended the in vitro analysis by showing that TAMs express M2-associated molecules (eg, IL-10 and MGL1), as well as CCL2, CCL5, CXCL9, CXCL10, and CXCL16, but no appreciable NOS2. Lipopolysaccharide (LPS)-mediated activation of TAMs resulted in defective expression of several proinflammatory cytokines (eg, IL-1beta, IL-6, TNF-alpha) and chemokines (eg, CCL3), as opposed to a strong up-regulation of immunosuppressive cytokines (IL-10, TGFbeta) and IFN-inducible chemokines (CCL5, CXCL9, CXCL10, CXCL16). Thus, profiling of TAMs from a murine sarcoma revealed unexpected expression of IFN-inducible chemokines, associated with an M2 phenotype (IL-10high, IL-12low), and divergent regulation of the NF-kappaB versus the IRF-3/STAT1 pathway.  相似文献   

16.
17.
Apoptosis of activated T cells is critical for the termination of immune responses. Here we show that adjuvant-stimulated dendritic cells secrete cytokines that prime activated T cells for survival and analyze the roles of the NF-kappaB regulator Bcl-3 and the proapoptotic Bcl-2 family members Bim and Puma. Bcl-3 overexpression increased survival, and activated bcl-3-/- T cells died abnormally rapidly. Cytokines from adjuvant-stimulated dendritic cells induced Bcl-3, but survival through cytokine priming was Bcl-3-independent. Apoptosis inhibition by Bcl-3 involved blockade of Bim activation, because Bim was overactivated in Bcl-3-deficient cells, and Bcl-3 failed to increase survival of bim-/- T cells. However, adjuvants increased survival also in Bim-deficient T cells. This Bim-independent death pathway is at least in part regulated by Puma, as shown by analysis of puma-/- and noxa-/- T cells. IL-1, IL-7, and IL-15 primed T cells for survival even in the absence of Bim or Puma. Our data define interrelations and a Bim-independent pathway to activated T cell death.  相似文献   

18.
Cytokine augmentation of HIV-1 LTR-driven gene expression in neural cells.   总被引:3,自引:0,他引:3  
The induction of human immunodeficiency virus type 1 (HIV-1) gene expression by cytokines was investigated in cells of central nervous system origin. These were human neuroblastoma, glioblastoma, and astrocytoma cell lines, a murine oligodendroglioma and primary murine astrocyte cultures. The cytokines used were tumor necrosis factor alpha (TNF alpha), interleukin-1 beta (IL-1 beta), IL-6, and interferons alpha and gamma (IFN alpha, gamma). Transient transfection of cells with a chloramphenicol acetyltransferase (CAT) reporter gene under the control of the HIV-1 long terminal repeat (LTR) showed significant augmentation following treatment by particular cytokines. TNF alpha was found to augment HIV LTR-directed CAT activity in all cell types. IL-1 beta also activated the HIV LTR reporter gene in glioblastoma, astrocytoma, and astrocyte cells. IL-6 enhanced HIV gene expression in one example only, the primary astrocyte cultures. The interferons generally suppressed expression from the LTR except IFN gamma which produced a twofold rise in the murine glial cells and IFN alpha augmenting expression in one neuroblastoma cell line. No synergy was observed between pairs of activating cytokines tested. The HIV tat gene product was found to be functional in all cells, cotransfection of a tat expression vector transactivating expression from the LTR, with varying degrees of efficiency. In some cell lines the combination of an activating cytokine and tat resulted in an enhancement above that obtained by cotransfection of tat alone. In others, the level of CAT activity did not significantly change. Analysis of nuclear extracts from cytokine-treated cells further implicated the involvement of NFKB in the induction of HIV-1 gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Angiotensin II (A-II), the major effector peptide of the renin angiotensin system potently accelerates progression of atherosclerosis. To investigate its effects on vascular inflammatory mechanisms, we elucidated vascular cytokine expression during early lesion development in A-II-infused atherosclerosis-prone LDLR-/- mice. Male LDLR-/- mice were placed on a "Western" high-fat diet for 4 weeks, followed by sham or A-II infusion for 7 weeks. Equal blood pressures and elevations in serum lipids were seen in both groups. Mice were sacrificed when significant A-II-induced plaque development was first detectable, aortae were explanted and culture media assayed for secreted cytokines. Nine cytokines were significantly induced with interleukin-6 (IL-6) being the most highly secreted. Local IL-6 production was confirmed by in situ mRNA hybridization and immunostaining, where the most abundant IL-6 was found in the aortic adventitia, with lesser production by the medial and intimal layers. Immunofluorescence colocalization showed IL-6 expression by fibroblasts and activated macrophages. Activation of downstream IL-6 signaling mediated by the Jak-STAT3 pathway was demonstrated by inducible phospho-Tyr705-STAT3 formation in the adventitia and endothelium (of IL-6+/+ mice only). These findings define cytokine profiles in the A-II infusion model and demonstrate that IL-6, produced by activated macrophages and fibroblasts in the adventitia, induces the Jak-STAT3 pathway during early A-II-induced atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号