首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Msh4 (MutS homolog 4) is a member of the mammalian mismatch repair gene family whose members are involved in postreplicative DNA mismatch repair as well as in the control of meiotic recombination. In this report we show that MSH4 has an essential role in the control of male and female meiosis. We demonstrate that MSH4 is present in the nuclei of spermatocytes early in prophase I and that it forms discrete foci along meiotic chromosomes during the zygotene and pachytene stages of meiosis. Disruption of the Msh4 gene in mice results in male and female sterility due to meiotic failure. Although meiosis is initiated in Msh4 mutant male and female mice, as indicated by the chromosomal localization of RAD51 and COR1 during leptonema/zygonema, the chromosomes fail to undergo normal pairing. Our results show that MSH4 localization on chromosomes during the early stages of meiosis is essential for normal chromosome synapsis in prophase I and that it acts in the same pathway as MSH5.  相似文献   

2.
Members of the mammalian mismatch repair protein family of MutS and MutL homologs have been implicated in postreplicative mismatch correction and chromosome interactions during meiotic recombination. Here we demonstrate that mice carrying a disruption in MutS homolog Msh5 show a meiotic defect, leading to male and female sterility. Histological and cytological examination of prophase I stages in both sexes revealed an extended zygotene stage, characterized by impaired and aberrant chromosome synapsis, that was followed by apoptotic cell death. Thus, murine Msh5 promotes synapsis of homologous chromosomes in meiotic prophase I.  相似文献   

3.
In germ cells undergoing meiosis, the induction of double strand breaks (DSBs) is required for the generation of haploid gametes. Defects in the formation, detection, or recombinational repair of DSBs often result in defective chromosome segregation and aneuploidies. Central to the ability of meiotic cells to properly respond to DSBs are DNA damage response (DDR) pathways mediated by DNA damage sensor kinases. DDR signaling coordinates an extensive network of DDR effectors to induce cell cycle arrest and DNA repair, or trigger apoptosis if the damage is extensive. Despite their importance, the functions of DDR kinases and effector proteins during meiosis remain poorly understood and can often be distinct from their known mitotic roles. A key DDR kinase during meiosis is ataxia telangiectasia and Rad3-related (ATR). ATR mediates key signaling events that control DSB repair, cell cycle progression, and meiotic silencing. These meiotic functions of ATR depend on upstream scaffolds and regulators, including the 9-1-1 complex and TOPBP1, and converge on many downstream effectors such as the checkpoint kinase CHK1. Here, we review the meiotic functions of the 9-1-1/TOPBP1/ATR/CHK1 signaling pathway during mammalian meiosis.  相似文献   

4.
Hereditary nonpolyposis colorectal cancer (HNPCC) is frequently associated with inherited mutation in one of four DNA mismatch repair genes. Somatic mutations in the same genes are also found in a subset of sporadic colorectal cancers. A defect in DNA mismatch repair results in a RER (replication error) tumor phenotype. We screened 110 archival and 11 prospectively acquired colorectal cancers for the RER phenotype. A total of 22 cancers were RER-positive. RER-positive tumors were investigated for mutations in the DNA mismatch repair gene MLH1 using single-strand-conformation-polymorphism (SSCP) analysis. We identified four previously undescribed mutations in four different samples. Three mutations were exonic: a point mutation at codon 69 (AGG-->AAG(arg-->lys]); a single base pair deletion at codon 42/43 (GCAAAATCC-->GCAAATCC) leading to a new stop codon downstream; and a point mutation at codon 757 (TAA-->TAT [termination-->tyr] which extend the MLH1 peptide by 36 ammino acids. The fourth mutation was a 1 base pair insertion six base pairs 5' to the start of exon 14 (tttgtttt-->tttggtttt). The mutations were not seen in the patients' constitutional DNA. The somatic MLHI mutations identified appear to be causally associated with the RER phenotype.  相似文献   

