首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: The initial risk assessments for BRCA1/2 mutation carriers and estimates of carrier frequencies were based on extended pedigrees with a large number of symptomatic subjects. When counselling based on BRCA gene mutation analysis was initiated, we faced requests for counselling mostly from members of small families with only two or three affected members. We report on the likelihood of finding a BRCA mutation in such small families. METHODS: In the first 100 families that came for oncogenetic counselling since September 1994, a BRCA1/2 gene mutation screen was initiated if there were two or more symptomatic first degree relatives, if one of them had ovarian cancer, or if one breast cancer was diagnosed before the age of 50 years. RESULTS: BRCA gene mutations were found and confirmed by sequencing in 14 out of 42 families (33%); 10 mutations were in the BRCA1 gene and four in the BRCA2 gene. Our findings indicate an increased probability of detecting a BRCA gene mutation when ovarian cancer occurred in the family. There is no increased probability of detecting a mutation with increasing numbers of breast cancers. Only 22% of the eligible presymptomatic family members opted for testing. The presymptomatic female carriers currently prefer breast surveillance rather than prophylactic surgery. CONCLUSION: BRCA1/2 gene mutation testing can be done with reasonable efficiency in the Belgian population when there are two symptomatic family members. The availability of testing does not lead to a high frequency of requests for testing by presymptomatic family members.  相似文献   

2.
Hereditary breast cancer accounts for 3–8% of all breast cancers, with mutations in the BRCA1 and BRCA2 genes responsible for up to 30% of these. To investigate the prevalence of BRCA1 and BRCA2 gene mutations in breast cancer patients with affected relatives in Tunisia, we studied 36 patients who had at least one first degree relative with breast and/or ovarian cancer Thirty-four 34 patients were suggestive of the BRCA1 mutation and two were suggestive of the BRCA2 mutation, based on the presence of male breast cancer detected in their corresponding pedigrees. Four mutations in BRCA1 were detected, including a novel frame-shift mutation (c.211dupA) in two unrelated patients and three other frameshift mutations – c.4041delAG, c.2551delG and c.5266dupC. Our study is the first to describe the c.5266dupC mutation in a non-Jewish Ashkenazi population. Two frameshift mutations (c.1309del4 and c.5682insA) were observed in BRCA2. Nineteen percent (7/36) of the familial cases had deleterious mutations of the BRCA1 or BRCA2 genes. Almost all patients with deleterious mutations of BRCA1 reported a family history of breast and/or ovarian cancer in the index case or in their relatives. Our data are the first to contribute to information on the mutation spectrum of BRCA genes in Tunisia, and we give a recommendation for improving clinical genetic testing policy.  相似文献   

3.
We ascertained 184 Ashkenazi Jewish women with breast/ovarian cancer (171 breast and 13 ovarian cancers, two of the former also had ovarian cancer) in a self-referral study. They were tested for germline founder mutations in BRCA1 (185delAG, 5382insC, 188del11) and BRCA2 (6174delT). Personal/family histories were correlated with mutation status. Logistic regression was used to develop a model to predict those breast cancer cases likely to be germline BRCA1/BRCA2 mutation carriers in this population. The most important factors were age at diagnosis, personal/family history of ovarian cancer, or breast cancer diagnosed before 60 years in a first degree relative. A total of 15.8% of breast cancer cases, one of 13 ovarian cancer cases (7.7%), and both cases with ovarian and breast cancer carried one of the founder mutations. Age at diagnosis in carriers (44.6 years) was significantly lower than in non-carriers (52.1 years) (p<0.001), and was slightly lower in BRCA1 than BRCA2 carriers. Thirty three percent of carriers had no family history of breast or ovarian cancer in first or second degree relatives. Conversely, 12% of non-mutation carriers had strong family histories, with both a first and a second degree relative diagnosed with breast or ovarian cancer. The predicted values from the logistic model can be used to define criteria for identifying Ashkenazi Jewish women with breast cancer who are at high risk of carrying BRCA1 and BRCA2 mutations. The following criteria would identify those at approximately 10% risk: (1) breast cancer <50 years, (2) breast cancer <60 years with a first degree relative with breast cancer <60 years, or (3) breast cancer <70 years and a first or second degree relative with ovarian cancer.  相似文献   

