首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a drug delivery target via increasing the intestinal transport of low permeability compounds by designing peptidomimetic prodrugs. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro-moieties for benzyl alcohol have been shown to maintain affinity for hPepT1. The primary aim of the present study was to investigate if modifications of the benzyl alcohol model drug influence the corresponding D-Glu-Ala and D-Asp-Ala model prodrugs' affinity for hPepT1 in Caco-2 cells. A second aim was to investigate the transepithelial transport and hydrolysis parameters for D-Asp(BnO)-Ala and D-Glu(BnO)-Ala across Caco-2 cell monolayers. In the present study, all investigated D-Asp-Ala and D-Glu-Ala model prodrugs retained various degrees of affinity for hPepT1 in Caco-2 cells. These affinities are used to establish a QSAR of our benzyl alcohol modified model prodrugs, aided at elucidating the observed differences in model prodrug affinity for hPepT1; additionally, these data suggest that the hydrophobicity of the side-chain model drug is the major determinant in the compounds affinity for hPepT1. Transepithelial transport studies performed using Caco-2 cells of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala showed that the K(m) for transepithelial transport was not significantly different for the two compounds. The maximal transport rate of the carrier-mediated flux component does not differ between the two model prodrugs either. The transepithelial transport of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala follows simple kinetics, and the release of benzyl alcohol is pH-dependent, but unaffected by 1 mM of the esterase inhibitor Paraoxon in 80% human plasma and Caco-2 cell homogenate.  相似文献   

3.
The MHC class I-related Fc receptor, FcRn, mediates the intestinal absorption of maternal IgG in neonatal rodents and the transplacental transport of maternal IgG in humans by receptor-mediated transcytosis. In mice and rats, expression of FcRn in intestinal epithelial cells is limited to the suckling period. We have recently observed, however, clear expression of FcRn in the adult human intestine, suggesting a function for FcRn in intestinal IgG transport beyond neonatal life in humans. We tested this hypothesis using the polarized human intestinal T84 cell line as a model epithelium. Immunocytochemical data show that FcRn is present in T84 cells in a punctate apical pattern similar to that found in human small intestinal enterocytes. Solute flux studies show that FcRn transports IgG across T84 monolayers by receptor-mediated transcytosis. Transport is bidirectional, specific for FcRn, and dependent upon endosomal acidification. These data define a novel bidirectional mechanism of IgG transport across epithelial barriers that predicts an important effect of FcRn on IgG function in immune surveillance and host defense at mucosal surfaces.  相似文献   

4.
Mice with altered alpha(2)-adrenergic receptor genes have become important tools in elucidating the subtype-specific functions of the three alpha(2)-adrenergic receptor subtypes because of the lack of sufficiently subtype-selective pharmacological agents. Mice with a deletion (knockout) of the alpha(2A)-, alpha(2B)-, or alpha(2C)-gene as well as a point mutation of the alpha(2A)-gene (alpha(2A)-D79N) and a 3-fold overexpression of the alpha(2C)-gene have been generated. Studies with these mice indicate that most of the classical functions mediated by the alpha(2)-adrenergic receptor, such as hypotension, sedation, analgesia, hypothermia, and anesthetic-sparing effect, are mediated primarily by the alpha(2A)-subtype. The alpha(2B)-subtype is the principal mediator of the hypertensive response to alpha(2)-agonists, appears to play a role in salt-induced hypertension, and may be important in developmental processes. The alpha(2C)-subtype appears to be involved in many central nervous system processes such as the startle reflex, stress response, and locomotion. Both the alpha(2A)- and alpha(2C)-subtypes are important in the presynaptic inhibition of norepinephrine release and appear to have distinct regulatory roles. The ability to study subtype-specific functions in different mouse strains by altering the same alpha(2)-adrenergic receptor in different ways strengthens the conclusions drawn from these studies. Although these genetic approaches have limitations, they have significantly increased our understanding of the functions of alpha(2)-adrenergic receptor subtypes.  相似文献   

