首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In western countries, Alzheimer's disease (AD) is the most common form of dementia. In fact, if left uncurbed, the economic cost of caring for AD patients could consume the entire gross national product of the USA by the middle of this century. Until recently, the only available drugs for this condition were cholinergic treatments, which symptomatically enhance cognitive state to some degree, but they were not neuroprotective. In fact, many potential neuroprotective drugs tested in clinical trials failed because they were poorly tolerated. However, after our discovery of its clinically-tolerated mechanism of action, one neuroprotective drug, memantine, was recently approved by the European Union and the U.S. Food and Drug Administration (FDA) for the treatment of Alzheimer's disease. Recent phase 3 clinical trials have shown that memantine is effective in the treatment of both mild and moderate-to-severe Alzheimer's disease and possibly vascular dementia (multi-infarct dementia). Here we review the molecular mechanism of memantine's action and also the basis for the drug's use in these neurological diseases, which are mediated at least in part by excitotoxicity. Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. Excitotoxic neuronal cell death is mediated in part by overactivation of N-methyl-d-aspartate (NMDA)-type glutamate receptors, which results in excessive Ca2+ influx through the receptor's associated ion channel. Physiological NMDA receptor activity, however, is also essential for normal neuronal function. This means that potential neuroprotective agents that block virtually all NMDA receptor activity will very likely have unacceptable clinical side effects. For this reason many previous NMDA receptor antagonists have disappointingly failed advanced clinical trials for a number of neurodegenerative disorders. In contrast, studies in our laboratory have shown that the adamantane derivative, memantine, preferentially blocks excessive NMDA receptor activity without disrupting normal activity. Memantine does this through its action as an uncompetitive, low-affinity, open-channel blocker; it enters the receptor-associated ion channel preferentially when it is excessively open, and, most importantly, its off-rate is relatively fast so that it does not substantially accumulate in the channel to interfere with normal synaptic transmission. Clinical use has corroborated the prediction that memantine is thus well tolerated. Besides Alzheimer's disease, memantine is currently in trials for additional neurological disorders, including other forms of dementia, depression, glaucoma, and severe neuropathic pain. A series of second-generation memantine derivatives are currently in development and may prove to have even greater neuroprotective properties than memantine. These second-generation drugs take advantage of the fact that the NMDA receptor has other modulatory sites in addition to its ion channel that potentially could also be used for safe but effective clinical intervention.  相似文献   

2.
Excessive activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype is considered a relevant initial step underlying different neurodegenerative diseases. Recently, with the approval of memantine to treat Alzheimer dementia, NMDA receptors have regained clinical interest. Accordingly, the development and validation of NMDA receptor antagonists is being reconsidered. We recently identified a family of trialkylglycines that act as channel blockers of the NMDA receptor. Their neuroprotective activity against excitotoxic insults remains elusive. To address this issue, we first characterized the contribution of glutamate receptor sub-types to hippocampal death in culture as a function of days in culture in vitro (DIV). Whereas at 7 DIV neither NMDA nor glutamate produced a significant neuronal death, at 14 and 21 DIV, NMDA produced the death of 40% of the neurons exposed to this receptor agonist that was fully protected by MK-801. Similar results were obtained for l-glutamate at 14 DIV. In contrast, when neurons at 21 DIV were used, glutamate killed 51.1±4.9% of the neuronal population. This neuronal death was only partially prevented by MK-801, and fully abrogated by a combination of MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glucose deprivation injured 37.1±9.2% of the neurons through a mechanism sensitive to MK-801. The family of recently identified N-alkylglycines tested protected neurons against NMDA and glucose-deprivation toxicity, but not against glutamate toxicity. Noteworthy, N-alkylglicines with a moderate protection against NMDA-induced toxicity strongly protected from β-amyloid toxicity. Collectively, these findings imply both NMDA and non-NMDA receptors in excitotoxicity of hippocampal neurons, and suggest that blockade of NMDA receptors alone may not suffice to efficiently abrogate neurodegeneration.  相似文献   