4.
Germline mutations in the BRCA1 and BRCA2 genes are responsible for the predisposition and development of familial breast and/or ovarian cancer. Most mutations of BRCA1 and BRCA2 associated with breast and/or ovarian cancer result in truncated proteins. To investigate the presence of BRCA1 and BRCA2 germline mutations in Korean breast and/or ovarian cancer families, we screened a total of 27 cases from 21 families including two or more affected first- or second-degree relatives with breast and/or ovarian cancer. PTT, PCR-SSCP, and DHPLC analysis, followed by sequencing were used in the screening process. In nine families, we found BRCA1 and BRCA2 germline mutations that comprised four frameshift mutations and five nonsense mutations. All nine mutations led to premature termination producing shortened proteins. Among the nine mutations, three novel BRCA1 mutations (E1114X, Q1299X, 4159delGA) and two novel BRCA2 mutations (K467X, 8945delAA) were identified in this work.  相似文献   

5.
Since the identification of the BRCA1 and BRCA2 genes (MIM#s 113705 and 600185), more than hundred different mutations throughout both genes have been reported. Recurrent mutations are rare and mainly due to founder effects. We analyzed 12 sporadic female patients with breast cancer before age 35, as well as 16 unrelated families, presenting with either (i) at least 3 first degree relatives with breast and/or ovarian cancer diagnosed at any age, or (ii) at least 2 first and/or second degree relatives with breast and/or ovarian cancer before age 45 years. We performed a protein truncation test for BRCA1 exon 11 and BRCA2 exons 10 and 11 and heteroduplex analysis for all the remaining exons of BRCA1 and 2. Presence of genomic deletions encompassing exons 13 or 22 of BRCA1, known to be Dutch founder mutations, was investigated by PCR. In 6/16 (37.5%) unrelated families the causal mutation in either the BRCA1 or BRCA2 gene was identified. Four different mutations were found in the BRCA1 gene: IVS5+3A>G (intron 5), 1191delC (exon 11), R1443X (exon 13), IVS22+5G>A (intron 22) and two in the BRCA2 gene: 6503delTT (exon 11), 6831delTG (exon 11). 1191delC (BRCA1) and 6831delTG (BRCA2) are novel mutations. IVS5+3A>G in exon 5 of BRCA1 published by Peelen et al. (1997) as a novel Belgian mutation, was identified in one additional family, not fulfilling our inclusion criteria. In the group of 12 sporadic female patients no mutations were found.  相似文献   

6.
We present a comprehensive analysis of 1,506 German families for large genomic rearrangements (LGRs) in the BRCA1 gene and of 450 families in the BRCA2 gene by the multiplex ligation-dependent probe amplification (MLPA) technique. A total of 32 pathogenic rearrangements in the BRCA1 gene were found, accounting for 1.6% of all mutations, but for 9.6% of all BRCA1 mutations identified in a total of 1,996 families, including 490 with small pathogenic BRCA1/2 mutations. Considering only high risk groups for hereditary breast/ovarian cancer, the prevalence of rearrangements is 2.1%. Interestingly, deletions involving exon 17 of the BRCA1 gene seem to be most frequent in Germany. Apart from recurrent aberrations like del ex17, dupl ex13, and del ex22, accounting for more than 50% of all BRCA1 LGRs, we could fully characterize 11 novel deletions. Moreover, one novel deletion involving exons 1-7 and one deletion affecting the entire BRCA1 gene were identified. All rearrangements were detected in families with: 1) at least two breast cancer cases prior to the age of 51 years; 2) breast and ovarian cancer cases; 3) ovarian cancer only families with at least two ovarian cancer cases; or 4) a single breast cancer case prior to the age of 36 years, while no mutations were detected in breast cancer only families with no or only one breast cancer case prior to the age of 51 years. Analysis for gross rearrangements in 412 high-risk individuals, revealed no event in the BRCA2 gene and only two known CHEK2 mutations. However, in an additional 38 high-risk families with cooccurrence of female breast/ovarian and male breast cancer, one rearrangement in the BRCA2 gene was found. In summary, we advise restricting BRCA1 MLPA screening to those subgroups that revealed LGRs and recommend BRCA2 MLPA screening only for families presenting with cooccurrence of female and male breast cancer.  相似文献   

7.

