首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine if volumes of frontotemporal regions associated with language were related to thought disorder in 42 children, aged 5–16 years, with cryptogenic epilepsy, all of whom had complex partial seizures (CPS). The children with CPS and 41 age- and gender-matched healthy children underwent brain MRI scans at 1.5 T. Tissue was segmented, and total brain, frontal lobe, and temporal lobe volumes were computed. Thought disorder measures, IQ, and seizure information were collected for each patient. The subjects with CPS had more thought disorder, smaller total gray matter and orbital frontal gray matter volumes, as well as larger temporal lobe white matter volumes than the control group. In the CPS group, thought disorder was significantly related to smaller orbital frontal and inferior frontal gray matter volumes, increased Heschl’s gyrus gray matter volumes, and smaller superior temporal gyrus white matter volumes. However, significantly larger orbital frontal gyrus, superior temporal gyrus, and temporal lobe gray matter volumes and decreased Heschl’s gyrus white matter volumes were associated with thought disorder in the control group. These findings suggest that thought disorder might represent a developmental disability involving frontotemporal regions associated with language in pediatric CPS.  相似文献   

2.
The aim of this study was to determine if volumes of frontotemporal regions associated with language were related to thought disorder in 42 children, aged 5–16 years, with cryptogenic epilepsy, all of whom had complex partial seizures (CPS). The children with CPS and 41 age- and gender-matched healthy children underwent brain MRI scans at 1.5 T. Tissue was segmented, and total brain, frontal lobe, and temporal lobe volumes were computed. Thought disorder measures, IQ, and seizure information were collected for each patient. The subjects with CPS had more thought disorder, smaller total gray matter and orbital frontal gray matter volumes, as well as larger temporal lobe white matter volumes than the control group. In the CPS group, thought disorder was significantly related to smaller orbital frontal and inferior frontal gray matter volumes, increased Heschl’s gyrus gray matter volumes, and smaller superior temporal gyrus white matter volumes. However, significantly larger orbital frontal gyrus, superior temporal gyrus, and temporal lobe gray matter volumes and decreased Heschl’s gyrus white matter volumes were associated with thought disorder in the control group. These findings suggest that thought disorder might represent a developmental disability involving frontotemporal regions associated with language in pediatric CPS.  相似文献   

3.
Objective There is increasing evidence for subtle changes in brain morphology and function in patients with borderline personality disorder (BPD). Structural brain imaging studies show lower volume in frontal, temporal and parietal brain regions than in healthy controls. The aim of our preliminary study of men with BPD was to investigate structural brain changes and their relationship with a measure of impulsivity. Methods We examined seven male patients with BPD and six control men using voxel‐based morphometry. Analysis of covariance was carried out to assess regionally specific differences in grey and white matter (WM) volumes. Correlations between trait impulsivity as measured using the Impulsiveness‐Venturesomeness‐Empathy scale and brain volumes were studied. Results Compared with healthy men, men with BPD had similar WM volumes but smaller grey matter (GM) volumes in frontal, temporal and parietal cortices. The latter were negatively correlated with trait impulsivity. Conclusions Our findings fit with previous reports of smaller regional GM volumes reported in women with BPD, and suggest that in men there may be an association between smaller GM volumes and impulsivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Schizophrenia is characterized by subtle but well-replicated total and regional (frontal and temporal) brain tissue volume deficits. Studies of individuals at-risk for developing schizophrenia suggest that the onset of brain volume decrement may closely pre-date overt manifestations of schizophrenia, making brain volume abnormalities potential predictors for early identification. In an ongoing longitudinal morphometric MRI study of young, nonpsychotic first- or second-degree relatives of schizophrenia probands, we compared brain volumes in 46 relatives who are still within age range for developing schizophrenia against comparison groups of 46 schizophrenia patients and 46 healthy volunteers without family history of schizophrenia. Relatives had similar brain volume abnormalities as schizophrenia patients albeit less severe. Relatives had significantly larger whole brain, frontal, temporal and parietal gray matter (GM) volumes than patients. Relatives also had significantly smaller frontal GM volumes than healthy volunteers. Both relatives and patients had significantly larger whole brain WM (specifically parietal WM) volumes compared to healthy volunteers. Abnormally greater WM volumes in relatives and patients are suggestive of genetically-mediated dysmaturation of the age-expected myelination during adolescence through mid adulthood. On prodromal symptoms assessed in relatives one year after MRI brain scans, initial GM deficits as well as larger WM volumes correlated significantly with greater severity of subsequent prodromal symptoms. Together with previous genetic high-risk studies of adolescent or young adult relatives, these findings indicate that premorbid MRI brain abnormalities may be of predictive value for the early identification of schizophrenia.  相似文献   