3.
Glutamate mediates its effects in mammals through both ionotropic and metabotropic receptors. Antagonists of ionotropic N-methyl-d-aspartate (NMDA) glutamate receptors elicit neuroprotective and neurotropic effects that have been attributed to Ca2+ block through the membrane ion channel. Nonetheless, molecular and biochemical effects of NMDA receptor antagonism on other glutamate receptor subunits remain poorly understood. We investigated the effects of acute administration of the noncompetitive NMDA receptor antagonist MK-801 on the mRNA expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and metabotropic glutamate receptor (mGluR) subunits to determine the contribution of different glutamate receptors in response to blockade of NMDA receptor channels. In situ hybridization to rat brain sections revealed that AMPA receptor subunits GluR3 and GluR4, and mGluR3 were modestly but significantly decreased ∼10–20%, 8 h following 5 mg/kg MK-801 administration. A time course and dose response study revealed that the effect on mGluR3 was reversed by 24 h and occurred significantly at a dose range from 1 to 5 mg/kg. These results indicate that selected AMPA and mGluR subunit mRNAs respond at the RNA level to the blockade of NMDA receptors.  相似文献   

4.
Memantine     
Alzheimer's disease (AD) is the most common form of dementia in Western countries. The benefits presently observed with the approved treatments are mainly symptomatic without clear evidence of neuroprotection. N-methyl-D-aspartate (NMDA) receptor antagonists have very extensive therapeutic potential in several central nervous system disorders and can be used as neuroprotective treatment in chronic neurodegenerative diseases and as symptomatic treatment in other neurologic diseases as epilepsy. Memantine, an antagonist of the glutamatergic NMDA receptor, has been recently approved for the treatment of advanced AD. Due to its action mechanism, memantine is considered a neuroprotective drug, whose utility has been demonstrated in preclinical studies, and a useful symptomatic treatment for AD and vascular dementia. We will review both aspects as well as the basic mechanisms mediating glutamatergic neurodegeneration and the implication of glutamate in cognition.  相似文献   

5.
Alzheimer's disease (AD) is the most common form of dementia in occidental countries. Currently approved treatments for AD provide mainly symptomatic benefits without clear evidence of neuroprotection. N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in several central nervous system disorders, including neuroprotective treatment in chronic neurodegenerative diseases, and symptomatic treatment in other neurologic diseases. Memantine, an NMDA antagonist, has been recently approved for the treatment of advanced AD. Due to its mechanism of action, memantine is considered a neuroprotective drug, whose utility has been demonstrated in preclinical studies. In addition, memantine is a useful symptomatic treatment for AD and vascular dementia. This paper reviews both aspects of memantine as well as some basic mechanisms mediating cognition and glutamatergic neurodegeneration.  相似文献   

6.
Memantine is an NMDA receptor antagonist with moderate affinity, which results in neuroprotective potential due to reducing overstimulation caused by glutamate (excitotoxicity) and simultaneous lack of adverse events (especially psychosis) typical for an antagonist with higher affinity like phencyclidine. In randomized, controlled studies it has been shown that memantine is beneficial in the treatment of moderate to severe dementia of Alzheimer's type and it became the very first compound to be registered for this purpose both in Europe (including Poland) and in the United States. Further investigation require usefulness of memantine in less advanced stages of Alzheimer's disease as well as other types of dementia especially vascular; promising results are shown in dual therapy: memantine + cholinesterase inhibitor.  相似文献   

7.
Memantine, a partial antagonist of N-methyl-D-aspartate receptor (NMDAR), approved for moderate to severe Alzheimer's disease (AD) treatment within the U.S. and Europe under brand name Namenda (Forest), Axura and Akatinol (Merz), and Ebixa and Abixa (Lundbeck), may have potential in alleviating additional neurological conditions, such as vascular dementia (VD) and Parkinson's disease (PD). In various animal models, memantine has been reported to be a neuroprotective agent that positively impacts both neurodegenerative and vascular processes. While excessive levels of glutamate result in neurotoxicity, in part through the over-activation of NMDARs, memantine-as a partial NMDAR antagonist, blocks the NMDA glutamate receptors to normalize the glutamatergic system and ameliorate cognitive and memory deficits. The key to memantine's therapeutic action lies in its uncompetitive binding to the NMDAR through which low affinity and rapid off-rate kinetics of memantine at the level of the NMDAR-channel preserves the physiological function of the receptor, underpinning memantine's tolerability and low adverse event profile. As the biochemical pathways evoked by NMDAR antagonism also play a role in PD and since no other drug is sufficiently effective to substitute for the first-line treatment of L-dopa despite its side effects, memantine may be useful in PD treatment with possibly fewer side effects. In spite of the relative modest nature of its adverse effects, memantine has been shown to provide only a moderate decrease in clinical deterioration in AD and VD, and hence efforts are being undertaken in the design of new and more potent memantine-based drugs to hopefully provide greater efficacy.  相似文献   