5.
To promote faithful propagation of the genetic material during sexual reproduction, meiotic chromosomes undergo specialized morphological changes that ensure accurate segregation of homologous chromosomes. The molecular mechanisms that establish the meiotic chromosomal structures are largely unknown. We describe a mutation in a recently identified Histone H2A kinase, nhk-1, in Drosophila that leads to female sterility due to defects in the formation of the meiotic chromosomal structures. The metaphase I arrest and the karyosome, a critical prophase I chromosomal structure, require nucleosomal histone kinase-1 (NHK-1) function. The defects are a result of failure to disassemble the synaptonemal complex and to load condensin onto the mutant chromosomes. Embryos laid by nhk-1-/- mutant females arrest with aberrant polar bodies and mitotic spindles, revealing that mitosis is affected as well. We analyzed the role of Histone H2A phosphorylation with respect to the histone code hypothesis and found that it is required for acetylation of Histone H3 and Histone H4 in meiosis. These studies reveal a critical role for histone modifications in chromosome dynamics in meiosis and mitosis.  相似文献   

6.
To monitor the behavior of specific chromosomes at various stagesof mammalian female meiosis, we have combined immunofluorescencestaining and fluorescence in situ hybridization (FISH) on intactoocytes. We have utilized this technique to evaluate the behaviorof the single X chromosome in oocytes from XO female mice, providingthe first observations on segregation of an achiasmate chromosomeduring mammalian female meiosis and its effect on the meioticprocess. As has been described in other species, we found thatthe univalent chromosome could either segregate as an intactchromosome to one pole or divide equationally at the first meioticdivision. Our results also indicate that the presence of a univalentchromosome causes severe meiotic disruption during mammalianmeiosis, affecting the alignment and segregation of other chromosomesin the complement. Despite these meiotic abnormalities, thevast majority of oocytes from XO females were able to resumeand successfully complete the first meiotic division. This isin contrast to previous studies of male mice with sex chromosomeabnormalities where the presence of a univalent acts to arrestmeiosis at metaphase of the first meiotic division. This sex-specificdifference in the ability of a cell with a univalent chromosometo initiate anaphase suggests that cell cycle control differsbetween male and female meiosis and that monitoring of meioticchromosome behavior is less efficient in the female. The combineduse of immunofluorescence staining and FISH on intact oocyteshas obvious application to the study of meiotic chromosome non-disjunctionin the human female. Simultaneous study of the meiotic cellcycle, protein components of the meiotic apparatus, and chromosome-specificbehaviors during mammalian female meiosis provides a new approachto defining age-related changes in the meiotic process thatresult in increased chromosome maisegregation.  相似文献   

7.
It has been recently proposed that a concomitant generationof oxidative stress of oocytes with increasing maternal agemay be a major factor responsible for the age-related increasein aneuploid conceptions. As a preliminary step in the testingof this hypothesis, we need to confirm that oxidative stressin itself can induce errors in chromosome segregation. In orderto achieve this goal, germinal vesicle (GV)-stage mouse oocytesfrom unstimulated ICR and (C57BLxCBA) F1 hybrid female micewere matured in vitro for 9 h for metaphase I (MI) oocytes or16 h for metaphase II (MII) oocytes in the presence of varyingconcentrations of the oxidizing agent tertiary-butyl hydroperoxide(tBH). MII oocytes from (C57BLxCBA) F1 hybrid mice were fixedand C-banded for karyotyping analysis. MI and MII oocytes fromICR mice were fixed and stained with the DNAfluorescent probe4',6-diamidino-2-phenylindole (DAPI) to detect abnormalitiesin chromosomal distribution. Meiosis I and meiosis II spindlesfrom ICR mice were visualized by confocal immunofluorescencemicroscopy. Data from these experiments demonstrate that in-vitroexposure of mouse oocytes to tBH during meiosis I reduces thelength (pole-to-pole distance) and width (diameter at the equatorof the spindle) of meiosis I and meiosis II spindles. This reductionis associated with an increase in the percentage of oocytesshowing chromosome scattering and clumping on the MII plate,and of aneuploidy (hyperhaploidy) in MII oocytes. However, tBHat the concentrations used in the present study has only a minimalnegative effect on the frequency of meiotic maturation. Theseresults suggest that oxidative stress during meiotic maturationin vitro may induce chromosomal errors that are undetectablein the living oocyte and whose developmental consequences maybecome manifest after fertilization. aneuploidy/meiosis/mouse oxidative stress/spindle/tertiary butyl hydroperoxide  相似文献   