5.
CONTEXT: Structural brain abnormalities, including larger cerebrospinal fluid (CSF) volumes, have been observed in men diagnosed as having schizotypal personality disorder (SPD). OBJECTIVES: To determine whether women with SPD have abnormalities similar to those of men with SPD and to elucidate specific SPD regional volume deficits and symptom correlations. DESIGN: Naturalistic study.Setting and PARTICIPANTS: Thirty neuroleptic-naive women with SPD and 29 female control subjects, both recruited from the community. Participants were group matched for age, parental socioeconomic status, handedness, and IQ. INTERVENTIONS: A new segmentation method was applied to magnetic resonance images to automatically parcel the images into CSF, gray matter, and white matter. The neocortex was manually separated from subcortical and other nonneocortical structures. Voxel-based morphometry was applied to determine global and regional volume deficits. MAIN OUTCOME MEASURES: Left and right neocortical gray matter, white matter, and CSF relative volumes as well as clinical symptoms from the Structured Interview for Schizotypy and the Schizotypal Personality Questionnaire-Brief Version. RESULTS: Smaller left (3.84%) and right (3.83%) neocortical gray matter relative volumes associated with larger left (9.66%) and right (9.61%) sulcal CSF relative volumes were found in women with SPD compared with controls. Voxel-based morphometry showed that the neocortical deficits in SPD were especially prominent in the left superior and middle temporal gyri, left inferior parietal region with postcentral gyrus, and right superior frontal and inferior parietal gyri. In the SPD group, larger lateral ventricle volumes correlated with more severe symptoms on the Structured Interview for Schizotypy and the Schizotypal Personality Questionnaire-Brief Version. CONCLUSIONS: The smaller neocortical gray matter volume and larger sulcal CSF volume provide evidence of the brain basis of this personality disorder and emphasize the communality of brain abnormalities in the schizophrenia spectrum.  相似文献   

6.
Air pollution exposures are linked to neuroinflammation and neuropathology in young urbanites. Forty percent of exposed children and young adults exhibit frontal tau hyperphosphorylation and 51% have amyloid-β diffuse plaques compared to 0% in low pollution controls. In older adults, white matter hyperintensities (WMH) are associated with cognitive deficits while inflammatory markers correlate with greater atrophy than expected for age. We investigated patterns of WMH, magnetic resonance imaging (MRI) volume growth, blood inflammatory mediators, and cognition in matched children from two urban cohorts: one severely and one minimally exposed to air pollution. Baseline and one year follow-up measurements of cognitive abilities, brain MRI volumes, and blood were collected in 20 Mexico City (MC) children (10 with WMH+, and 10 without WMH-) and 10 matched controls (WMH-). MC WMH- children display the profile of classical pro-inflammatory defensive responses: high interleukin 12, production of powerful pro-inflammatory cytokines, and low concentrations of key cytokines and chemokines associated with neuroprotection. MC WMH+ children exhibit a response involved in resolution of inflammation, immunoregulation, and tissue remodeling. The MC WMH+ group responded to the air pollution-associated brain volumetric alterations with white and grey matter volume increases in temporal, parietal, and frontal regions and better cognitive performance compared to MC WMH-. We conclude that complex modulation of cytokines and chemokines influences children's central nervous system structural and volumetric responses and cognitive correlates resulting from environmental pollution exposures. Identification of biomarkers associating systemic inflammation to brain growth is critical for detecting children at higher risk for cognitive deficits and neurodegeneration, thereby warranting early implementation of neuroprotective measures.  相似文献   