8.
Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. The extrasynaptic hypothesis is built in part on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons, we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a nonsubstrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase, which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate.  相似文献   

9.
Antagonising the NMDA (N-methyl-d-aspartate) receptor complex is a widely hypothesised therapeutic approach in several neurodegenerative conditions, such as Alzheimer’s disease. Memantine, a moderate affinity uncompetitive NMDA receptor antagonist, has been in clinical use for several years and numerous experimental data support its NMDA receptor blocking effects. It has recently been reported in transfected HEK293T cells that physiological concentrations of Mg2+ may impart partial NMDA receptor subtype selectivity and weaken the overall inhibitory actions of memantine in NMDA receptor-mediated cellular events. In the present study, we set out to investigate the effect of intravenously applied memantine on iontophoresed NMDA-evoked firing of hippocampal CA1 neurons using in vivo conditions. Cumulative doses of memantine in the rat (4, 8 and 16 mg/kg i.v.) caused the firing rate to decrease in a dose-dependent manner to 77 ± 7, 58 ± 8 and 34 ± 12% of control, respectively, while saline application had no significant effect. We show that therapeutic doses of memantine are able to antagonize NMDA receptor-mediated activity in the principal cells of the hippocampus in vivo, i.e. in the presence of physiological concentrations of Mg2+.  相似文献   

10.
Alterations in inhibitory and excitatory neurotransmission play a central role in the etiology of epilepsy, with overstimulation of glutamate receptors influencing epileptic activity and corresponding neuronal damage. N‐methyl‐D‐aspartate (NMDA) receptors, which belong to a class of ionotropic glutamate receptors, play a primary role in this process. This study compared the anticonvulsant properties of two NMDA receptor channel blockers, memantine and 1‐phenylcyclohexylamine (IEM‐1921), in a pentylenetetrazole (PTZ) model of seizures in rats and investigated their potencies in preventing PTZ‐induced morphological changes in the brain. The anticonvulsant properties of IEM‐1921 (5 mg/kg) were more pronounced than those of memantine at the same dose. IEM‐1921 and memantine decreased the duration of convulsions by 82% and 37%, respectively. Both compounds were relatively effective at preventing the tonic component of seizures but not myoclonic seizures. Memantine significantly reduced the lethality caused by PTZ‐induced seizures from 42% to 11%, and all animals pretreated with IEM‐1921 survived. Morphological examination of the rat brain 24 hr after administration of PTZ revealed alterations in the morphology of 20–25% of neurons in the neocortex and the hippocampus, potentially induced by excessive glutamate. The expression of the excitatory amino acid transporter 1 protein was increased in the hippocampus of the PTZ‐treated rats. However, dark neurons did not express caspase‐3 and were immunopositive for the neuronal nuclear antigen protein, indicating that these neurons were alive. Both NMDA antagonists prevented neuronal abnormalities in the brain. These results suggest that NMDA receptor channel blockers might be considered possible neuroprotective agents for prolonged seizures or status epilepticus leading to neuronal damage. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in this process because of their ability to gate high levels of Ca(2+) influx. These receptors have been extensively studied for their crucial roles in synaptic plasticity that underlies learning and memory but also in neurotoxicity occurring during acute brain injuries and neurodegenerative diseases. For one decade, several studies provided evidence that NMDA receptor activation could have distinct consequences on neuronal fate, depending on their location. Synaptic NMDA receptor activation is neuroprotective, whereas extrasynaptic NMDA receptors trigger neuronal death and/or neurodegenerative processes. Recent data suggest that chronic activation of extrasynaptic NMDA receptors leads to a sustained neuronal amyloid-β release and could be involved in the pathogenesis of Alzheimer's disease. Thus, as for other neurological diseases, therapeutic targeting of extrasynaptic NMDA receptors could be a promising strategy. Following this concept, memantine, unlike other NMDA receptor antagonists was shown, to preferentially target the extrasynaptic NMDA receptor signaling pathways, while relatively sparing normal synaptic activity. This molecular mechanism could therefore explain why memantine is, to date, the only clinically approved NMDA receptor antagonist for the treatment of dementia.  相似文献   