Background

Mutations in the BRCA1 (MIM 113705) gene are found in many families with multiple cases of breast and ovarian cancer, and women with a BRCA1 mutation are at significantly higher risk of developing breast and ovarian cancer than are the general public.

Methods

We obtained blood samples and pedigree information from 3568 unselected cases of early‐onset breast cancer and 609 unselected patients with ovarian cancer from hospitals throughout Poland. Genetic testing was performed for three founder BRCA1 mutations. We also calculated the risk of breast and ovarian cancer to age 75 in the first degree relatives of carriers using Kaplan‐Meier methods.

Results

The three founder BRCA1 mutations were identified in 273 samples (187 with 5382insC, 22 with 4153delA, and 64 with C61G). A mutation was present in 4.3% of patients with breast cancer and 12.3% of patients with ovarian cancer. The overall risk of breast cancer to age 75 in relatives was 33% and the risk of ovarian cancer was 15%. The risk for breast cancer was 42% higher among first degree relatives of carriers of the C61G missense mutation compared to other mutations (HR = 1.42; p = 0.10) and the risk for ovarian cancer was lower than average (OR = 0.26; p = 0.03). Relatives of women diagnosed with breast cancer had a higher risk of breast cancer than relatives of women diagnosed with ovarian cancer (OR = 1.7; p = 0.03).

Conclusions

The risk of breast cancer in female relatives of women with a BRCA1 mutation depends on whether the proband was diagnosed with breast or ovarian cancer.  相似文献   

8.
OBJECTIVES: In view of the recent reports of recurrent mutations in BRCA1 and BRCA2 in the Ashkenazi Jewish population, we have undertaken to assess the frequency of these mutations in this population attending for genetic counselling and risk assessment of familial breast cancer. DESIGN: Mutation screening for the 185delAG and the 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 was performed on DNA samples from either subjects affected by breast or ovarian cancer or obligate gene carriers. The likelihood of the cancers being hereditary in each family was calculated. SUBJECTS: Blood samples were obtained from 26 affected subjects or obligate gene carriers from 23 Ashkenazi Jewish families, all with a history of either early onset breast or ovarian cancers, or multiple cases of breast or ovarian cancer. RESULTS: Twelve mutations have been identified in the 23 families (52%) of which eight (67%) were the 185delAG mutation, three (25%) were the 6174delT mutation, and one (8%) was the 5382insC mutation. While the majority of these mutations were identified in families with a greater than 50% probability of being hereditary under the CASH segregation model, three mutations were identified in families with a 35% or less probability. CONCLUSIONS: Genetic screening of the recurrent mutations in Ashkenazi Jewish families will lead to the availability of predictive testing in a reasonably large proportion, even if the family history of breast/ovarian cancer is not particularly strong. In our view it is possible to reassure high risk unaffected members of these families, if the screening is negative for these mutations, even if a sample from an affected member of the family is unavailable for previous screening.  相似文献   

9.
Here we report the study on BRCA1 and BRCA2 mutations in 12 Thai breast and/or ovarian cancer families and 6 early-onset breast or breast/ovarian cancer cases without a family history of cancer. Five distinct rare alterations were identified in each gene: four introducing premature stop codons, one in-frame deletion, two missense changes, two intronic alterations and one silent rare variant. The BRCA1 or BRCA2 truncating mutations were detected in four of seven patients with familial or personal history of breast and ovarian cancer, in one of four isolated early onset breast cancer cases and in none of seven breast cancer site specific families. The BRCA1 and BRCA2 mutation yield in Thai patients is consistent with that reported from Europe and North America in similar groups of patients, being particularly high in individuals with personal or family history of breast and ovarian cancer. The BRCA1 and BRCA2 alterations found in this series are different from those identified in other Asian studies, and all but two have never been reported before. We report at least three novel deleterious mutations, the BRCA1 3300delA, BRCA1 744ins20 and BRCA2 6382delT. One in-frame deletion was also found, the BRCA2 5527del9, which seggregated within family members of breast-only cancer patients and was thought to be a cancer-related mutation. BRCA1 3300delA and Asp67Glu alterations were detected each in at least two families and thus could represent founder mutations in Thais.  相似文献   