7.
Background and AimThe relationship between severity of cerebral small vessel disease, as defined by white matter hyperintensities classification, and gray matter volume of different brain regions has not been well defined. This study aimed to investigate brain regions with significant differences in gray matter volume associated with different degrees of white matter hyperintensities in patients with cerebral small vessel disease. Meanwhile, we examined whether correlations existed between gray matter volume in different brain regions and cognitive ability.Methods110 cerebral small vessel disease patients underwent 3.0T Magnetic resonance imaging scans and neuropsychological cognitive assessments. White matter hyperintensities of each subject was graded according to Fazekas grade scale and was divided into two groups: (A) White matter hyperintensities score of 1–2 points (n = 64), (B) White matter hyperintensities score of 3–6 points (n = 46). Gray matter volume was analyzed using voxel-based morphometry implemented in Statistical Parametric Mapping 12 software.ResultsBrain regions with significant differences in gray matter volume between groups were diffused throughout the brain. Patients with high white matter hyperintensities scores exhibited decreased gray matter volume in some subregions of the frontal lobes, the temporal lobes, the parahippocampal gyrus, hippocampus and thalamus (p < 0.05). Among them, gray matter volume in the ventrolateral area of right inferior temporal gyrus, together with the right posterior parietal and occipital thalamus were positively correlated with Montreal Cognitive Assessment scores (p < 0.05). Gray matter volume in the extreme ventrolateral area of right inferior temporal gyrus along with the entorhinal cortex of left parahippocampal gyrus were positively correlated with both Montreal Cognitive Assessment and Mini-Mental Status Examination scores (p < 0.05).ConclusionsCerebral small vessel disease is considered as a whole brain disease and local white matter lesions can influence the gray matter in remote areas. Reducing the severity and progression of white matter hyperintensities may help to prevent secondary brain atrophy and cognitive impairment.  相似文献   

8.
The effects of atypical antipsychotic treatment on the brain volume deficits associated with schizophrenia are poorly understood. We assessed the brain volumes of eleven healthy controls and 29 patients with schizophrenia, using magnetic resonance imaging at baseline and at follow-up after two years of treatment with atypical neuroleptics. Two groups of patients were analyzed: treatment-na?ve patients (n = 17) and chronic treatment-resistant patients (n = 12). Treatment-na?ve patients received risperidone during the follow-up period, whereas chronic patients received clozapine. Gray matter (GM) and white matter (WM) volumes in the frontal, parietal, occipital, and temporal lobes were measured. Contrary to the controls, both groups of patients presented GM increases and WM decreases in the parietal and occipital lobes (p < .005). Frontal GM also increased in the chronic group with clozapine. There was a significant (p < .001) inverse relationship between the baseline volumes (GM deficit/WM excess) and the longitudinal change. These GM and WM changes were not related to changes in weight. Thus, treatment with risperidone and clozapine in schizophrenia may have an effect on gray and white matter volume and needs further exploration.  相似文献   

9.
Magnetic resonance imaging (MRI) and tissue segmentation were used to quantify grey matter, white matter and cerebrospinal fluid (CSF) volumes in the brains of 32 males with chronic schizophrenia and 32 healthy males. Tissue volumes in the frontal, temporal, parietal, and occipital regions were measured separately. Males with schizophrenia had significant reductions of grey and white matter volumes in the temporal regions compared with controls. Patients also had significantly smaller white matter volumes in the cerebrum and increased CSF volumes in the frontal and the temporal regions as well as the cerebrum. The findings of the present study suggest that volumes of grey and white matter are reduced in the temporal region of males with chronic schizophrenia. The volume of white matter in the whole brain also appears to be reduced. Among the different brains regions, grey matter reduction was significant only in the temporal region. Received: 17 September 2001 / Accepted: 5 April 2002  相似文献   

10.