12.
Alzheimer's disease (AD) is linked to cholinergic deficiency and the overactivation of glutamate receptors. The acetylcholinesterase (AChE) inhibition treatment approach has produced the most encouraging results in clinical practice, and memantine, a moderate antagonist of N-methyl-D-aspartate (NMDA) receptors, has been approved for treating AD. However, AChE inhibitors have limited success as they only improve memory in mild dementia but cannot stop the process of neurodegeneration; while memantine possesses neuroprotective effects only with a little ability in memory enhancement. There has been a major rush among neuroscience research institutions and pharmaceutical firms worldwide to search for safer and more effective therapeutic agents for AD. The novel dimers, derived from tacrine and the fragment of huperzine A (HA'), have been demonstrated to be potent and selective reversible inhibitors of AChE. Bis(7)-tacrine, bis(12)-hupyridone (E12E) and HA'(10)-tacrine, are representatives of three series of novel dimers. According to the preclinical studies, these compounds have been shown to have low toxicity and high efficacy for improving cognitive deficits in several animal models. More interestingly, bis(7)-tacrine, similar to memantine, prevents glutamate-induced neurotoxicity by moderately blocking glutamate receptor NMDA subtype. Furthermore, bis(7)-tacrine, as well as E12E, possesses multiple neuroprotective effects in vitro and in vivo. Taking together, these dimeric AChE inhibitors, especially bis(7)-tacrine, E12E and HA'(10)-tacrine, may provide beneficial effects in AD and other neurodegenerative diseases.  相似文献   

13.
Low doses of N-methyl-d-aspartate (NMDA)-type glutamate receptor antagonists induce morphological alterations in neurons of the cingulate gyrus and retrosplenial cortex of the rat. Neuronal cell death may result at higher doses. These effects are a major concern with regard to the introduction of new NMDA receptor antagonists into clinical trials. Amantadine is an uncompetitive NMDA receptor antagonist, which has been in clinical use for many years. In the present study we have looked for possible morphological alterations like necrosis in postmortem human brain tissue of patients previously treated with amantadine. Formalin-fixed tissue samples were taken from the hippocampus, cingulate gyrus, and retrosplenial cortex of 8 patients on previous amantadine medication and of 11 controls. Histopathological examination of sections was performed blind. All brains except one revealed either nonspecific age-related or cerebrovascular changes or other neurodegenerative disorders including Alzheimer’s, Parkinson’s or Lewy body disease. In conclusion, histopathological examination of the hippocampus, retrosplenial cortex, and cingulate gyrus of human brain did not reveal changes suggested to be specific for previous amantadine treatment. Received: 28 September 1998 / Revised: 12 January 1999 / Accepted: 9 February 1999  相似文献   

14.
Experimental and clinical studies suggest that the low‐affinity N‐methyl‐d ‐aspartate (NMDA) receptor open‐channel blockers Mg2+ and memantine are effective in reducing trigeminal nociceptive activation. The aim of this study was to investigate the apparent effectiveness of these channel blockers using a model of trigeminal activation in vivo. Rats were anaesthetized before electrically stimulating the dura mater adjacent the middle meningeal artery. Neurons responding to stimulation were recorded extracellularly using electrophysiological methods. l ‐Glutamate or NMDA, and Mg2+, memantine, or sodium controls were applied locally using microiontophoresis. Microiontophoretic application of Mg2+ or memantine into the trigeminocervical complex inhibited mechanically and electrically stimulated craniovascular afferents,  and l ‐glutamate or NMDA‐evoked neuronal activity at the second‐order trigeminal synapse of craniovascular afferents. By contrast, intravenous administration of MgSO4 (100 mg/kg) or memantine (10 mg/kg) did not significantly affect electrically stimulated afferent‐evoked activity within the trigeminocervical complex. The Mg2+ and memantine concentrations achieved after systemic administration may not effectively inhibit activation of the trigeminocervical complex, perhaps providing an explanation for the relatively poor efficacy of these NMDA receptor open‐channel blockers for headache treatment in clinical studies. Nevertheless, the present results suggest blocking of NMDA‐receptor open channels inhibits nociceptive activation of the trigeminocervical complex. Further exploration of such channel blockers as a therapeutic strategy for primary head pain is warranted.  相似文献   

