首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a pulmonary model of infection, we demonstrated previously that A/Sn and B10.A mice are, respectively, resistant and susceptible to Paracoccidioides brasiliensis infection. Employing the same experimental model, we examined herein the role of CD8(+) T cells in the course of paracoccidioidomycosis. Treatment with anti-CD8 monoclonal antibodies caused a selective depletion of pulmonary and splenic CD8(+) T cells in both mouse strains. The number of pulmonary CD4(+) T cells and immunoglobulin-positive cells was independent of the number of CD8(+) T cells. In susceptible mice, the loss of CD8(+) T cells by in vivo treatment with anti-CD8 monoclonal antibodies impaired the clearance of yeasts from the lungs and increased the fungal dissemination to the liver and spleen. The same treatment in resistant mice increased fungal dissemination to extrapulmonary tissues but did not alter the pulmonary fungal load. Furthermore, CD8(+) T-cell depletion did not modify delayed-type hypersensitivity reactions of A/Sn mice but increased these reactions in B10.A mice. The production of P. brasiliensis-specific antibodies by resistant and susceptible mice depleted of CD8(+) T cells was similar to that of mice given control antibody. Histopathologically, depletion of CD8(+) T cells did not disorganize the focal granulomatous lesions developed by both mouse strains. These results indicate that CD8(+) T cells are necessary for optimal clearance of the fungus from tissues of mice infected with P. brasiliensis and demonstrate more prominent protective activity by those cells in the immune responses mounted by susceptible animals.  相似文献   

2.
In areas where schistosomiasis is endemic, a negative correlation is observed between atopy and helminth infection, associated with a low prevalence of asthma. We investigated whether Schistosoma mansoni infection or injection of parasite eggs can modulate airway allergic inflammation in mice, examining the mechanisms of such regulation. We infected BALB/c mice with 30 S. mansoni cercariae or intraperitoneally injected 2,500 schistosome eggs, and experimental asthma was induced by ovalbumin (OVA). The number of eosinophils in bronchoalveolar lavage fluid was higher in the asthmatic group than in asthmatic mice infected with S. mansoni or treated with parasite eggs. Reduced Th2 cytokine production, characterized by lower levels of interleukin-4 (IL-4), IL-5, and immunoglobulin E, was observed in both S. mansoni-treated groups compared to the asthmatic group. There was a reduction in the number of inflammatory cells in lungs of S. mansoni-infected and egg-treated mice, demonstrating that both S. mansoni infection and the egg treatment modulated the lung inflammatory response to OVA. Only allergic animals that were treated with parasite eggs had increased numbers of CD4(+) CD25(+) Foxp3(+) T cells and increased levels of IL-10 and decreased production of CCL2, CCL3, and CCL5 in the lungs compared to the asthmatic group. Neutralization of IL-10 receptor or depletion of CD25(+) T cells in vivo confirmed the critical role of CD4(+) CD25(+) Foxp3(+) regulatory T cells in experimental asthma modulation independent of IL-10.  相似文献   

3.
In the present study, we elucidated the effect of synthetic CpG-containing oligodeoxynucleotides (ODN) on pulmonary and disseminated infection caused by Cryptococcus neoformans. CDF-1 mice were inoculated intratracheally with a highly virulent strain of this pathogen, which resulted in massive bacterial growth in the lung, dissemination to the brain and death. Administration of CpG-ODN promoted the clearance of C. neoformans in the lungs, decreased their dissemination to brain and prolonged the survival of infected mice. These effects correlated well with the enhanced production of interleukin (IL)-12 and interferon (IFN)-gamma and attenuated secretion of IL-4 in bronchoalveolar lavage fluids (BALF) and promoted development of Th1 cells, as indicated by the increased production of IFN-gamma by paratracheal lymph node cells upon restimulation with cryptococcal antigens. The IFN-gamma synthesis in BALF was inhibited by depletion of CD8(+) and CD4(+) T cells on days 7 and 14 after infection, respectively, but not by depletion of NK and gammadelta T cells. Consistent with these data, intracellular expression of IFN-gamma was detected predominantly in CD8(+) and CD4(+) T cells in the lung on days 7 and 14, respectively. The protective effect of CpG-ODN, as shown by the prolonged survival, was completely and partially inhibited by depletion of CD4(+) or CD8(+) T cells, respectively, but not by depletion of other cells. Finally, TNF-alpha was markedly induced by CpG-ODN, and the protective effect of this agent was strongly inhibited by neutralizing anti-TNF-alpha MoAb. Our results indicate that CpG-ODN alters the Th1-Th2 cytokine balance and promotes host resistance against infection with C. neoformans.  相似文献   