5.
The oligopeptide transporter may be exploited to enhance the absorption of drugs by synthesizing their dipeptide ester prodrugs, which may be recognized as its substrates. Various dipeptide esters of acyclovir (ACV), an antiviral nucleoside analog, were synthesized. Enzymatic hydrolysis and affinity of the prodrugs toward the human intestinal peptide transporter hPEPT1 were studied using the human intestinal Caco-2 cell line. Affinity studies were performed by inhibiting the uptake of [(3)H]glycylsarcosine by the prodrugs. The uptake of glycylsarcosine was found to be saturable at higher concentrations and was competitively inhibited by the prodrugs of ACV. All prodrugs except Tyr-Gly-ACV demonstrated a higher affinity (1.41-4.96 mM) toward hPEPT1 than cephalexin (8.19 +/- 2.12 mM), which was used as a positive control. Two prodrugs, Gly-Val-ACV and Val-Val-ACV, showed comparable affinity to Val-ACV, an amino acid prodrug of ACV recognized by PEPT1/PEPT2. The permeability of Gly-Val-ACV (2.99 +/- 0.59 x 10(-6) cm/s) across Caco-2 was comparable with that of Val-ACV (3.01 +/- 0.21 x 10(-6) cm/s) and was significantly inhibited (63%) in presence of glycylsarcosine. The transport of GVACV across Caco-2 was saturable at higher concentrations, and the parameters were calculated as K(m) 3.16 +/- 0.31 mM and V(max) 0.014 +/- 0.00058 nmol cm(-2) min(-1). Overall, the results suggest that the dipeptide prodrugs of ACV have a high affinity toward the intestinal oligopeptide transporter hPEPT1 and therefore seem to be promising candidates in the treatment of ocular and oral herpesvirus infections, because cornea and intestinal epithelia seem to express the oligopeptide transporters.  相似文献   

6.
Ephedra species of plants have both beneficial and adverse effects primarily associated with the presence of ephedrine alkaloids. Few reports have appeared that examine the direct actions of ephedrine alkaloids on human subtypes of adrenergic receptors (ARs). In the present study, ephedrine alkaloids were evaluated for their binding affinities on human alpha(1A)-, alpha(1B)-, alpha(1D)-, alpha(2A)-, alpha(2B)-, and alpha(2C)-AR subtypes expressed in HEK and Chinese hamster ovary cells. Cell-based reporter gene assays were used to establish functional activity of ephedrine alkaloids at alpha(1A)-, alpha(2A)-, and alpha(2C)-ARs. The data showed that ephedrine alkaloids did not activate alpha(1)- and alpha(2)-ARs and that they antagonized the agonist-mediated effects of phenylephrine and medetomidine on alpha(1)- and alpha(2)-ARs, respectively. As in the binding studies, 1R,2R- and 1R,2S-ephedrine showed greater functional antagonist activity than the 1S,2R- and 1S,2S-isomers. The rank order of affinity for the isomers was 1R,2R > 1R,2S > 1S,2R > 1S,2S. The rank order of potencies of alkaloids containing a 1R,2S-configuration was norephedrine > or = ephedrine > N-methylephedrine. These studies have demonstrated that orientation of the beta-hydroxyl group on the ethylamino side chain and the state of N-methyl substitution are important for alpha-AR binding and functional activity of the ephedrine alkaloids. In conclusion, the ephedrine isomers and analogs studied did not exhibit any direct agonist activity and were found to possess moderate antagonist activities on cloned human alpha-ARs. The blockade of presynaptic alpha(2A)- and alpha(2C)-ARs may have a pharmacological role in the direct actions of Ephedra alkaloids.  相似文献   

