首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and the microbial factors involved are poorly understood. Smooth lipopolysaccharide (LPS) of Brucella has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. In this study, we show that the LPS O side chain is involved in inhibition of the early fusion between Brucella suis-containing phagosomes and lysosomes in murine macrophages. In contrast, the phagosomes containing rough mutants, which fail to express the O antigen, rapidly fuse with lysosomes. In addition, we show that rough mutants do not enter host cells by using lipid rafts, contrary to smooth strains. Thus, we propose that the LPS O chain might be a major factor that governs the early behavior of bacteria inside macrophages.  相似文献   

2.
Mycobacterium avium is a facultative intracellular pathogen that can survive and replicate within macrophages. We tested the hypotheses that survival mechanisms may include alteration of phagosomal pH or inhibition of phagosome-lysosome fusion. M. avium was surface labeled with N-hydroxysuccinimidyl esters of carboxyfluorescein (CF) and rhodamine (Rho) to enable measurement of the pH of individual M. avium-containing phagosomes and the interactions of bacterium-containing phagosomes with labeled secondary lysosomes. CF fluorescence is pH sensitive, whereas Rho is pH insensitive; pH can be calculated from their fluorescence ratios. Surface labeling of M. avium did not affect viability in broth cultures or within J774, a murine macrophage-like cell line. By fluorescence spectroscopy, live M. avium was exposed to an environmental pH of approximately 5.7 at 6 h after phagocytosis, whereas similarly labeled Salmonella typhimurium, zymosan A, or heat-killed M. avium encountered an environmental pH of < 5.0. Video fluorescence and laser scanning confocal microscopy gave consistent pH results and demonstrated the heterogeneity of intracellular fate early in infection. pH became more homogeneous 6 h after infection. M. avium cells were coated with immunoglobulin G (IgG) or opsonized to investigate whether phagocytosis by the corresponding receptors would alter intracellular fate. Opsonized, unopsonized, and IgG-coated M. avium cells entered compartments of similar pH. Finally, the spatial distribution of intracellular bacteria and secondary lysosomes was compared. Only 18% of live fluorescent M. avium cells colocalized with fluorescent lysosomes, while 98% of heat-killed bacteria colocalized. Thus, both inhibition of phagosome-lysosome fusion and alteration of phagosomal pH may contribute to the intracellular survival of M. avium.  相似文献   

3.
Brucella suis is a facultative intracellular pathogen of mammals, residing in macrophage vacuoles. In this work, we studied the phagosomal environment of these bacteria in order to better understand the mechanisms allowing survival and multiplication of B. suis. Intraphagosomal pH in murine J774 cells was determined by measuring the fluorescence intensity of opsonized, carboxyfluorescein-rhodamine- and Oregon Green 488-rhodamine-labeled bacteria. Compartments containing live B. suis acidified to a pH of about 4.0 to 4.5 within 60 min. Acidification of B. suis-containing phagosomes in the early phase of infection was abolished by treatment of host cells with 100 nM bafilomycin A(1), a specific inhibitor of vacuolar proton-ATPases. This neutralization at 1 h postinfection resulted in a 2- to 34-fold reduction of opsonized and nonopsonized viable intracellular bacteria at 4 and 6 h postinfection, respectively. Ammonium chloride and monensin, other pH-neutralizing reagents, led to comparable loss of intracellular viability. Addition of ammonium chloride at 7 h after the beginning of infection, however, did not affect intracellular multiplication of B. suis, in contrast to treatment at 1 h postinfection, where bacteria were completely eradicated within 48 h. Thus, we conclude that phagosomes with B. suis acidify rapidly after infection, and that this early acidification is essential for replication of the bacteria within the macrophage.  相似文献   

