首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of carrier using poly(palmitoyl-l-hydroxyproline ester) (PPH) [IUPAC name: poly((1-palmitoyl-4,2-pyrrolidinediyl)carbonyloxy)], a poly(amino acid) is described. The polymer is synthesized by conventional method and the microspheres were prepared by solvent evaporation technique for application in drug delivery system. Microspheres with different sizes were prepared by varying certain formulation and technological parameters and their distributive stabilities under physiological conditions were studied. The microspheres were characterized by DSC, optical and laser particle size analysis. A model drug, rifampicin (antituberculosis drug) was entrapped in the microspheres and the in vitro release studies were performed in pH 7.4 and pH 1.5 buffer media. The pH value seemed to have some influence on the dissolution rate of the rifampicin-containing microspheres. Dissolution experiments using rifampicin indicated the possibility of using PPH microspheres with other hydrophobic drugs.  相似文献   

2.
Poly(hydroxy acids) so far have been examined for use in drug delivery in limited number, while the advantageous use of the polymers has been recognized due to their biodegradability and biocompatibility. Homo- and copolymers of lactic acid and glycolic acid have been studied in drug delivery by many workers, while homo- and copolymers of epsilon-caprolactone have been studied by only one group of workers. Although poly-hydroxybutyric acid had been found to be a naturally occurring polymer, examination as to the use of the polymer in drug delivery is rather recent and reports are still limited. In the present article, the use of poly(hydroxy acids) including homo- and copolymers of lactic acid and glycolic acid, polycaprolactone, and poly-beta-hydroxybutyric acid in drug delivery is reviewed. Physicochemical properties, biodegradability, and biocompatibility of the polymers, and evaluations in vitro and in vivo of specific dosage forms using the polymers, are included. The most recent work in our laboratories on the use of polyactic acid and poly-beta-hydroxybutyric acid is also included.  相似文献   

3.
Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.  相似文献   

4.
Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery   总被引:17,自引:0,他引:17  
Block copolymer micelles encapsulate water insoluble drugs by chemical and physical means, and they may target therapeutics to their site of action in a passive or active way. In this review, we focus on micelles self-assembled from poly(ethylene oxide)-block-poly(L-amino acid) (PEO-b-PLAA). A common theme in these studies is the chemical modification of the core-forming PLAA block used to adjust and optimize the properties of PEO-b-PLAA micelles for drug delivery. Micelle-forming block copolymer-drug conjugates, micellar nanocontainers and polyion complex micelles have been obtained that mimic functional aspects of biological carriers, namely, lipoproteins and viruses. PEO-b-PLAA micelles may be advantageous in terms of safety, stability, and scale-up.  相似文献   

5.
Amphiphilic block copolymers for drug delivery   总被引:18,自引:0,他引:18  
Amphiphilic block copolymers (ABCs) have been used extensively in pharmaceutical applications ranging from sustained-release technologies to gene delivery. The utility of ABCs for delivery of therapeutic agents results from their unique chemical composition, which is characterized by a hydrophilic block that is chemically tethered to a hydrophobic block. In aqueous solution, polymeric micelles are formed via the association of ABCs into nanoscopic core/shell structures at or above the critical micelle concentration. Upon micellization, the hydrophobic core regions serve as reservoirs for hydrophobic drugs, which may be loaded by chemical, physical, or electrostatic means, depending on the specific functionalities of the core-forming block and the solubilizate. Although the Pluronics, composed of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), are the most widely studied ABC system, copolymers containing poly(L-amino acid) and poly(ester) hydrophobic blocks have also shown great promise in delivery applications. Because each ABC has unique advantages with respect to drug delivery, it may be possible to choose appropriate block copolymers for specific purposes, such as prolonging circulation time, introduction of targeting moieties, and modification of the drug-release profile. ABCs have been used for numerous pharmaceutical applications including drug solubilization/stabilization, alteration of the pharmacokinetic profile of encapsulated substances, and suppression of multidrug resistance. The purpose of this minireview is to provide a concise, yet detailed, introduction to the use of ABCs and polymeric micelles as delivery agents as well as to highlight current and past work in this area.  相似文献   