7.
OBJECTIVE: To elucidate the vascular effect of tamsulosin hydrochloride (INN, tamsulosin), a selective alpha1A-adrenergic receptor antagonist, in humans, we examined the alpha1-adrenergic receptor antagonistic activity against blood vessels after oral intake of recommended and higher doses of the drug and evaluated the relation between its plasma concentrations and the effect. METHODS: Nine healthy men ranging in age from 21 to 38 years received tamsulosin (0.2 mg or 0.6 mg) or lactate capsule as a control after breakfast in a randomized crossover fashion. Seven hours after administration, their fingertip vasoconstrictor response to contralateral hand cooling and vasoconstrictor response of the dorsal hand vein to phenylephrine were examined, and blood samples for the measurement of plasma drug concentration were obtained. RESULTS: The fingertip vasoconstrictor response was significantly reduced and the infusion rate of phenylephrine producing a half-maximal constriction was significantly increased by 0.6 mg tamsulosin but not by 0.2 mg tamsulosin. There were significant positive correlations between plasma drug concentrations and the changes of these parameters. CONCLUSION: These results suggest that although the alpha1-adrenergic receptor-blocking effect of tamsulosin on blood vessels is relatively small, it is clearly correlated with plasma drug concentration and a higher dose of the drug could cause systemic adverse effects.  相似文献   

8.
A selective alpha(2)-adrenergic agonist for cardiac resuscitation   总被引:3,自引:0,他引:3  
The effects of selective alpha(2)-adrenergic agonist alpha-methylnorepinephrine on the initial success of resuscitation and postresuscitation myocardial function were compared with nonselective alpha- and beta-adrenergic epinephrine in a swine model of cardiac arrest. Epinephrine, the primary pharmacological intervention in the treatment of cardiac arrest, improves immediate outcome. However, epinephrine increases the severity of myocardial dysfunction after cardiac resuscitation. Both inotropic and chronotropic actions provoke disproportionate increases in myocardial oxygen consumption by the ischemic heart, prompting this study, in which we hypothesized that a selective alpha(2)-adrenergic agonist, alpha-methylnorepinephrine (alpha-MNE), would moderate these adverse effects of epinephrine and minimize postresuscitation myocardial dysfunction. After 7 minutes of untreated ventricular fibrillation (VF) in 14 anesthetized male domestic pigs, precordial compression at a fixed rate of 80 compressions/min was begun, along with mechanical ventilation. Either alpha-MNE (100 microg/kg) or epinephrine (20 microg/kg) was administered as a bolus after 2 minutes of precordial compression. After an additional 4 minutes of precordial compression, defibrillation was attempted. Left ventricular systolic and diastolic function was quantitated with the use of transesophageal echo-Doppler imaging. Comparable increases in coronary perfusion pressure to 15 mm Hg were observed after the administration of both drugs. All animals were successfully resuscitated; epinephrine and alpha-MNE were equally quick in restoring spontaneous circulation after 7 minutes of untreated VF. Ejection fraction was reduced by 35% and 14% by epinephrine and alpha-MNE, respectively, after resuscitation. Epinephrine and alpha-MNE increased postresuscitation heart rate by 38% and 15%, respectively. Accordingly, significantly less postresuscitation impairment followed the administration of alpha-MNE. alpha-MNE, a selective alpha-adrenergic agonist, was as effective as epinephrine in restoring spontaneous circulation after 7 minutes of untreated VF in a porcine model for CPR and demonstrated lesser postresuscitation myocardial injury.  相似文献   

9.
The gigantocellular depressor area (GiDA) is a functionally defined subdivision of the medullary gigantocellular reticular formation where vasodepressor responses are evoked by glutamate nanoinjections. The GiDA also contains reticulospinal neurons that contain the alpha2A-adrenergic receptor (alpha2A-AR). In the present study, we sought to determine whether nanoinjections of the alpha2-AR agonist clonidine into the GiDA evoke cardiovascular responses and whether these responses can be attributed to the alpha2-AR. We found that nanoinjections of clonidine into the GiDA evoke dose-dependent decreases in arterial pressure and heart rate. These responses were equivalent in magnitude to responses produced by clonidine nanoinjections into the sympathoexcitatory region of the rostral ventrolateral medulla. Furthermore, the vasodepressor and bradycardic responses produced by clonidine injections into the GiDA were blocked in a dose-dependent fashion by the highly selective alpha2-AR antagonist 2-methoxyidazoxan, but not by prazosin, which is an antagonist at both the alpha1-AR and the 2B subtype of the alpha-AR. The antagonism by 2-methoxyidazoxan was site specific because injections of the antagonist into the rostral ventrolateral medulla failed to block the responses evoked by clonidine injections into the GiDA. These findings support the notion that clonidine produces sympathoinhibition through multiple sites within the medullary reticular formation, which is consistent with the wide distribution of the alpha2A-AR in reticulospinal neurons. These data also suggest that clonidine may have multiple mechanisms of action because it evokes a cardiovascular depressive response from regions containing neurons that have been determined to be both sympathoinhibitory and sympathoexcitatory.  相似文献   