8.
DNA helicases Sgs1 and BLM promote DNA double-strand break resection   总被引:10,自引:2,他引:8  
A key cellular response to DNA double-strand breaks (DSBs) is 5'-to-3' DSB resection by nucleases to generate regions of ssDNA that then trigger cell cycle checkpoint signaling and DSB repair by homologous recombination (HR). Here, we reveal that in the absence of exonuclease Exo1 activity, deletion or mutation of the Saccharomyces cerevisiae RecQ-family helicase, Sgs1, causes pronounced hypersensitivity to DSB-inducing agents. Moreover, we establish that this reflects severely compromised DSB resection, deficient DNA damage signaling, and strongly impaired HR-mediated repair. Furthermore, we show that the mammalian Sgs1 ortholog, BLM--whose deficiency causes cancer predisposition and infertility in people--also functions in parallel with Exo1 to promote DSB resection, DSB signaling and resistance to DSB-generating agents. Collectively, these data establish evolutionarily conserved roles for the BLM and Sgs1 helicases in DSB processing, signaling, and repair.  相似文献   

9.
The generation of protective antibodies requires somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin genes. Here we show that mice mutant for exonuclease 1 (Exo1), which participates in DNA mismatch repair (MMR), have decreased CSR and changes in the characteristics of SHM similar to those previously observed in mice mutant for the MMR protein Msh2. Exo1 is thus the first exonuclease shown to be involved in SHM and CSR. The phenotype of Exo1(-/-) mice and the finding that Exo1 and Mlh1 are physically associated with mutating variable regions support the idea that Exo1 and MMR participate directly in SHM and CSR.  相似文献   

10.
Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.  相似文献   

11.
聚合酶3′外切活性对3′硫化修饰引物聚合反应的影响   总被引:4,自引:0,他引:4  
目的 探讨硫化修饰的次3′末端不配对引物能否引发高保真DNA聚合酶介导的聚合反应的非成熟性终止,即所谓聚合反应的“关”效应。方法 采用配对及非末端不配对的3′硫化修饰引物,研究其对不同保真度DNA聚合酶引物延伸反应的影响。结果 非末端不配对的3′硫化修饰引物也能引发高保真DNA聚合酶介导的聚合反应非成熟性终止,而对低保真DNA聚合酶所介导的聚合反应则无明显影响。同时,3′硫化修饰的配对引物对不同保真度DNA聚合酶引物延伸反应均无影响。结论 硫化修饰的次3′末端不配对引物与3′末端不配对引物对引物延伸的影响相似,同样能引起高保真DNA聚合酶介导的聚合反应的“关”的效应。显然,在单基因遗传病的诊断及单核苷酸多态性(single nucleotide polymorphism,SHIP)的高通量分析等方面,硫化修饰的碱基特异性引物与高保真DNA聚合酶所构成的对SNP敏感的“开/关”系统,具有广阔的应用前景。  相似文献   

12.
Hereditary nonpolyposis colorectal cancer (HNPCC) is frequently associated with inherited mutation in one of four DNA mismatch repair genes. Somatic mutations in the same genes are also found in a subset of sporadic colorectal cancers. A defect in DNA mismatch repair results in an RER (replication error) tumor phenotype. We screened 110 archival and 11 prospectively acquired colorectal cancers for the RER phenotype. A total of 22 cancers were RER-positive. RER-positive tumors were investigated for mutations in the DNA mismatch repair gene MLH1 using single-strand-conformation-polymorphism (SSCP) analysis. We identified four previously undescribed mutations in four different samples. Three mutations were exonic: a point mutation at codon 69 (AGG→AAG [arg→lys]); a single base pair deletion at codon 42/43 (GCAAAATCC→GCAAATCC) leading to a new stop codon downstream; and a point mutation at codon 757 (TAA→TAT) [termination→tyr] which extend the MLH1 peptide by 36 amino acids. The fourth mutation was a 1 base pair insertion six base pairs 5′ to the start of exon 14 (tttgtttt→tttggtttt). The mutations were not seen in the patients' constitutional DNA. The somatic MLH1 mutations identified appear to be causally associated with the RER phenotype. Hum Mutat 12:73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
We have measured the mutation rates of G(17) and A(17) repeat sequences in cultured mammalian cells with and without mismatch repair and have compared these rates to those of a (CA)(17) repeat sequence. Plasmids containing microsatellites that disrupt the reading frame of a downstream neomycin-resistance gene were introduced into the cells by transfection and revertants were selected using the neomycin analog G418. Comparison of mutation rates within cell lines showed that the mutation rates of A(17) and (CA)(17) sequences were similar in the mismatch repair proficient cells, but the mutation rate of G(17) was significantly higher than that of either A(17) or (CA)(17). In the mismatch repair deficient cells, the G(17) and (CA)(17) mutation rates were similar and were significantly higher than the A(17) rate. PCR analysis of the mutants showed that 1 bp insertions predominated in both mononucleotide repeats in the mismatch repair proficient cells; in mismatch repair deficient cells, 2 bp deletions were the most common mutation in the A(17) sequence, but 1 bp insertions and 2 bp deletions were equally represented in the G(17) sequence. These results indicate that a G(17) repeat is less stable than an A(17) repeat in both mismatch repair proficient and mismatch repair deficient mammalian cells. This observation implies that the replication fidelity is lower in G(17) repeats.  相似文献   