10.
Germline mutations of BRCA1 and BRCA2 predispose to hereditary breast-ovarian cancer syndrome. In Finland, 20 different BRCA1/2 mutations have been identified, and 13 of them are founder mutations that account for the vast majority of Finnish BRCA1/2 families. The purpose of our study was to determine the prevalence of BRCA1/2 mutations in unselected Finnish ovarian carcinoma patients and to evaluate the relationship between mutation carrier status and personal/family history of cancer. Two hundred and thirty-three patients were screened for all the 20 BRCA1/2 mutations known in the Finnish population. Additionally, a subgroup of patients with personal history of breast cancer and/or family history of breast and/or ovarian cancer was screened for novel BRCA1/2 mutations. Thirteen patients (5.6%) had mutations: eleven in BRCA1 and two in BRCA2. All the mutation-positive patients were carriers of the previously known Finnish BRCA1/2 mutations, and seven recurrent founder mutations accounted for 12 of the 13 mutations detected. A logistic regression analysis was used to determine the odds of mutation for ovarian carcinoma patients. The most significant predictor of a mutation was the presence of both breast and ovarian cancer in the same woman, but family history of breast cancer was also strongly related to mutation carrier status. Although BRCA1/2 mutation testing is not warranted in the general Finnish ovarian cancer patient population, patients who have also been diagnosed with breast cancer or have family history of breast or breast and ovarian cancer could benefit from referral to genetic counselling and mutation testing.  相似文献   

11.
While there are many reports in the literature of mutation testing of BRCA1 and BRCA2 in breast/ovarian cancer families, the question of which type of ovarian cancers are relevant still pertains. We have undertaken whole gene screening including multiple ligation-dependent probe amplification in an affected individual within 442 unrelated non-Jewish families containing at least one reported ovarian cancer diagnosed less than 50 years or at any age with family history of breast or ovarian cancer for mutations in BRCA1 and BRCA2. A total of 166 mutations were identified 110 (25%) in BRCA1 and 56 (13%) in BRCA2 . In families without confirmation of ovarian diagnosis, the detection rate drops significantly. In families fulfilling Breast Cancer Linkage Consortium (BCLC) criteria with confirmed ovarian cancer cases, the mutation detection frequency was 80%. If only BCLC families with unconfirmed ovarian cancers were included, the detection rate dropped to 36% when a relevant ovarian cancer diagnosis was not confirmed. In BCLC families containing only one ovarian cancer, BRCA2 accounted for 45% of identified mutations. No mutations were identified in affected individuals with borderline or mucinous tumours. Detection rates dropped below the 10/20% international thresholds in a number of families with unconfirmed ovarian cancers. Borderline/mucinous pathology substantially reduces the likelihood of identifying a BRCA1/2 mutation. Strenuous efforts should be made to confirm ovarian pathology if the lack of confirmation or refuting the diagnosis would decrease a family's likelihood of mutation detection below screening thresholds. In the UK, a higher proportion of families harbour BRCA2 pathogenic mutations than predicted from previous studies.  相似文献   