15.
From the therapeutic point of view, the real challenge is not only to improve the symptoms, but to interfere with the pathomechanism of the disease. That is why a considerable interest has recently been devoted to developing glutamate receptors antagonists (mainly of the NMDA type) for acute and chronic neurodegeneration. Developing such a treatment that slows down the progression of the disease is extremely time and costs consuming. At present there is consensus that competitive NMDA receptor antagonists will not find therapeutic applications, in contrast to agents acting at the glycineB site, or channel blockers. Recently, at least seven glycineB antagonists (e.g. ACEA 1021, GV-150526, GV-196771A, ZD-9379, MRZ 2/576) and over 10 NMDA channel blockers (e.g. Remacemide, ARL-15896AR, HU-211, ADCI, CNS-5161, Neramexane-MRZ 2/579) have been under development, most of them as neuroprotective agents for acute (stroke, trauma) or chronic insult (e.g. Huntington’s or Alzheimer’s disease). Several substances selective for NR2B NMDA receptor subtypes such as: eliprodil, CP-101606 and Ro-25-6981 have been claimed to have a good neuroprotective profile. This presentation is an attempt to critically review preclinical and scarce clinical experience in the development of new NMDA receptor antagonists as neuroprotective agents according to the following scheme: rational, preclinical findings in animal models and finally clinical experience if available. The general impression is that NMDA receptor antagonists may find use in chronic type of neurodegeneration while AMPA antagonists seems to show better promise in acute insult.  相似文献   

16.
Previous experiments on primary cultures of hippocampal/cortical neurones revealed that the block and unblock of N-Methyl-d-Aspartate (NMDA) receptor channels by memantine showed double exponential kinetics and that the offset kinetics following a voltage-step were much faster than following a concentration jump. There are, however, two major problems when using such cultured primary neurones for these experiments (1) the almost certain expression of heterogeneous NMDA receptor subunits which could underlie double exponential kinetics due to different potencies at receptor subtypes and (2) slow space- and concentration-clamp due to neuronal morphology which could mask even faster kinetics. Therefore, we performed similar experiments with Xenopus oocytes exclusively expressing one NMDA receptor type (NR1a/2A) at high levels which allowed recordings from membrane patches with large currents. The use of inside-out patches for voltage-step and outside-out patches in combination with a piezo driven fast application system largely negated potential space- and concentration-clamp problems. Block and unblock of the NMDA receptor by memantine after both voltage jump and concentration jumps showed triple exponential kinetics. The fast onset kinetics of NMDA receptor channel block following both concentration-clamp and voltage jumps from +70 to −70 mV were similar. In contrast, offset kinetics after a voltage-step from −70 to +70 mV were much faster than following a concentration jump at the holding potential of −70 mV. These results provide further support for the hypothesis that rapid relief of block via strong synaptic membrane depolarisation underlies the good therapeutic profile of memantine.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which results from selective loss of upper and lower motor neurons. Mouse models of ALS, such as one carrying the G93A mutant of the human Cu-Zn superoxide dismutase gene[SOD1(G93A)], develop motor neuron pathology and clinical symptoms similar to those observed in ALS patients. There is compelling evidence that both direct and indirect glutamate toxicity contribute to the pathogenesis of motor neuron degeneration. However, the therapeutic effect of various glutamate receptor antagonists has not been clearly demonstrated. Memantine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. It has been shown to protect neurons against NMDA- or glutamate-induced toxicity in vitro and in animal models of neurodegenerative diseases. In the current study, we have examined the therapeutic efficacy of memantine in an ALS mouse model carrying a high copy number of SOD1(G93A). Memantine treatment significantly delayed the disease progression and increased the life span of SOD1(G93A) mice, from 121.4 +/- 5.5 to 129.7 +/- 4.5 days (P = 0.032). Furthermore, NMDA receptor subunits were reliably detected in the spinal cord of SOD1(G93A) mice and their expression levels were similar to those in the wild-type littermate control. Therefore, the neuroprotective effect of memantine in SOD1(G93A) mice is most probably due to the inhibition of spinal cord NMDA receptors. In view of the long-term usage of memantine for dementia patients, with excellent tolerance and safety, these data suggest that memantine may be used in ALS patients alone or in combination with other therapies to prolong survival.  相似文献   