15.
There are several reports demonstrating that aneugens may preferentially affect segregation of particular chromosomes in somatic cells. Much less is known on specific susceptibility of individual chromosomes to non-disjunction in mammalian meiosis in response to chemical exposures. To explore possible chromosome-specific behaviour and susceptibility to errors in chromosome segregation in mammalian oogenesis we employed spindle immunofluoresecence in combination with FISH with chromosome-specific probes to analyse congression of chromosomes X, 8 and 16 in diazepam (DZ)-treated, meiotically delayed meiosis I oocytes of the mouse. Concomitantly, we assessed the susceptibility of homologues to precociously segregate prior to anaphase I during DZ-induced meiotic arrest. About 50% of all oocytes exposed to 25 microg/ml DZ became meiotically delayed. Chromosomes failed to congress at the spindle equator in one-third of these meiosis I oocytes. The X chromosome was significantly more often located away from the spindle equator as compared with the expected random behaviour. Concomitantly, DZ exposure induced untimely segregation of homologous chromosomes of the gonosome and the autosomes in meiosis I. This occurred with similar frequencies. The observations confirm that DZ perturbs cell cycle progression, interferes with chromosome alignment, causes predivision and thus may predispose mammalian oocytes to errors in chromosome segregation. For the first time, chromosome-specific behaviour is reported in female meiosis in response to exposure to an aneugenic chemical.  相似文献   

16.
Due to the growing amount of data related to the deleterious effects of the synthetic oestrogenic compound, diethylstilbestrol (DES), on the female reproductive system, we tested the potential effects of this compound on mouse oocytes. Controlled time- and dose-dependent in-vitro experiments were carried out on isolated cumulus-oocyte-complexes (COCs) to examine the meiotic spindle assembly and chromosome distribution. alpha-tubulin, chromosomes and F-actin were labelled and detected by confocal laser scanning microscope. COCs were exposed to varying doses of DES (5-30 micromol/l) from the germinal vesicle (GV) stage to the end of metaphase II (MII) when meiosis I and meiosis II is normally completed. Exposure to DES during meiosis I caused a dose-dependent inhibition of cell cycle progression. In comparison with controls, fewer oocytes reached metaphase I (MI) at low doses (5 micromol/l) of DES, while none of the oocytes reached MI in high doses (30 micromol/l). When COCs were exposed to high doses of DES during meiosis II, fragmentation of first meiotic spindle was detected, whereas lower doses caused loosening of the first and the second meiotic spindles. No microtubular abnormalities were detected either in GV-stage oocytes or in cumulus cells. The above data demonstrate that one mode of action of DES on mouse oocytes is a severe yet reversible deterioration of meiotic spindle microtubule organization during maturation.  相似文献   