Background

Neurofibromatosis type 1 (NF1) is a monogenic disorder associated with cognitive impairments. In order to understand how mutations in the NF1 gene impact brain structure it is essential to characterize in detail the brain structural abnormalities in patients with NF1. Previous studies have reported contradictory findings and have focused only on volumetric measurements. Here, we investigated the volumes of subcortical structures and the composite dimensions of the cortex through analysis of cortical volume, cortical thickness, cortical surface area and gyrification.

Methods

We studied 14 children with NF1 and 14 typically developing children matched for age, gender, IQ and right/left-handedness. Regional subcortical volumes and cortical gyral measurements were obtained using the FreeSurfer software. Between-group differences were evaluated while controlling for the increase in total intracranial volume observed in NF1.

Results

Subcortical analysis revealed disproportionately larger thalami, right caudate and middle corpus callosum in patients with NF1. Cortical analyses on volume, thickness and surface area were however not indicative of significant alterations in patients. Interestingly, patients with NF1 had significantly lower gyrification indices than typically developing children primarily in the frontal and temporal lobes, but also affecting the insula, cingulate cortex, parietal and occipital regions.

Conclusions

The neuroanatomic abnormalities observed were localized to specific brain regions, indicating that particular areas might constitute selective targets for NF1 gene mutations. Furthermore, the lower gyrification indices were accompanied by a disproportionate increase in brain size without the corresponding increase in folding in patients with NF1. Taken together these findings suggest that specific neurodevelopmental processes, such as gyrification, are more vulnerable to NF1 dysfunction than others. The identified changes in brain organization are consistent with the patterns of cognitive dysfunction in the NF1 phenotype.  相似文献   

11.
Ke X  Hong S  Tang T  Zou B  Li H  Hang Y  Zhou Z  Ruan Z  Lu Z  Tao G  Liu Y 《Neuroreport》2008,19(9):921-925
Earlier studies have suggested abnormal brain volumes in autism, but inconsistencies exist. Using voxel-based morphometry, we compared global and regional brain volumes in 17 high-functioning autistic children with 15 matched controls. We identified significant reduction in left white matter volume and white/gray matter ratio in autism. Regional brain volume reductions were detected for right anterior cingulate, left superior parietal lobule white matter volumes, and right parahippocampal gyrus gray matter volume, whereas enlargements in bilateral supramarginal gyrus, right postcentral gyrus, right medial frontal gyrus, and right posterior lobe of cerebellum gray matter in autism. Our findings showed global and regional brain volumes abnormality in high-functioning autism.  相似文献   

12.
OBJECTIVE: Segmented brain white matter hyperintensities were compared between subjects with late-life depression and age-matched subjects with similar vascular risk factor scores. Correlations between neuropsychological performance and whole brain-segmented white matter hyperintensities and white and gray matter volumes were also examined. METHOD: Eighty-three subjects with late-life depression and 32 comparison subjects underwent physical examination, psychiatric evaluation, neuropsychological testing, vascular risk factor assessment, and brain magnetic resonance imaging (MRI). Automated segmentation methods were used to compare the total brain and regional white matter hyperintensity burden between depressed patients and comparison subjects. RESULTS: Depressed patients and comparison subjects did not differ in demographic variables, including vascular risk factor, or whole brain-segmented volumes. However, depressed subjects had seven regions of greater white matter hyperintensities located in the following white matter tracts: the superior longitudinal fasciculus, fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, and inferior longitudinal fasciculus. These white matter tracts underlie brain regions associated with cognitive and emotional function. In depressed patients but not comparison subjects, volumes of three of these regions correlated with executive function; whole brain white matter hyperintensities correlated with executive function; whole brain white matter correlated with episodic memory, processing speed, and executive function; and whole brain gray matter correlated with processing speed. CONCLUSIONS: These findings support the hypothesis that the strategic location of white matter hyperintensities may be critical in late-life depression. Further, the correlation of neuropsychological deficits with the volumes of whole brain white matter hyperintensities and gray and white matter in depressed subjects but not comparison subjects supports the hypothesis of an interaction between these structural brain components and depressed status.  相似文献   