4.
Brucella abortus is a facultative intracellular bacterium capable of surviving inside professional and nonprofessional phagocytes. The microorganism remains in membrane-bound compartments that in several cell types resemble modified endoplasmic reticulum structures. To monitor the intracellular transport of B. abortus in macrophages, the kinetics of fusion of phagosomes with preformed lysosomes labeled with colloidal gold particles was observed by electron microscopy. The results indicated that phagosomes containing live B. abortus were reluctant to fuse with lysosomes. Furthermore, newly endocytosed material was not incorporated into these phagosomes. These observations indicate that the bacteria strongly affect the normal maturation process of macrophage phagosomes. However, after overnight incubation, a significant percentage of the microorganisms were found in large phagosomes containing gold particles, resembling phagolysosomes. Most of the Brucella bacteria present in phagolysosomes were not morphologically altered, suggesting that they can also resist the harsh conditions prevalent in this compartment. About 50% colocalization of B. abortus with LysoSensor, a weak base that accumulates in acidic compartments, was observed, indicating that the B. abortus bacteria do not prevent phagosome acidification. In contrast to what has been described for HeLa cells, only a minor percentage of the microorganisms were found in compartments labeled with monodansylcadaverine, a marker for autophagosomes, and with DiOC6 (3,3'-dihexyloxacarbocyanine iodide), a marker for the endoplasmic reticulum. These results indicate that B. abortus bacteria alter phagosome maturation in macrophages. However, acidification does occur in these phagosomes, and some of them can eventually mature to phagolysosomes.  相似文献   

5.
Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. We have previously shown that the maturation inhibition of the Brucella-containing phagosome appears to be restricted at the phagosomal membrane, but the precise molecular mechanisms and factors involved in this inhibition have yet to be identified. Interestingly, recent studies have revealed that caveolae or lipid rafts are implicated in the entry of some microorganisms into host cells and mediate an endocytic pathway avoiding fusion with lysosomes. In this study, we investigated the role of cholesterol and the ganglioside GM(1), two components of lipid rafts, in entry and short-term survival of Brucella suis in murine macrophages, by using cholesterol-sequestering (filipin and beta-methyl cyclodextrin) and GM(1)-binding (cholera toxin B) molecules. Our results suggest that lipid rafts may provide a portal for entry of Brucella into murine macrophages under nonopsonic conditions, thus allowing phagosome-lysosome fusion inhibition, and provide further evidence to support the idea that the phagosome maturation inhibition is restricted at the phagosomal membrane.  相似文献   

6.
Brucella spp. are facultative intracellular parasites of various mammals, including humans, typically infecting lymphoid as well as reproductive organs. We have investigated how B. suis and B. melitensis enter human monocytes and in which compartment they survive. Peripheral blood monocytes readily internalized nonopsonized brucellae and killed most of them within 12 to 18 h. The presence of Brucella-specific antibodies (but not complement) increased the uptake of bacteria without increasing their intracellular survival, whereas adherence of the monocytes or incubation in Ca(2+)- and Mg(2+)-free medium reduced the uptake. Engulfment of all Brucella organisms (regardless of bacterial viability or virulence) initially resulted in phagosomes with tightly apposed walls (TP). Most TP were fully fusiogenic and matured to spacious phagolysosomes containing degraded bacteria, whereas some TP (more in monocyte-derived macrophages, HeLa cells, and CHO cells than in monocytes) remained tightly apposed to intact bacteria. Immediate treatment of infected host cells with the lysosomotropic base ammonium chloride caused a swelling of all phagosomes and a rise in the intraphagosomal pH, abolishing the intracellular survival of Brucella. These results indicate that (i) human monocytes readily internalize Brucella in a conventional way using various phagocytosis-promoting receptors, (ii) the maturation of some Brucella phagosomes is passively arrested between the steps of acidification and phagosome-lysosome fusion, (iii) brucellae are killed in maturing but not in arrested phagosomes, and (iv) survival of internalized Brucella depends on an acidic intraphagosomal pH and/or close contact with the phagosomal wall.  相似文献   

7.
Virulent and attenuated Brucella abortus strains attach to and penetrate nonprofessional phagocytic HeLa cells. Compared to pathogenic Brucella, the attenuated strain 19 hardly replicates within cells. The majority of the strain 19 bacteria colocalized with the lysosome marker cathepsin D, suggesting that Brucella-containing phagosomes had fused with lysosomes, in which they may have degraded. The virulent bacteria prevented lysosome-phagosome fusion and were found distributed in the perinuclear region within compartments resembling autophagosomes.  相似文献   