6.
Poly(methyl methacrylate) (PMMA) is one of the most widely explored biomedical materials because of its biocompatibility, and recent publications have shown an increasing interest in its applications as a drug carrier. PMMA-based particulate carriers (PMMA(P)) can be prepared either by polymerization methods or from pre-formed polymer-based techniques. Potential biomedical application of these particles includes their use as adjuvant for vaccines and carrier of many drugs as antibiotics and antioxidants via different routes of administration. Release of drugs from PMMA(P) occurs typically in a biphasic way with an incomplete drug release. To improve release profiles, recent strategies are focusing on increasing polymer hydrophilicity by synthesizing functionalized PMMA microspheres or by formulating PMMA composites with hydrophilic polymers. This review examines the current status of preparation techniques, drug release kinetics, biomedical applications and toxicity of these nano/micro PMMA-based particulate carriers.  相似文献   

7.
Nonionic surfactant vesicles were prepared using Span 60, cholesterol and dicetyl phosphate. The prepared multilamellar vesicles (MLVs) were coated by interfacial polymerization technique using p-phthaloyl dichloride and L-lysine. The formation of the polymeric coat was confirmed by optical microscopic and transmission electron microscopic studies. The prepared, plain and polymer-coated MLVs were studied for their size, shape, encapsulation efficiency, in vitro release profile and effect of osmotic shock on vesicle. The results observed showed that the polymer-coated MLVs were stable under various osmotic conditions. In vivo studies were carried out on albino rats. The half-life and area under curve were found to be high in the case of polymer-coated MLVs as compared to plain MLVs and plain drug solution. In vivo studies using inflammed rat model also indicated that the polymer-coated MLVs were more stable and could release the drug in a controlled fashion as compared to plain MLVs.  相似文献   

8.
Potential interactions between model drugs (benzoates, diltiazem, cyanocobalamin, dextrans) and a thermoresponsive poly(N-isopropylacrylamide) (PNIPA) hydrogel and corresponding linear polymer were investigated. The influence of the drugs on the equilibrium swelling level of the hydrogel was examined and drug-hydrogel binding isotherms were established where appropriate. Differential scanning calorimetry (DSC) was used to investigate the influence of the drugs on the lower critical solution temperature (LCST) of the linear polymer solution. Phase solubility studies were preformed to investigate binding. Drug-polymer co-precipitated blends were also prepared and analysed by X-ray diffraction (XRD), thermal analysis and Fourier transform infrared (FT-IR) spectroscopy. Hydrophobic binding was apparent between PNIPA and the aromatic ring/ester side chain of the unionised benzoate. The effect of this binding on hydrogel swelling was clarified in terms of the influence of the binding on the LCST of the system. The drug release rates of the benzoates from the hydrogel were shown to be dependent on drug binding properties. Ionisation of the benzoate prevented such hydrophobic binding, with a weaker salting out effect apparent with sodium benzoate. Significant interactions between diltiazem, cyanocobalamin (Vitamin B12) or the dextrans and PNIPA were not apparent. High concentrations of the hydrophilic drugs did, however, interfere with the magnitude of hydrogel equilibrium swelling. Hydrophobic binding, the salting out effect and the influence of the drugs on hydrogel swelling under non-sink conditions were therefore shown to be important effects which depended on the chemical nature of the drug present.  相似文献   

9.
Fast cytoplasmic drug delivery can overcome cancer cells' drug resistance and thus have an enhanced therapeutic efficacy. Such a drug delivery regime requires drug carriers capable of entering cancer cells, localizing and rapidly releasing the drug into endosomes/lysosomes, and subsequently disrupting their membranes to release the drug into the cytosol. We herein report a low-toxic and degradable poly(β-amino ester)-graft-polyethylene glycol (BAE-PEG) co-polymer forming pH-responsive nanoparticles capable of cytoplasmic drug delivery. BAE-PEG was synthesized by condensation polymerization of diacrylate and piperazine in the presence of a PEG-diacrylate macromonomer. BAE-PEG with 2% or 5% PEG side chains formed micelles (nanoparticles) with diameters of about 100 nm. The BAE-PEG nanoparticles were shown to rapidly enter cancer cells, localize in their endosomes/lysosomes, and subsequently disrupt them to release the drugs into the cytosol. Camptothecin loaded in the nanoparticles had a higher cytotoxicity to SKOV-3 ovarian cancer cells than free camptothecin.  相似文献   