12.
Bogdanova NV, Antonenkova NN, Rogov YI, Karstens JH, Hillemanns P, Dörk T. High frequency and allele‐specific differences of BRCA1 founder mutations in breast cancer and ovarian cancer patients from Belarus. Breast cancer and ovarian cancer are common malignancies in Belarus accounting for about 3500 and 800 new cases per year, respectively. For breast cancer, the rates and age of onset appear to vary significantly in regions differentially affected by the Chernobyl accident. We assessed the frequency and distribution of three BRCA1 founder mutations 5382insC, 4153delA and Cys61Gly in two hospital‐based series of 1945 unselected breast cancer patients and of 201 unselected ovarian cancer patients from Belarus as well as in 1019 healthy control females from the same population. Any of these mutations were identified in 4.4% of the breast cancer patients, 26.4% of the ovarian cancer patients and 0.5% of the controls. In the breast cancer patients, BRCA1 mutations were strongly associated with earlier age at diagnosis, with oestrogen receptor (ER) negative tumours and with a first‐degree family history of breast cancer, although only 35% of the identified BRCA1 mutation carriers had such a family history. There were no marked differences in the regional distribution of BRCA1 mutations, so that the significant differences in age at diagnosis and family history of breast cancer patients from areas afflicted by the Chernobyl accident could not be explained by BRCA1. We next observed a higher impact and a shifted mutational spectrum of BRCA1 in the series of Byelorussian ovarian cancer patients where the three founder mutations accounted for 26.4% (53/201). While the Cys61Gly mutation appeared underrepresented in ovarian cancer as compared with breast cancer cases from the same population (p = 0.01), the 4153delA mutation made a higher contribution to ovarian cancer than to breast cancer (p < 0.01). BRCA1 mutations were significantly enriched among ovarian cancer cases with a first‐degree family history of breast or ovarian cancer, whereas the median age at ovarian cancer diagnosis was not different between mutation carriers and non‐carriers. Taken together, these results identify three BRCA1 founder mutations as key components of inherited breast and ovarian cancer susceptibility in Belarus and might have implications for cancer prevention, treatment and genetic counselling in this population.  相似文献   

13.
Germline mutations in highly penetrant autosomal dominant genes explain about 5% of all breast cancer, and heritable mutations in the BRCA1 breast and ovarian cancer susceptibility gene account for 2-3% of breast cancer in the general population. Nevertheless, the presence of such mutations is highly predictive of disease development. Since screening for mutations is still technically laborious, we investigated whether the prior probability of being a carrier of a dominant breast cancer susceptibility gene in the youngest affected family member could be used to identify families in which the probability of finding a mutation is sufficiently high. Sixty German families with three or more cases of breast/ovarian cancer with at least two cases diagnosed under the age of 60 were screened for mutations by SSCP/CSGE and subsequent direct sequencing. Thirteen germline truncating/splicing mutations in BRCA1 were found in 33% (6/18) of the breast-ovarian cancer families and in 17% (7/42) of breast cancer only families. All the families showing mutations in BRCA1 had carrier probabilities of 0.65 or higher. In families with prior carrier probabilities above 0.6, the proportion detected was 0.46 in breast-ovarian cancer families and 0.26 in breast cancer only families. The average age at diagnosis of breast or ovarian cancer in families with BRCA1 mutations was 41.9 years and significantly lower than in families without mutations (p < 0.05). Mutation carriers and obligate carriers were also found to have cancers at other sites. The probability of being a susceptibility gene carrier, taking into account the complete pedigree information, allows uniform characterisation of all types of families for identifying those in which mutation analysis for BRCA1/2 is warranted. However, prior probabilities calculated using this method can be reduced when the correlation between genotype and phenotype is imperfect. A larger series of families needs to be investigated in this fashion to provide better estimates of the detection rate for different ranges of carrier probabilities.  相似文献   

14.
A total of 226 index cases from high-risk hereditary breast and ovarian cancer families of German origin who had tested negative for small nucleotide alterations in BRCA1 and BRCA2 were analyzed for gross genomic rearrangements at the two gene loci by the multiplex ligation-dependent probe amplification technique. Six large genomic alterations were identified in BRCA1, while no gross rearrangements were found in BRCA2. The six BRCA1 mutations included two novel mutations including a deletion of exon 5, and a deletion comprising exons 5-7, as well as three distinct gross alterations previously reported, including a deletion of exons 1A, 1B, and 2, two duplications of exon 13, and a deletion of exon 17. To understand the mechanisms underlying the genomic rearrangements within the BRCA1 gene and to provide a simple PCR-based assay for further diagnostic applications, we have defined the molecular breakpoints of the deletion/insertion mutations. In all cases, our data point to a mechanism by which illegitimate crossing over between stretches of direct repeat sequences as small as 9 base pairs (bp) and up to 188 bp may have occurred. Overall, we provide evidence that gross rearrangements within the BRCA1 gene locus may be as frequent as 3% in primarily mutation-negative tested high-risk familial breast and ovarian cancer of German ancestry, while large alterations involving the BRCA2 locus do not appear to play a significant role in disease etiology. These findings have important implications for genetic counseling and testing of high-risk breast and ovarian cancer families.  相似文献   