13.
The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents.  相似文献   

14.
BACKGROUND: Region of interest studies have identified a number of structure-cognition associations in schizophrenia and revealed alterations in structure-cognition relationship in this population. METHODS: We examined the relationship of structural brain alterations, identified using voxel-based morphometry, to cognitive deficits in 45 schizophrenia patients relative to 43 healthy control subjects and tested the hypothesis that structure-cognition relationship is altered in schizophrenia. RESULTS: Patients had smaller total brain, gray matter, and white matter volumes. Regional alterations were left-hemisphere specific, including: gray matter reduction of inferior frontal, lingual, and anterior superior temporal gyri; white matter reduction of posterior and occipital lobes; and gray matter increase of the putamen and the precuneus. Smaller whole brain and gray matter volumes were associated with lower premorbid intelligence quotient (IQ) and poorer performance on IQ-dependent cognitive measures in patients and to a similar extent in control subjects. Larger precuneus was associated with better immediate verbal memory in patients, whereas verbal and nonverbal memory were positively associated with inferior frontal gyrus volume in control subjects. Smaller occipital white matter volume was associated with slower information processing speed in patients but not in control subjects. CONCLUSIONS: Regional volume alterations are associated with specific cognitive deficits in schizophrenia. Some structure-cognition relationships differentiate this population from healthy control subjects.  相似文献   

15.
目的:对比分析2~3岁广泛性发育障碍儿童的脑体积异常。方法:对50例广泛性发育障碍儿童(病例组)和36名年龄、性别、智商与之相匹配的发育障碍儿童(对照组)进行T1加权三维磁共振成像扫描,应用基于体素的形态测量法比较两组全脑和脑灰、白质体积的差异。结果:与对照组相比,2~3岁广泛性发育障碍儿童全脑及脑灰、白质体积显著增大(P<0.05);左侧颞中回及颞上回灰质体积显著增大;右侧中央前回、左侧中央后回灰质体积显著减小;额中回、左侧额上回、左侧颞中回、右侧额中回及右侧颞横回处脑白质体积显著增大(P<0.001)。结论:2~3岁广泛性发育障碍儿童可能存在多个脑区体积异常改变。  相似文献   

16.
In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.  相似文献   

17.
The purpose of the present study was to describe in greater anatomical detail the changes in brain structure that occur during maturation between childhood and adolescence. High-resolution MRI, tissue classification, and anatomical segmentation of cortical and subcortical regions were used in a sample of 35 normally developing children and adolescents between 7 and 16 years of age (mean age 11 years; 20 males, 15 females). Each cortical and subcortical measure was examined for age and sex effects on raw volumes and on the measures as proportions of total supratentorial cranial volume. Results indicate age-related increases in total supratentorial cranial volume and raw and proportional increases in total cerebral white matter. Gray-matter volume reductions were only observed once variance in total brain size was proportionally controlled. The change in total cerebral white-matter proportion was significantly greater than the change in total cerebral gray-matter proportion over this age range, suggesting that the relative gray-matter reduction is probably due to significant increases in white matter. Total raw cerebral CSF volume increases were also observed. Within the cerebrum, regional patterns varied depending on the tissue (or CSF) assessed. Only frontal and parietal cortices showed changes in gray matter, white matter, and CSF measures. Once the approximately 7% larger brain volume in males was controlled, only mesial temporal cortex, caudate, thalamus, and basomesial diencephalic structures showed sex effects with the females having greater relative volumes in these regions than the males. Overall, these results are consistent with earlier reports and describe in greater detail the regional pattern of age-related differences in gray and white matter in normally developing children and adolescents.  相似文献   