8.
The intracellular survival of the ubiquitous pathogen Listeria monocytogenes was studied in primary cultures of bone marrow-derived mouse macrophages. Bacteria were able to grow rapidly in these cells, with an apparent multiplication rate of about 40 min. Electron microscopy demonstrated that intracellular bacterial replication was the consequence of simultaneous intracellular killing and replication of bacteria in the same cells. Within the first hour following phagocytosis, most bacteria were destroyed in the phagosomal compartment to which they were confined. This was due to early transfer of hydrolytic enzymes to phagosomes, undoubtedly via phagosome-lysosome (P-L) fusion, as demonstrated by a quantitative analysis after staining for a lysosomal marker, acid phosphatase. One hour after infection, about 14% of the bacteria were free in the cytoplasm, in which they multiplied and induced actin polymerization and spreading to adjacent macrophages, as in epithelial cells. By using the 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine staining procedure, direct evidence is presented that all phagosomes were acidified immediately after phagocytosis, thus indicating that intraphagosomal bacteria were exposed to an acidic environment that might favor vacuolar lysis by listeriolysin O. Intracellular growth in macrophages, therefore, appears to be the result of a competition between the expression of the hydrolytic activity of these cells following P-L fusion and the capacity of L. monocytogenes to escape from the acidified phagosomal compartment before P-L fusion has occurred. The finding that concomitant intracellular killing and survival of L. monocytogenes occurs in the same macrophages might explain the high immunogenicity observed in vivo with live bacteria, as opposed to killed bacteria.  相似文献   

9.
Salmonella typhimurium-infected macrophages were examined by electron microscopy to determine whether intracellular survival of S. typhimurium is associated with failure of bacteria containing phagosomes to fuse with secondary lysosomes. S. typhimurium 14028 actively inhibited phagosome-lysosome fusion and appeared to preferentially divide within unfused phagocytic vesicles. In comparison with Escherichia coli, S. typhimurium inhibited phagosome-lysosome fusion in peritoneal macrophages, J774 macrophages, and bone marrow-derived macrophages from both BALB/c (itys) and SWR/J (ityr) mice. The mechanism responsible for Salmonella inhibition of phagosome-lysosome fusion is unknown but requires viable salmonellae, is not blocked by opsonization with fresh normal mouse serum, and is not due to lipopolysaccharide. Inhibition of phagosome-lysosome fusion may play a critical role in survival of salmonellae within macrophages and in virulence.  相似文献   

10.
Mycobacterium lepraemurium and M. microti (causal agent of vole tuberculosis) were isolated from tissues of experimentally infected mice and used to infect normal mouse peritoneal macrophage cultures. The cellular response to these bacteria up to 4 days after infection was studied quantitatively by electron microscopy. Prelabeling with ferritin was used to facilitate observation of fusion between secondary lysosomes in the cells and phagosomes containing the bacteria. All bacteria were intraphagosomal, and a high proportion of them was morphologically "intact." Nearly all phagosomes containing morphologically damaged (presumed nonviable) bacteria also contained ferritin, having fused with secondary lysosomes. Fusion of lysosomes had also occurred with most phagosomes containing intact M. lepraemurium but was infrequent with phagosomes containing intact M. microti. This tendency of multiplying mycobacteria of the tubercle type to avoid contact with lysosomal contents has already been reported for M. tuberculosis strain H37Rv. The different intracellular circumstances of the parasites may reflect different means of intracellular survival.  相似文献   

11.
The virulence of Salmonella typhimurium for mice results, in part, from its ability to survive after phagocytosis by macrophages. Although it is generally agreed that intracellular bacteria persist in membrane-bound phagosomes, there remains some question as to whether these phagosomes fuse with macrophage lysosomes. This report describes the maturation of phagosomes containing S. typhimurium inside mouse bone marrow-derived macrophages. Macrophages were infected briefly and incubated for various intervals; then they were examined by fluorescence microscopy for colocalization of bacteria with lysosomal markers. These markers included LAMP-1, cathepsin L, and fluorescent proteins or dextrans preloaded into lysosomes by endocytosis. By all measures, phagosomes containing S. typhimurium merged completely with the lysosomal compartment within 20 min of phagocytosis. The rate of phagosome-lysosome fusion was similar to the rate for phagocytosed latex beads. Phagolysosomes remained accessible to fluid-phase probes and contained lysosomal markers for many hours. Moreover, a large percentage of the wild-type bacteria that were viable 20 min after infection survived longer incubations inside macrophages, indicating that the survivors were not a minor subpopulation that avoided phagosome-lysosome fusion. Therefore, we conclude that S. typhimurium survives within the lysosomal compartments of macrophages.  相似文献   