17.
Cohesin component dynamics during meiotic prophase I in mammalian oocytes   总被引:7,自引:0,他引:7  
Cohesins are chromosomal proteins that form complexes involved in the maintenance of sister chromatid cohesion during division of somatic and germ cells. Three meiosis-specific cohesin subunits have been reported in mammals, REC8, STAG3 and SMC1 beta; their expression in mouse spermatocytes has also been described. Here we studied the localization of different meiotic and mitotic cohesin components during prophase I in human and murine female germ cells. In normal and atretic human fetal oocytes, from leptotene to diplotene stages, REC8 and STAG3 colocalize in fibers. In murine oocytes, SMC1beta, SMC3 and STAG3 are localized along fibers that correspond first to the chromosome axis and then to the synaptonemal complex in pachytene. Mitotic cohesin subunit RAD21 is also found in fibers that decorate the SC during prophase I in mouse oocytes, suggesting a role for this cohesin in mammalian sister chromatid cohesion in female meiosis. We observed that, unlike human oocytes, murine synaptonemal complex protein SYCP3 localizes to nucleoli throughout prophase I stages, and centromeres cluster in discrete locations from leptotene to dictyate. At difference from meiosis in male mice, the cohesin axis is progressively lost during the first week after birth in females with a parallel destruction of the axial elements at dictyate arrest, demonstrating sexual dimorphism in sister chromatid cohesion in meiosis.  相似文献   

18.
Exonuclease III (Exo III) and endonuclease IV (Endo IV) play a critical role in the base excision repair (BER) of Escherichia coli. Both are endowed with AP endonucleolytic activity, cleaving the 5' phosphodiester bond adjacent to spontaneous or induced abasic sites in DNA. Although mutants defective in Exo III (xthA) are usually hypersensitive to oxidative agents such as hydrogen peroxide, near-UV-light and X-rays, mutants defective in Endo IV (nfo) are not as sensitive as the xthA strain. To further investigate the roles of these AP endonucleases in DNA repair, we evaluated the sensitivity and mutagenesis of xthA and nfo strains after UVB and compared with UVC light. Our results revealed that xthA but not nfo strain was hypersensitive to UVB. The use of Fe(+2) ion chelator (dipyridyl), prior to irradiation, completely protected the xthA mutant against UVB lethal lesions, suggesting the generation of toxic oxidative lesions mediated by transition metal reactions. The nfo strain displayed increased UVB-induced mutagenesis, which was significantly suppressed by pre-treatment with dipyridyl. Although xthA strain did not display increased mutagenesis after UVC and UVB treatments, this phenotype was not related to xthA mutation, but rather to an unknown secondary mutation specifying an antimutator phenotype. After UVB irradiation, the base substitution spectra of nfo strain revealed a bias towards AT-->GC transitions and GC-->CG transversions, which were also suppressed by previous treatment with the iron chelator. Overall, on the basis of the differential sensitivities and mutational spectra displayed after UVC and UVB treatments, we propose a role for Endo IV and Exo III to counteract DNA damage induced by the oxidative counterpart of UVB in E.coli.  相似文献   

19.
To determine the methylation status of female germ cells in reference to the programmed reversal of X chromosome inactivation in these cells, we examined human fetal ovaries at developmental stages from the time germ cells initiate meiosis to when they cease to synthesize DNA (8–21 weeks gestation). Using methylation-sensitive restriction enzymes, we analyzed 57 MspI sites (32 sites in the CpG islands, and 25 nonclustered sites) from five X-linked housekeeping genes (HPRT, G6PD, P3, PGK, and GLA) and two tissue specific genes (X-linked F9 and autosomal EPO). Methylation patterns were compared to those of male germ cells, sperm, and somatic tissues of both sexes. All 32 MspI sites in CpG islands were unmethylated in germ-cell fractions of fetal ovary and adult testes, which could explain the reversibility of X inactivation in these tissues. However, whereas male meiotic germ cells were extensively methylated outside the islands (in the body of genes) and the methylation patterns resembled those of most somatic tissues, none of the 25 nonclustered CpGs was methylated in DNA contributed by the germ-cell component of fetal ovaries. The presence of faint MspI-like fragments in HpaII digests of fetal testes as well as fetal ovary prior to the onset of meiosis suggests that DNA of primordial germ cells is unmethylated in both sexes. Our observations of meiotic germ cells suggest that the female germ cells remain unmethylated, but that methylation in male germ cells occurs postnatally, prior to or during the early stages of spermatogenesis. In any event, the striking sex difference in methylation status of endogenous single-copy genes in meiotic germ cells could provide a molecular basis for parental imprinting of the mammalian genome.  相似文献   

20.
Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11(-/-), but not the asynaptic and DSB repair-defective Dmc1(-/-) oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号