10.
11.
Thermosensitive poly(organophosphazenes) were synthesized for a controlled release of hydrophilic polymeric model drugs such as dextran and albumin in this study. The solutions of the present polymers bearing both hydrophobic side groups of L-isoleucine ethyl ester (IleOEt) and hydrophilic groups of alpha-amino-omega-methoxy-PEG (Mw 550) (AMPEG550) exhibited reversible sol-gel transition behaviors with changes of temperature. Viscometric measurement indicated that the thermosensitive hydrogels with good strength could be formed from the solutions in the range of the concentrations of 7-15 wt% around body temperature. For increasing their biodegradabililites, depsipeptides of ethyl-2-(O-glycyl)lactate (GlyLacOEt) were also introduced to the polymer, showing enhanced degradation of hydrogels. In vitro release behaviors of hydrophilic FITC-dextran (Mw 71,600) and human serum albumin from these polymer hydrogels were sustained for about 2 weeks while those from poloxamer (Pluronic F-127) hydrogel showed a distinct initial burst. The release of FITC-dextran exhibited concentration-dependent behavior ranging from 7 to 15 wt% of the polymer solution while it was almost independent of the concentration of FITC-dextran.  相似文献   

12.
Mucoadhesion is a topic of current interest in the design of drug delivery systems. Mucoadhesive micro-spheres exhibit a prolonged residence time at the site of application or absorption and facilitate an intimate contact with the underlying absorption surface and thus contribute to improved and/or better therapeutic performance of drugs. In recent years such mucoadhesive microspheres have been developed for oral, buccal, nasal, ocular, rectal and vaginal routes for either systemic or local effects. The objective of this article is review the principles underlying the development and evaluation of mucoadhesive microspheres and the research work carried out on these systems.  相似文献   

13.
Controlled drug delivery systems represent advanced systems that can be tightly modulated by stimuli in order to treat diseases in which sustained drug release is undesirable. Among the many different stimuli-sensitive delivery systems, temperature-sensitive drug delivery systems offer great potential over their counterparts due to their versatility in design, tunability of phase transition temperatures, passive targeting ability and in situ phase transitions. Thus, thermosensitive drug delivery systems can overcome many of the hurdles of conventional drug delivery systems in order to increase drug efficacies, drug targeting and decrease drug toxicities. In an effort to further control existing temperature-responsive systems, current innovative applications have combined temperature with other stimuli such as pH and light. The result has been the development of highly sophisticated systems, which demonstrate exquisite control over drug release and represent huge advances in biomedical research.  相似文献   

14.
Efficient drug delivery and administration are needed to realize the full potential of molecular therapeutics. Integrated microsystems that incorporate extremely fast sensory and actuation capabilities can fulfill this need for efficient drug delivery tools. Photolithographic technologies borrowed from the semiconductor industry enable mass production of such microsystems. Rapid prototyping allows for the quick development of customized devices that would accommodate for diverse therapeutic requirements. This paper reviews the capabilities of existing microfabrication and their applications in controlled drug delivery microsystems. The next generation of drug delivery systems--fully integrated and self-regulating--would not only improve drug administration, but also revolutionize the health-care industry.  相似文献   

15.
Controlled drug delivery systems represent advanced systems that can be tightly modulated by stimuli in order to treat diseases in which sustained drug release is undesirable. Among the many different stimuli-sensitive delivery systems, temperature-sensitive drug delivery systems offer great potential over their counterparts due to their versatility in design, tunability of phase transition temperatures, passive targeting ability and in situ phase transitions. Thus, thermosensitive drug delivery systems can overcome many of the hurdles of conventional drug delivery systems in order to increase drug efficacies, drug targeting and decrease drug toxicities. In an effort to further control existing temperature-responsive systems, current innovative applications have combined temperature with other stimuli such as pH and light. The result has been the development of highly sophisticated systems, which demonstrate exquisite control over drug release and represent huge advances in biomedical research.  相似文献   

16.
Temperature- and pH-sensitive hydrogels, based on N-isopropylacrylamide (NiPAAm) and itaconic acid (IA), were synthesized by free radical crosslinking copolymerization in the presence of lipase from Candida rugosa. The samples were characterized for their sensitivity to the changes of external conditions and the ability to control the release of a hydrophilic model protein, lipase. These hydrogels were highly responsive to temperature and pH, at constant ionic strength. Parameters, such as the crosslinking degree and non-ionic/ionic (NiPAAm/IA) ratio, were found to impact the hydrogel structure, mechanical properties, morphology and swelling kinetics at different pH and temperatures. The hydrogels demonstrated protein loading efficiency as high as 95 wt%. Release studies of a hydrophilic model protein at a physiological temperature of 37 °C were performed at different pH values. High dependence of lipase release kinetics on hydrogel structure and the environmental pH was found, showing generally low release rates, lower in acidic media (pH 2.20) and higher at higher pHs (6.80). Lipase activity was retained even after treatment conditions that would provoke denaturation of the enzyme if it was not protected in the gel. The obtained hydrogels were found suitable for releasing therapeutic proteins in a controlled manner at specific sites in gastrointestinal tract.  相似文献   