10.
Previous studies have suggested that G protein coupling, phospholipase C activation, phosphoinositide hydrolysis, and protein kinase C activation may be required for alpha(1B)-adrenergic receptor regulation, particularly for their endocytosis into intracellular vesicles. Accordingly, the internalization and down-regulation properties of mutated receptors with defects in G protein coupling and second messenger generation were investigated. The Delta12 and Delta5 receptors, previously shown to be defective in G protein coupling, exhibited greater agonist-induced losses of cell surface accessibility assessed by radioligand binding to intact cells on ice than for the wild-type receptor; however, these receptors were completely defective in endocytosis into intracellular vesicles assessed by sucrose density gradient centrifugation. These receptors also did not undergo down-regulation with long-term agonist exposure as did the wild-type receptor; instead, a prominent up-regulation was observed. The Y348A receptor, previously shown to be defective in phosphoinositide hydrolysis and endocytosis was also defective in down-regulation but did not exhibit significant up-regulation. In contrast, a receptor construct with amino acid residues 246 to 261 deleted (Delta[246-261]) was also defective in stimulation of phosphoinositide hydrolysis but exhibited internalization and down-regulation properties essentially identical to those for the wild-type receptor. Together, these results suggest that stimulation of phosphoinositide hydrolysis by alpha(1B)-adrenergic receptors is not required for their endocytosis or down-regulation but that similar and overlapping receptor structural domains are involved in mediating these processes.  相似文献   

11.
Novel microgels composed of cross-linked copolymers of poly(acrylic acid) and Pluronics were evaluated as possible permeation enhancers for doxorubicin transport using Caco-2 cell monolayers as a gastrointestinal model. Pluronic, triblock copolymers of ethylene oxide (EO) and propylene oxide (PO), were chosen to represent the most hydrophobic (Pluronic L61 and L92 with average compositions of EO(3)PO(30)EO(3) and EO(8)PO(52)EO(8), respectively) and the relatively hydrophilic (Pluronic F127 with average formula EO(99)PO(67)EO(99)) extremes of this class of block copolymers. The weight ratio of Pluronic to poly(acrylic acid) in the microgels was set at 45:55. By inhibiting the P-glycoprotein (P-gp)-mediated doxorubicin efflux from the cells and enhancing the passive influx, the microgels were shown to enhance the overall cell absorption of doxorubicin. The enhancement effect was more pronounced than with a known penetration enhancer, Pluronic L61, and was comparable to that of Pluronic L92. Microgels exhibited synergism of the doxorubicin transport enhancement with Verapamil, a known inhibitor of the P-gp. The effects of the microgels were studied using the hydrophilic marker ([14C]mannitol) test and the MTT assay. Transepithelial electrical resistance (TEER) studies demonstrated that the microgels decreased TEER to about 80% of initial values, but these minor effects were fully reversible, indicating viability of the cells after incubation with microgels. No significant enhancement of [14C]mannitol transport by microgels was observed, relative to Carbopol 934NF (control polymer). Cytotoxicity studies confirmed that the transport-enhancing properties of the microgels were not due to damage of the Caco-2 cell monolayers.  相似文献   