18.
The management of dementia has changed since the development of new antidementia drugs. The benefits observed in Alzheimer's disease (AD) with selective cholinergic transmission treatments are mainly symptomatic, without clear evidence of neuroprotection. The hypothesis that glutamate-mediated neurotoxicity is involved in the pathogenesis of AD is finding increasingly more acceptance in the scientific community. Glutamate receptors are overactive, and N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential for the treatment of AD and other neurological disorders. Memantine is a noncompetitive NMDA antagonist that is considered a neuroprotective drug. Memantine's capacity has been demonstrated in preclinical studies, and it is considered a useful symptomatic treatment for AD. Memantine has been shown to benefit cognition, function, and global outcome in patients with moderate to severe AD, and it is currently approved by the US Food and Drug Administration (FDA) for the treatment of moderate to severe AD. Recently, memantine has also demonstrated efficacy in the initial stages of AD, although FDA authorization is pending. This review highlights the important pharmacological and clinical aspects of memantine, as well as some basic mechanisms mediating glutamatergic neurodegeneration.  相似文献   

19.
M O Krebs 《L'Encéphale》1992,18(3):271-279
The pharmacology of excitatory amino acids (EAA) like glutamate or aspartate, has defined three main types of receptors: NMDA, quisqualate (now named AMPA) and ka?nate receptors, associated to cationic channels. The NMDA receptor, the best characterized, is a macromolecular complex with multiple specific sites: the agonist binding site (glutamate, aspartate, NMDA); the glycine site and polyamine site mediating allosteric regulations; the site located inside the channel for activity-dependent antagonists (phencyclidine, MK-801). This channel, permeable to calcium, is blocked by magnesium in a voltage-dependent manner. The structural complexity of the NMDA receptor suggests the existence of subtle regulations, but also offers many targets for pharmacological drugs. The calcium influx induced by NMDA receptor stimulation may account for the diversity of its functional properties. First, NMDA receptors modulate neuronal plasticity during the development and even long after. Indeed, NMDA receptor can induce long term potentiation (LTP; an experimental model of synaptic facilitation) and are involved in learning and memory. On the other hand, when over-stimulated, they induce neurotoxicity. The death of the cell occurs after several hours, during which NMDA antagonists can prevent irreversible damages. EAA systems are distributed in the whole brain, interacting with numerous other neurotransmitters, but particularly concentrated in the cortico-striatal and cortico-cortical fibers and in the hippocampus. Several neuro-psychiatric disorders could be related to a glutamatergic dysfunction: acute neuronal lesions (stroke, viral disease like AIDS) and epilepsy; but also chronic neurodegenerative disorders (Alzheimer's dementia, Huntington and Parkinson diseases). A glutamatergic hypothesis of schizophrenia arose from the phencyclidine model of psychosis, arguing for an imbalance between glutamate and dopamine. The therapeutic perspectives of glutamatergic substances in these diseases will be discussed.  相似文献   

20.
High-affinity N-methyl-d-aspartate (NMDA) receptor antagonists like MK-801 are known to induce the heat shock. protein, HSP70, in the posterior cingulate cortex and retrosplenial cortex of rat brain. Memantine, which is a low affinity uncompetitive NMDA receptor antagonist, has been used in the treatment of Parkinson's disease in Europe. The faster kinetics of memantine in blocking and unblocking the NMDA receptor-operated ion channel as opposed to high-affinity NMDA antagonists like MK-801 has been thought to account for the safety of memantine. The present study evaluated the neurotoxic potential of memantine and amantadine using the induction of HSP70 immunoreactivity in rat brain. Memantine (25, 50, 75 mg/kg) induced HSP70 in the posterior cingulate, retrosplenial cortex and dentate gyrus of rat brain. In contrast, amantadine (50, 100, 200 mg/kg) did not induce HSP70 in the rat brain. These results suggest that memantine has an antagonistic effect at NMDA receptor in vivo, and raises the possibility that high doses of memantine may cause neuronal damage similar to those observed with other high-affinity NMDA receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号