12.
Bone marrow-derived cultured macrophages were infected with the pathogenic organism Mycobacterium avium. Immediately after infection and at 1 to 28 days later, cells either were stained for acid phosphatase activity or given horseradish peroxidase, which served as a pinocytotic marker. With the former, fusions between phagosomes and lysosomes exclusively were assessed; with the latter, those between phagosomes and both pinosomes and lysosomes were determined. As a control, similar experiments were undertaken by infecting macrophages with gamma ray-killed M. avium and the nonpathogenic live organisms Mycobacterium aurum and Bacillus subtilis. After infection with live M. avium, fusions between phagosomes and acid phosphatase-positive vesicles (lysosomes) were inhibited. The same inhibition was observed whether phagosomes contained damaged or structurally intact (presumed to be live) bacteria, except for the early time points. This inhibition was, however, partial, suggesting that some of the live bacteria are resistant to the hydrolytic enzymes of the phagolysosomal environment. Fusions between horseradish peroxidase-positive vesicles (pinosomes and lysosomes) and phagosomes depended upon the morphological state of the bacteria. Damaged bacteria did not inhibit fusions, whereas with intact bacteria, a partial inhibition which increased with time was observed. The two types of experiment suggest that viable M. avium can impair phagosome-pinosome fusions.  相似文献   

13.
Mycobacterium marinum causes long-term subclinical granulomatous infection in immunocompetent leopard frogs (Rana pipiens). These granulomas, organized collections of activated macrophages, share many morphological features with persistent human tuberculous infection. We examined organs of frogs with chronic M. marinum infection using transmission electron microscopy in conjunction with immunohistochemistry and acid phosphatase cytochemistry to better define the bacterium-host interplay during persistent infection. Bacteria were always found within macrophage phagosomes. These phagosomes were often fused to lysosomes, in sharp contrast to those formed during in vitro infection of J774 macrophage-like cells by M. marinum. The infected macrophages in frog granulomas showed various levels of activation, as evidenced by morphological changes, including epithelioid transformation, recent phagocytic events, phagolysosomal fusion, and disintegration of bacteria. Our results demonstrate that even long-term granulomas are dynamic environments with regard to the level of host cell activation and bacterial turnover and suggest a continuum between constantly replicating bacteria and phagocytic killing that maintains relatively constant bacterial numbers despite an established immune response. Infection with a mutant bacterial strain with a reduced capacity for intracellular replication shifted the balance, leading to a greatly reduced bacterial burden and inflammatory foci that differed from typical granulomas.  相似文献   

14.
In this study we examined the effects of Mycobacterium tuberculosis cell extracts on the phagocytic activity of polymorphonuclear leukocytes and cultured peripheral blood monocytes. M. tuberculosis cell extracts were fractionated on Sephacryl S-200 columns, and a 25-kilodalton glycolipoprotein was shown to inhibit the intracellular killing ability of these leukocytes but had no effect on their phagocytic potential. This same fraction inhibited fusion of phagosomes with lysosomes, as assessed by noting the transfer of acridine orange from lysosomes to phagosomes. This fraction was shown to have a maximal inhibitory effect when it was in the form of an intact carbohydrate-lipid-protein complex. Gamma interferon (IFN-gamma), but not IFN-alpha, reversed the inhibitory effect of the mycobacterial component on bactericidal activity and on fusion of phagosomes and lysosomes. Thus, this 25-kilodalton fraction of M. tuberculosis cell extract may be important in protecting organisms against phagocytic degradation, an effect which can be reversed by IFN-gamma.  相似文献   

15.
In mammalian hosts, Leishmania sp. parasites are obligatory intracellular organisms that invade macrophages and dendritic cells (DC), where they reside in endocytic organelles termed parasitophorous vacuoles (PV). Most of the present knowledge of the characteristics of PV harboring Leishmania sp. is derived from studies with infected macrophages. Since DC play a key role in host resistance to leishmaniasis, there is a need to understand the properties and biogenesis of PV in Leishmania sp.-infected DC. Therefore, we determined the acquisition of endosomal and lysosomal molecules by Leishmania major-containing compartments in DC at different maturation stages, using fluorescence labeling and confocal microscopy. The results show that newly formed phagosomes in DC rapidly develop into late endosomal compartments. However, the small GTPase Rab7, which regulates late fusion processes, was found only in PV of mature bone marrow-derived DC (BMDC); it was absent in immature BMDC, suggesting an arrest of their PV biogenesis at the stage of late endosomes. Indeed, fusion assays with endocytic tracers demonstrated that the fusion activity of L. major-harboring PV toward lysosomes is higher in mature BMDC than in immature BMDC. The inhibition of PV-lysosome fusion in DC is dependent upon the viability and life cycle stage of the parasite, because live promastigotes blocked the fusion almost completely, whereas killed organisms and amastigotes induced a considerable level of fusion activity. The differences in the fusion competences of immature and mature DC may be relevant for their distinct functional activities in the uptake, transport, and presentation of parasite antigens.  相似文献   