12.
Grepafloxacin and levofloxacin transport by Caco-2 cell monolayers was examined to characterize the intestinal behavior of these quinolones. The levels of transcellular transport of [(14)C]grepafloxacin and [(14)C]levofloxacin from the basolateral to the apical side were greater than those in the opposite direction. The unidirectional transport was inhibited by the presence of excess unlabeled quinolones, accompanied by increased accumulation. The inhibitory effects of cyclosporin A plus grepafloxacin on basolateral-to-apical transcellular transport and cellular accumulation of [(14)C]grepafloxacin were comparable to those of cyclosporin A alone, indicating that the transport of grepafloxacin across the apical membrane was mainly mediated by P-glycoprotein. On the other hand, basolateral-to-apical transcellular transport of [(14)C]levofloxacin in the presence of cyclosporin A was decreased by unlabeled levofloxacin, grepafloxacin, and enoxacin, accompanied by significantly increased cellular accumulation. The organic cation cimetidine, organic anion p-aminohippurate, and the multidrug resistance-related protein (MRP) modulator probenecid did not affect the transcellular transport of [(14)C]grepafloxacin or [(14)C]levofloxacin in the presence of cyclosporin A. The basolateral-to-apical transcellular transport of levofloxacin in the presence of cyclosporin A showed concentration-dependent saturation with an apparent Michaelis constant of 5.6 mM. In conclusion, these results suggested that basolateral-to-apical flux of quinolones was mediated by P-glycoprotein and a specific transport system distinct from organic cation and anion transporters and MRP.  相似文献   

13.
The alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR. Confocal imaging confirmed that coexpression with beta2-AR resulted in translocation of alpha1D-AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that alpha1D-AR and beta2-AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an increase in total alpha1D-AR binding sites upon coexpression with beta2-AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with beta2-AR significantly enhanced the coupling of alpha1D-AR to norepinephrine-stimulated Ca2+ mobilization. Heterodimerization of beta2-AR with alpha1D-AR also conferred the ability of alpha1D-AR to cointernalize upon beta2-AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor subtypes may regulate each other's activity. These findings demonstrate that the selective association of alpha1D-AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between alpha1- and beta2-ARs that is mediated through heterodimerization and cross-internalization.  相似文献   

14.
Ulcerative colitis is a disease more commonly seen in nonsmokers. Because nicotine was postulated to be a beneficial component of tobacco smoke for ulcerative colitis, various formulations of nicotine have been developed to improve the local bioavailability within the gastrointestinal tissue. In the present study, to characterize the disposition of nicotine in the intestines, we investigated intestinal nicotine transport using Caco-2 cells. Nicotine was predominantly transported across Caco-2 cell monolayers in a unidirectional mode, corresponding to intestinal secretion, by pH-dependent specific transport systems. The specific uptake systems appear to be distinct from organic cation transporters and the transport system for tertiary amines, in terms of its substrate specificity and the pattern of the interaction. These transport systems could play a role in the intestinal accumulation of nicotine from plasma and could also be responsible for the topical delivery of nicotine for ulcerative colitis therapy. These findings could provide useful information for the design of effective nicotine delivery.  相似文献   

15.
Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.  相似文献   

16.
Alpha 1 protease inhibitor antigen was identified in the culture medium of the human ascites hepatoma cell line SK-HEP-1. Trypsin inhibitory activity and alpha 1 Pl antigen accumulated in serum-free medium concomitantly over a period of several days. Radioactive alpha 1 Pl antigen was detected in conditioned medium from cultures supplemented with 35S-L-methionine, indicating a synthesis and release of the protein. Alpha 1 Pl antigen in conditioned medium appeared to be antigenically identical to that in human plasma, and the newly synthesized (radiolabeled) antigen co-migrated with plasma, alpha 1 Pl after immunoelectrophoresis or SDS-polyacrylamide gel electrophoresis. Moreover, evidence is presented that the synthesized inhibitor exhibits functional activity, since the 35S-labeled alpha 1 Pl in conditioned medium complexes with trypsin. We conclude that SK-HEP-1 cells in culture produce functionally active alpha 1 Pl which may be identical to that in plasma.  相似文献   