15.
In this study we investigated 45 German breast/ovarian cancer families for germline mutations in the BRCA1 gene. We identified four germline mutations in three breast cancer families and in one breast-ovarian cancer family. among these were one frameshift mutation, one nonsense mutation, one novel splice site mutation, and one missense mutation. The missense mutation was also found in 2.8% of the general population, suggesting that it is not disease associated. The average age of disease onset in those families harbouring causative mutations was between 32.3 and 37.4 years, whereas the family harbouring the missense mutation had an average age of onset of 51.2 years. These findings show that BRCA1 is implicated in a small fraction of breast/ovarian cancer families suggesting the involvement of another susceptibility gene(s).  相似文献   

16.
For genetic counselling of a woman on familial breast cancer, an accurate evaluation of the probability that she carries a germ-line mutation is needed to assist in making decisions about genetic-testing. We used data from eight collaborating centres comprising 618 families (346 breast cancer only, 239 breast or ovarian cancer) recruited as research families or counselled for familial breast cancer, representing a broad range of family structures. Screening was performed in affected women from 618 families for germ-line mutations in BRCA1 and in 176 families for BRCA2 mutations, using different methods including SSCP, CSGE, DGGE, FAMA and PTT analysis followed by direct sequencing. Germ-line BRCA1 mutations were detected in 132 families and BRCA2 mutations in 16 families. The probability of being a carrier of a dominant breast cancer gene was calculated for the screened individual under the established genetic model for breast cancer susceptibility, first, with parameters for age-specific penetrances for breast cancer only [7] and, second, with age-specific penetrances for ovarian cancer in addition [20]. Our results indicate that the estimated probability of carrying a dominant breast cancer gene gives a direct measure of the likelihood of detecting mutations in BRCA1 and BRCA2. For breast/ovarian cancer families, the genetic model according to Narod et al. [20] is preferable for calculating the proband's genetic risk, and gives detection rates that indicate a 50% sensitivity of the gene test. Due to the incomplete BRCA2 screening of the families, we cannot yet draw any conclusions with respect to the breast cancer only families.  相似文献   

17.
INTRODUCTION—A small fraction of breast cancer is the result of germline mutations in the BRCA1 and BRCA2 cancer susceptibility genes. Mutation carriers frequently have a positive family history of breast and ovarian cancer, are often diagnosed at a young age, and may have a higher incidence of double or multiple primary breast tumours than breast cancer patients in general.
OBJECTIVES—To estimate the prevalence and spectrum of BRCA1 and BRCA2 mutations in young Danish patients affected with bilateral or multifocal breast cancer and to determine the relationship of mutation status to family history of cancer.
SUBJECTS—From the files of the Danish Breast Cancer Cooperative Group (DBCG), we selected 119 breast cancer patients diagnosed before the age of 46 years with either bilateral (n=59) or multifocal (n=61) disease.
METHODS—DNA from the subjects was screened for BRCA1 and BRCA2 mutations using single strand conformation analysis (SSCA) and the protein truncation test (PTT). Observed and expected cancer incidence in first degree relatives of the patients was estimated using data from the Danish Cancer Registry.
RESULTS—Twenty four mutation carriers were identified (20%), of whom 13 had a BRCA1 mutation and 11 carried a BRCA2 mutation. Two mutations in BRCA1 were found repeatedly in the material and accounted for seven of the 24 (29%) mutation carriers. The mutation frequency was about equal in patients with bilateral (22%) and multifocal breast cancer (18%). The incidence of breast and ovarian cancer was greatly increased in first degree relatives of BRCA1 and BRCA2 mutation carriers, but to a much lesser degree in relatives of non-carriers. An increased risk of cancer was also noted in brothers of non-carriers.
CONCLUSIONS—A relatively broad spectrum of germline mutations was observed in BRCA1 and BRCA2 and most of the mutations are present in other populations. Our results indicate that a diagnosis of bilateral and multifocal breast cancer is predictive of BRCA1 and BRCA2 mutation status, particularly when combined with information on the patients' age at diagnosis and family history of breast/ovarian cancer.