17.
Erythromycin (EM), an antibiotic that has been used for infectious diseases, is now gaining attention because of its novel anti-inflammatory effects. We explore a dendrimer-EM nanodevice for sustained treatment of orthopedic inflammation. To sustain pharmacological activity, EM was conjugated to poly(amidoamine) dendrimer (PAMAM) through an ester bond. A bifunctional PAMAM dendrimer was prepared having neutral hydroxy and reactive amine groups on the surface and was reacted with EM prodrug (EM-2'-glutarate). The cytotoxicity, efficacy and antibacterial properties were evaluated on macrophages (RAW 264.7 cells) associated with periprosthetic inflammation. The conjugate is noncytotoxic and showed significant reduction of nitrite level (by 42% as compared with untreated cells and free EM). The zone of inhibition of the conjugate on bacterial growth at different concentrations showed similar activity compared to free EM. The anti-inflammatory properties of EM combined with the targeting potential of the dendrimer can lead to sustained and targeted intracellular delivery. FROM THE CLINICAL EDITOR: In this study, a specific dendrimer-erythromycin conjugate nanodevice is investigated for the treatment of periprosthetic inflammation. The anti-inflammatory properties of erythromycin combined with the targeting potential of the dendrimer can lead to sustained and targeted intracellular delivery.  相似文献   

18.
Solid lipid nanoparticles (SLN) are a colloidal carrier system for controlled drug delivery. The lipophilic model drugs tetracaine and etomidate were incorporated to study the maximum drug loading, entrapment efficacy, effect of drug incorporation on SLN size, zeta potential (charge) and long-term physical stability. Drug loads of up to 10% could be achieved whilst simultaneously maintaining a physically stable nanoparticle dispersion. Incorporation of drugs showed no or little effect on particle size and zeta potential compared to drug-free SLN. The optimized production parameters previously established for drug-free SLN dispersions can therefore be transferred to drug-loaded systems to facilitate product development.  相似文献   

19.
The process of mucoadhesion involving a polymeric drug delivery platform is a complex one that includes wetting, adsorption and interpenetration of polymer chains amongst various other processes. The success and degree of mucoadhesion bonding is influenced by various polymer-based properties such as the degree of cross-linking, chain length and the presence of various functional groupings. The attractiveness of mucosal-targeted controlled drug delivery of active pharmaceutical ingredients (APIs), has led formulation scientists to engineer numerous polymeric systems for such tasks. Formulation scientists have at their disposal a range of in vitro and in vivo mucoadhesion testing setups in order to select candidate adhesive drug delivery platforms. As such, mucoadhesive systems have found wide use throughout many mucosal covered organelles for API delivery for local or systemic effect. Evolution of such mucoadhesive formulations has transgressed from first-generation charged hydrophilic polymer networks to more specific second-generation systems based on lectin, thiol and various other adhesive functional groups.  相似文献   

20.
The objective of this study was to investigate the in vitro drug (diltiazem hydrochloride and buserelin acetate) release from different in situ forming biodegradable drug delivery systems, namely polymer solutions (in situ implants) and in situ microparticle (ISM) systems. The drug release from ISM systems [poly(d,l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA)-solution dispersed into an external oil phase] was investigated as a function of the type of solvent and polymer, polymer concentration and internal polymer phase:external oil phase ratio and was compared to the drug release from in situ implant systems and microparticles prepared by conventional methods (solvent evaporation or film grinding). Upon contact with the release medium, the internal polymer phase of the ISM system solidified and formed microparticles. The initial drug release from ISM systems decreased with increasing polymer concentration and decreasing polymer phase:external oil phase ratio. The type of biocompatible solvent also affected the drug release. It decreased in the rank order DMSO>NMP>2-pyrrolidone. In contrast to the release of the low molecular weight diltiazem hydrochloride, the peptide release (buserelin acetate) was strongly dependent on the polymer degradation/erosion. One advantage of the ISM system when compared to in situ implant systems was the significantly reduced burst effect because of the presence of an external oil phase. ISM systems resulted in drug release profiles comparable to the drug release of microparticles prepared by the solvent evaporation method. Therefore, the ISM systems are an attractive alternative to existing complicated microencapsulation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号