17.
The alpha 1- and alpha 2-adrenergic venoconstriction in dorsal hand veins of normal subjects was determined by infusion of phenylephrine or clonidine. Oral administration of prazosin reduced the constriction response to phenylephrine but not to clonidine. Subjects were treated for 3 weeks in a randomized crossover design with placebo or guanadrel sulfate. Guanadrel reduced sympathetic tone (i.e., plasma norepinephrine and norepinephrine release rate), whereas venous responses to phenylephrine and clonidine were both augmented during guanadrel treatment. The effect on phenylephrine responses was primarily attributable to a decrease in the median effective concentration with a small increase in maximum response. Clonidine showed a markedly increased maximum response with a small increase in the median effective concentration. Platelet alpha 2-adrenergic receptors increased slightly but there was no change in the amount of platelet pertussis toxin substrate during guanadrel treatment. Thus reduction in sympathetic tone in normal young men results in increased venous responses to both alpha 1- and alpha 2-agonists.  相似文献   

18.
19.
Spontaneous increase in platelet activity and change in coronary vasomotor tone have been implicated in the pathogenesis of acute myocardial ischemia. To define the mechanism of platelet "hypersensitivity" in acute myocardial ischemia, we examined the status of platelet alpha 2-adrenergic receptors in patients hospitalized with severe unstable angina. With the use of the specific alpha 2-receptor antagonist 3H-yohimbine, we identified a 26% decrease in the receptor binding sites on platelet membranes from patients with unstable angina compared with controls (155 +/- 32 vs. 210 +/- 29 fmol/mg protein, P less than or equal to 0.005). The dissociation constants of 3H-yohimbine binding to platelet alpha 2-receptors were similar in both groups (3.3 +/- 1.1 and 4.1 +/- 1.6 nmol/L, P not significant). To study the alterations in the affinity of platelet alpha 2-receptors for the agonists, effects of 1-epinephrine on specific binding of 3H-yohimbine were examined. We observed a marked reduction in 1-epinephrine concentration for inhibition of antagonist binding by 50% in acute myocardial ischemia (IC50: 4.2 +/- 3.9 X 10(-8) vs. 6.7 +/- 3.4 X 10(-7) mol/L, P less than or equal to 0.01), indicating increase in platelet alpha 2-receptor affinity for the agonist. Platelet aggregation and thromboxane A2 generation in response to epinephrine were also significantly increased in the acute phase of myocardial ischemia. This study suggests enhanced affinity of platelet alpha 2-receptors to the agonist 1-epinephrine as a possible mechanism of platelet hypersensitivity in acute myocardial ischemia.  相似文献   

20.
When RAW264.7 murine macrophages were incubated with cholera toxin or pertussis toxin, prostaglandin E2 (PGE2) synthesis was enhanced markedly. Cholera toxin and pertussis toxin added together synergistically stimulated PGE2 synthesis. Cholera toxin and pertussis toxin also stimulated cyclic AMP (cAMP) accumulation. However, PGE2 synthesis was independent of increases in cAMP, as neither forskolin nor isoproterenol, which increased cAMP accumulation, nor dibutyryl-cAMP had any effect on PGE2 synthesis. In intact cells, cholera toxin and pertussis toxin stimulated phospholipase A2 to enhance metabolism of phosphatidylinositol to lysophosphatidylinositol and glycerophosphoinositol, with time courses similar to their stimulation of PGE2 synthesis. Cholera toxin catalyzed ADP-ribosylation of proteins of Mr 45,000 and 49,000 in intact cells, whereas an additional substrate of Mr 41,000 was observed in vitro. Preincubation of intact cells with pertussis toxin blocked subsequent in vitro labeling of the Mr 41,000 protein by cholera toxin, suggesting that the same protein was ADP-ribosylated by both toxins. Western blot analysis using specific antisera against Gi, Go and Gs revealed that the Mr 41,000 substrate was bound by the anti-Gi and anti-Go but not anti-Gs. The present data suggest that guanine nucleotide binding regulatory proteins are involved in the regulation of arachidonic acid metabolism to PGE2 in RAW264.7 cells. Furthermore, the possibility is raised that phospholipase A2 is regulated by both stimulatory and inhibitory guanine nucleotide binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号