16.
Phagosomes containing M. tuberculosis and M. bovis BCG interact normally with early endosomes but fail to fuse with late endosomes and lysosomes. Whereas many early events of mycobacterial phagosomes have been elucidated, the exact mechanism of the inhibition of fusion with lysosomes is still unclear. Several Rab GTPase proteins were shown to be involved in membrane fusion and vesicular transport. In particular, Rab7 associates with the phagosomal membrane and regulates the fusion between late endosomes and lysosomes. This function of Rab7 was shown to be mediated in epithelial cell models by the Rab7 effector RILP (Rab7-interacting lysosomal protein). However, the relevance of Rab7-RILP interaction to phagosome biogenesis in macrophage infected with mycobacteria is still unknown. In this study, cotransfection of RAW 264.7 cells with Rab7 and RILP revealed that Rab7-RILP interaction occurs in macrophages ingesting latex beads. Thereafter, this cell system model was used to demonstrate that infection with live but not killed M. bovis BCG inhibited RILP recruitment despite Rab7 acquisition by the phagosome. Further investigation using immobilized RILP to pull down active Rab7 (GTP-bound form) from macrophage lysates demonstrated that inactive Rab7 (GDP-bound form) predominates in cells infected with live BCG. In addition, cell-free system experiments demonstrated that BCG culture supernatant contains a factor that catalyzes the GTP/GDP switch on recombinant Rab7 molecules. Such a factor was shown to diffuse beyond BCG phagosomes and target other Rab7-positive compartments. These findings suggest that live mycobacteria express within the macrophage a Rab7 deactivating factor leading to abortion of RILP-mediated fusion with lysosomes.  相似文献   

17.
Francisella tularensis, the agent of tularemia, is an intracellular pathogen, but little is known about the compartment in which it resides in human macrophages. We have examined the interaction of a recent virulent clinical isolate of F. tularensis subsp. tularensis and the live vaccine strain with human macrophages by immunoelectron and confocal immunofluorescence microscopy. We assessed the maturation of the F. tularensis phagosome by examining its acquisition of the lysosome-associated membrane glycoproteins (LAMPs) CD63 and LAMP1 and the acid hydrolase cathepsin D. Two to four hours after infection, vacuoles containing live F. tularensis cells acquired abundant staining for LAMPs but little or no staining for cathepsin D. However, after 4 h, the colocalization of LAMPs with live F. tularensis organisms declined dramatically. In contrast, vacuoles containing formalin-killed bacteria exhibited intense staining for all of these late endosomal/lysosomal markers at all time points examined (1 to 16 h). We examined the pH of the vacuoles 3 to 4 h after infection by quantitative immunogold staining and by fluorescence staining for lysosomotropic agents. Whereas phagosomes containing killed bacteria stained intensely for these agents, indicating a marked acidification of the phagosomes (pH 5.5), phagosomes containing live F. tularensis did not concentrate these markers and thus were not appreciably acidified (pH 6.7). An ultrastructural analysis of the F. tularensis compartment revealed that during the first 4 h after uptake, the majority of F. tularensis bacteria reside within phagosomes with identifiable membranes. The cytoplasmic side of the membranes of approximately 50% of these phagosomes was coated with densely staining fibrils of approximately 30 nm in length. In many cases, these coated phagosomal membranes appeared to bud, vesiculate, and fragment. By 8 h after infection, the majority of live F. tularensis bacteria lacked any ultrastructurally discernible membrane separating them from the host cell cytoplasm. These results indicate that F. tularensis initially enters a nonacidified phagosome with LAMPs but without cathepsin D and that the phagosomal membrane subsequently becomes morphologically disrupted, allowing the bacteria to gain direct access to the macrophagic cytoplasm. The capacity of F. tularensis to alter the maturation of its phagosome and to enter the cytoplasm is likely an important element of its capacity to parasitize macrophages and has major implications for vaccine development.  相似文献   