4.
CC chemokine receptor 1 (CCR1) is found on a variety of cells in the immune system and has been shown to play an important role in the host response to pathogens. These studies used a murine model of virus-induced exacerbation of allergic airway disease to examine the role of CCR1 on T cells associated with immune responses taking place in the lung. Lungs of virally exacerbated allergic animals contained elevated levels of interferon-gamma and interleukin-13 and increased levels of CCR1 ligands CCL3 and CCL5. CCR1 expression on T cells was increased in virally exacerbated allergic animals over the level observed in mice sensitized to allergen or exposed to viral infection alone. Using mice deficient for CCR1, we observed decreased airway hyperreactivity and Th2 cytokine production from CD4(+) T cells when this receptor was absent. Transfer studies demonstrated that neither CD4(+) nor CD8(+) T cells from CCR1(-/-) mice migrated to the lymph node as efficiently as wild-type T cells. Intracellular cytokine staining in wild-type mice revealed that CCR1(+) CD4(+) and CD8(+) T cells are associated with interleukin-13 production. Thus, these studies identify CCR1 as a potential target for alleviating T-cell accumulation during exacerbation of asthmatic disease.  相似文献   

5.
Aspergillus fumigatus is an important fungal pathogen that causes invasive pulmonary disease in immunocompromised hosts. Respiratory exposure to A. fumigatus spores also causes allergic bronchopulmonary aspergillosis, a Th2 CD4+-T-cell-mediated disease that accompanies asthma. The microbial factors that influence the differentiation of A. fumigatus-specific CD4+ T lymphocytes into Th1 versus Th2 cells remain incompletely defined. We therefore examined CD4+-T-cell responses of immunologically intact mice to intratracheal challenge with live or heat-inactivated A. fumigatus spores. Live but not heat-inactivated fungal spores resulted in recruitment of gamma interferon (IFN-gamma)-producing, fungus-specific CD4+ T cells to lung airways, achieving A. fumigatus-specific frequencies exceeding 5% of total CD4+ T cells. While heat-inactivated spores did not induce detectable levels of IFN-gamma-producing, A. fumigatus-specific CD4+ T cells in the airways, they did prime CD4+ T-cell responses in draining lymph nodes that produced greater amounts of interleukin 4 (IL-4) and IL-13 than T cells responding to live conidia. While immunization with live fungal spores induced antibody responses, we found a marked decrease in isotype-switched, A. fumigatus-specific antibodies in sera of mice following immunization with heat-inactivated spores. Our studies demonstrate that robust Th1 T-cell and humoral responses are restricted to challenge with fungal spores that have the potential to germinate and cause invasive infection. How the adaptive immune system distinguishes between metabolically active and inactive fungal spores remains an important question.  相似文献   

6.
The opportunistic fungal pathogen Cryptococcus neoformans causes lung inflammation and fatal meningitis in immunocompromised patients. Regulatory T (Treg) cells play an important role in controlling immunity and homeostasis. However, their functional role during fungal infection is largely unknown. In this study, we investigated the role of Treg cells during experimental murine pulmonary C. neoformans infection. We show that the number of CD4+FoxP3+ Treg cells in the lung increases significantly within the first 4 weeks after intranasal infection of BALB/c wild‐type mice. To define the function of Treg cells we used DEREG mice allowing selective depletion of CD4+FoxP3+ Treg cells by application of diphtheria toxin. In Treg cell‐depleted mice, stronger pulmonary allergic inflammation with enhanced mucus production and pronounced eosinophilia, increased IgE production, and elevated fungal lung burden were found. This was accompanied by higher frequencies of GATA‐3+ T helper (Th) 2 cells with elevated capacity to produce interleukin (IL)‐4, IL‐5, and IL‐13. In contrast, only a mild increase in the Th1‐associated immune response unrelated to the fungal infection was observed. In conclusion, the data demonstrate that during fungal infection pulmonary Treg cells are induced and preferentially suppress Th2 cells thereby mediating enhanced fungal control.  相似文献   