Keywords: breast cancer; mutations; BRCA1; BRCA2  相似文献   

18.
We have screened index cases from 25 Russian breast/ovarian cancer families for germ‐line mutations in all coding exons of the BRCA1 and BRCA2 genes, using multiplex heteroduplex analysis. In addition we tested 22 patients with breast cancer diagnosed before age 40 without family history and 6 patients with bilateral breast cancer. The frequency of families with germline mutations in BRCA was 16% (4/25). One BRCA1 mutation, 5382insC, was found in three families. The results of present study, and those of a separate study of 19 breast‐ovarian cancer families, suggest that BRCA1 5382insC is a founder mutation in the Russian population. Three BRCA2 mutations were found in patients with breast cancer without family history: two in young patients and one in patients with bilateral breast cancer. Four novel BRCA2 mutations were identified: three frameshift (695insT, 1528del4, 9318del4) and one nonsense (S1099X). © 2002 Wiley‐Liss, Inc.  相似文献   

19.
Han SH  Lee KR  Lee DG  Kim BY  Lee KE  Chung WS 《Clinical genetics》2006,70(6):496-501
To investigate the role of BRCA1 and BRCA2 mutations in Korean patients with sporadic breast cancer, 793 breast cancer patients were analyzed by denaturing high performance liquid chromatography and direct sequencing. The 793 breast cancer patients enrolled in this study had no family history of affected first- or second-degree relatives with breast and/or ovarian cancer. Seventy-nine different sequence variations were identified, of which 34 were novel. Fifteen deleterious mutations were detected in 20 out of 793 patients (2.5%): 11 frameshift mutations and 4 nonsense mutations (seven in BRCA1 and eight in BRCA2), and no recurrent or founder mutations were observed in BRCA mutation screening. However, three mutations (K467X, 3972delTGAG, and R2494X in BRCA2) were identified in other studies of the Korean population. Of 793 patients, the clinicopathological information was obtained in 135 patients, who included 20 deleterious mutation-positive and 115 deleterious mutation-negative groups. The median age at diagnosis, histologic type, histologic grade and T stage did not show statistically significant difference between these two groups. BRCA-mutation-associated tumors showed lower estrogen receptor, progesterone receptor, and HER-2/neu but higher p53 expression. Although poor prognostic features were noted in BRCA-associated tumors, we did not find statistically significant differences. The present study will be helpful in the evaluation of the need for the genetic screening of germline BRCA mutations and reliable genetic counseling for sporadic breast cancer patients.  相似文献   

20.
The 185delAG and 5382insC founder mutations account for the majority of mutations identified in BRCA1 in Ashkenazi Jewish breast and breast-ovarian cancer families. Few non-founder BRCA1 mutations have been identified to date in these families. We initially screened a panel of 245 Ashkenazi Jewish breast-ovarian cancer families with an affected proband and at least one other case of breast or ovarian cancer for founder mutations in BRCA1 and BRCA2. Founder mutations were identified in 85 families (185delAG in 44 families, 5382insC in 16 families, and the BRCA2 6174delT in 25 families). The 160 negative families were then screened for the entire BRCA1 gene by a combination of DGGE and PTT. We identified one novel frameshift mutation in BRCA1 in exon 14 (4572del22) that truncated the protein at codon 1485. The family contained three cases of early-onset ovarian cancer (41 years, 43 years, and 52 years) and one case of breast cancer (at age 54 years subsequent to an ovarian cancer). In addition, three missense variants of unknown significance (exon 11 C3832T (P1238L), exon 15 G4654T (S1512I), and exon 15 G4755A (D1546N)) were found in single families. These missense variants have been previously identified in other families [BIC Database] and are considered to be "unclassified variants, favoring polymorphism." Non-founder BRCA1 mutations are rare in Ashkenazi Jewish breast/ovarian cancer families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号