18.
BACKGROUND: Prior studies have demonstrated reduced frontal lobe volumes in depressed adolescents. In this study, frontal lobe gray and white matter volumes in adolescents with major depressive disorder were evaluated. METHODS: Nineteen depressed and thirty-eight healthy comparison adolescents were recruited for a magnetic resonance imaging study. Images were segmented into gray matter, white matter, and cerebrospinal fluid. Morphometric measurements of the whole brain and frontal lobe region were completed. RESULTS: Whole brain volumes were significantly smaller in depressed subjects compared with the healthy comparison subjects. Significantly smaller frontal white matter volumes and significantly larger frontal gray matter volumes were found in the depressed subjects, after controlling for age and whole brain volume. CONCLUSIONS: These results are consistent with the hypothesis that a deficit in frontal volume exists during cortical development in adolescents with depression. Further studies are needed to assess whether volume differences resolve over time and the extent to which these differences influence response to treatment.  相似文献   

19.
OBJECTIVE: The objective of the present study is to replicate findings in first-episode psychosis reporting a smaller volume in brain structures in a population with adolescent onset. METHOD: Magnetic resonance imaging studies were performed on 23 psychotic adolescents (12-18 years old, 17 males, 6 females) consecutively admitted to an adolescent inpatient unit and on 37 normal controls (13-18 years, 23 males, 14 females) matched for age, sex, and years of education. Diagnosis was made at baseline on the basis of the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version and confirmed after 12 months of follow-up. Total brain volume and gray matter, white matter, and cerebrospinal fluid (CSF) volumes of the frontal, parietal, temporal, and occipital lobes were measured bilaterally using a segmentation method based on the Talairach grid system. RESULTS: Male patients showed significantly larger volumes than did male controls in overall CSF and left frontal and right parietal sulci CSF. Male patients also showed significantly lower volumes of gray matter in the right and left frontal lobes. No significant volumetric differences were found in females. There were no differences between individuals with a diagnosis of schizophrenia at follow-up and the rest of the patients. CONCLUSIONS: This study suggests that larger CSF and lower gray matter volumes in the frontal lobes may be a nonspecific vulnerability marker for psychosis in male adolescents.  相似文献   

20.
Purpose: To characterize prospective neurodevelopmental changes in brain structure in children with new and recent‐onset epilepsy compared to healthy controls. Methods: Thirty‐four healthy controls (mean age 12.9 years) and 38 children with new/recent‐onset idiopathic epilepsy (mean age 12.9 years) underwent 1.5 T magnetic resonance imaging (MRI) at baseline and 2 years later. Prospective changes in total cerebral and lobar gray and white matter volumes were compared within and between groups. Results: Prospective changes in gray matter volume were comparable for the epilepsy and control groups, with significant (p < 0.0001) reduction in total cerebral gray matter, due primarily to significant (p < 0.001) reductions in frontal and parietal gray matter. Prospective white matter volume changes differed between groups. Controls exhibited a significant (p = 0.0012) increase in total cerebral white matter volume due to significant (p < 0.001) volume increases in the frontal, parietal, and temporal lobes. In contrast, the epilepsy group exhibited nonsignificant white matter volume change in the total cerebrum (p = 0.51) as well as across all lobes (all p’s > 0.06). The group by white matter volume change interactions were significant for total cerebrum (p = 0.04) and frontal lobe (p = 0.04). Discussion: Children with new and recent‐onset epilepsy exhibit an altered pattern of brain development characterized by delayed age‐appropriate increase in white matter volume. These findings may affect cognitive development through reduced brain connectivity and may also be related to the impairments in executive function commonly reported in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号