18.
Virulence of the intracellular pathogen Brucella for humans is mainly associated with its lipopolysaccharide (LPS) phenotype, with smooth LPS phenotypes generally being virulent and rough ones not. The reason for this association is not quite understood. We now demonstrate by flow cytometry, electron microscopy, and ELISA that human peripheral blood monocytes interact both quantitatively and qualitatively different with smooth and rough Brucella organisms in vitro. We confirm that considerably higher numbers of rough than smooth brucellae attach to and enter the monocytes in nonopsonic conditions; but only smooth brucellae replicate in the host cells. We show for the first time that rough brucellae induce higher amounts than smooth brucellae of several CXC (GRO-alpha, IL-8) and CC (MIP-1alpha, MIP-1beta, MCP-1, RANTES) chemokines, as well as pro- (IL-6, TNF-alpha) and anti-inflammatory (IL-10) cytokines released by challenged monocytes. Upon uptake, phagosomes containing rough brucellae develop selective fusion competence to form spacious communal compartments, whereas phagosomes containing smooth brucellae are nonfusiogenic. Collectively, our data suggest that rough brucellae attract and infect monocytes more effectively than smooth brucellae, but only smooth LPS phenotypes establish a specific host cell compartment permitting successful parasitism. These novel findings link the LPS phenotype of Brucella and its virulence for humans at the level of the infected host cells. Whether this is due to a direct effect of the LPS molecules or to upstream bacterial mechanisms remains to be established.  相似文献   

19.
Cells in the Brucella spp. are intracellular pathogens that survive and replicate within host monocytes. Brucella maintains persistent infections in animals despite the production of high levels of anti-Brucella-specific antibodies. To determine the effect of antibody opsonization on the ability of Brucella to establish itself within monocytes, the intracellular trafficking of virulent Brucella abortus 2308 and attenuated hfq and bacA mutants was followed in the human monocytic cell line THP-1. Early trafficking events of B. abortus 2308-containing phagosomes (BCP) were indistinguishable from those seen for control particles (heat-killed B. abortus 2308, live Escherichia coli HB101, or latex beads). All phagosomes transiently communicated the early-endosomal compartment and rapidly matured into LAMP-1(+), cathepsin D(+), and acidic phagosomes. By 2 h postinfection, however, the number of cathepsin D(+) BCP was significantly lower for live B. abortus 2308-infected cells than for either Brucella mutant strains or control particles. B. abortus 2308 persisted within these cathepsin D(-), LAMP-1(+), and acidic vesicles; however, at the onset of intracellular replication, the numbers of acidic B. abortus 2308 BCP decreased while remaining cathepsin D(-) and LAMP-1(+). In contrast to B. abortus 2308, the isogenic hfq and bacA mutants remained in acidic, LAMP-1(+) phagosomes and failed to initiate intracellular replication. Notably, markers specific for the host endoplasmic reticulum were absent from the BCPs throughout the course of the infection. Thus, opsonized B. abortus in human monocytes survives within phagosomes that remain in the endosomal pathway and replication of virulent B. abortus 2308 within these vesicles corresponds with an increase in intraphagosomal pH.  相似文献   

20.
Various natural and synthetic substances classified as polyanionics have been implicated in antagonizing phagosome-lysosome fusion in cultured macrophages. The phenomenon has been judged by comparing the transfer of selected markers from secondary lysosomes to phagosomes in control and in "polyanion" cells. Our earlier studies showed that use of one of the markers, the membrane-permeating acridine orange, was plagued with artifacts that were especially misleading in the presence of polyanionic agents. We now question the validity of data obtained by the alternative technique, electron microscopy. Our present evidence shows that nonionic hydrocolloids of sufficiently high molecular weight prevent the transfer of various colloidal electron-opaque markers from lysosomes to phagosomes in the same manner as does the powerful polyanionic "fusion inhibitor" dextran sulfate. Both kinds of hydrocolloids, however, allow delivery of lysosomal, low-molecular-weight highly charged non-permeant fluorescent markers to phagosomes, probably by a fusion process. We propose that neither type of hydrocolloid inhibits fusion; instead, when sufficiently concentrated, they trap particulate electron-opaque markers in a gelatinous matrix, which may move only slowly out of lysosomes. The polyanionics trap the electron-opaque markers physically and acridine orange ionically. Hence, the semblance of "fusion inhibition."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号