7.
Susceptibility to infection with Cryptococcus neoformans is tightly determined by production of IL-4. In this study, we investigated the time course of IL-4 production and its innate cellular source in mice infected intranasally with C. neoformans. We show that pulmonary IL-4 production starts surprisingly late after 6 weeks of infection. Interestingly, in the lungs of infected mice, pulmonary T helper (Th) cells and eosinophils produce significant amounts of IL-4. In eosinophil-deficient ΔdblGATA mice, IL-33 receptor-expressing Th2s are significantly reduced, albeit not absent, whereas protective Th1 and Th17 responses are enhanced. In addition, recruitment of pulmonary inflammatory cells during infection with C. neoformans is reduced in the absence of eosinophils. These data expand previous findings emphasizing an exclusively destructive effector function by eosinophilic granulocytes. Moreover, in ΔdblGATA mice, fungal control is slightly enhanced in the lung; however, dissemination of Cryptococcus is not prevented. Therefore, eosinophils play an immunoregulatory role that contributes to Th2-dependent susceptibility in allergic inflammation during bronchopulmonary mycosis.  相似文献   

8.
The immune response to Cryptococcus neoformans following pulmonary infection of C57BL/6 wild-type (WT) mice results in the development of persistent infection with characteristics of allergic bronchopulmonary mycosis (ABPM). To further clarify the role of Th1/Th2 polarizing cytokines in this model, we performed kinetic analysis of cytokine responses and compared cytokine profiles, pathologies, and macrophage (Mac) polarization status in C. neoformans-infected WT, interleukin-4-deficient (IL-4(-/-)), and gamma interferon-deficient (IFN-γ(-/-)) C57BL/6 mice. Results show that cytokine expression in the infected WT mice is not permanently Th2 biased but changes dynamically over time. Using multiple Mac activation markers, we further demonstrate that IL-4 and IFN-γ regulate the polarization state of Macs in this model. A higher IL-4/IFN-γ ratio leads to the development of alternatively activated Macs (aaMacs), whereas a higher IFN-γ/IL-4 ratio leads to the generation of classically activated Macs (caMacs). WT mice that coexpress IL-4 and IFN-γ during fungal infection concurrently display both types of Mac polarization markers. Concurrent stimulation of Macs with IFN-γ and IL-4 results in an upregulation of both sets of markers within the same cells, i.e., formation of an intermediate aaMac/caMac phenotype. These cells express both inducible nitric oxide synthase (important for clearance) and arginase (associated with chronic/progressive infection). Together, our data demonstrate that the interplay between Th1 and Th2 cytokines supports chronic infection, chronic inflammation, and the development of ABPM pathology in C. neoformans-infected lungs. This cytokine interplay modulates Mac differentiation, including generation of an intermediate caMac/aaMac phenotype, which in turn may support chronic "steady-state" fungal infection and the resultant ABPM pathology.  相似文献   

9.
Cytomegalovirus (CMV) infections were induced in male BALB/c mice treated with rat monoclonal antibodies (MAb) to deplete selectively CD8 and CD4 cell populations in vivo. The animals were then inoculated intraperitoneally with murine CMV and the infection was monitored virologically and histologically. High concentrations of virus were found in the lungs of mice depleted of CD4 or both CD4 and CD8 cells. These animals developed pulmonary infections that persisted for at least 49 days after inoculation. In contrast, immunologically intact mice and those administered anti-CD8 MAb experienced only a transient infection of the lungs. Focal interstitial infiltrates of mononuclear cells were demonstrated in pulmonary tissues of CD4 MAb-treated animals, but not in normal mice and those receiving the CD8 MAb. Adoptive transfer of CD4 cells to animals (rendered immune-incompetent by thymectomy and irradiation) protected against pulmonary infection and the development of interstitial pneumonia. Mice treated with CD4 MAb failed to produce specific CMV antibody, whereas the depletion of CD8 cells had no effect on antibody elaboration. Administration of anti-CD4 and CD8 MAb did not affect virus replication in the salivary glands, the preferential site for CMV infection in the mouse. Induction of pulmonary infection and interstitial pneumonia by CMV in BALB/c mice is mediated by CD4 T cells.  相似文献   

10.
Host defense mechanisms against Pneumocystis carinii are not fully understood. Previous work in the murine model has shown that host defense against infection is critically dependent upon host CD4(+) T cells. The recently described Th17 immune response is predominantly a function of effector CD4(+) T cells stimulated by interleukin-23 (IL-23), but whether these cells are required for defense against P. carinii infection is unknown. We tested the hypothesis that P. carinii stimulates the early release of IL-23, leading to increases in IL-17 production and lung effector CD4(+) T-cell population that mediate clearance of infection. In vitro, stimulation of alveolar macrophages with P. carinii induced IL-23, and IL-23p19 mRNA was expressed in lungs of mice infected with this pathogen. To address the role of IL-23 in resistance to P. carinii, IL-23p19-/- and wild-type control C57BL/6 mice were infected and their fungal burdens and cytokine/chemokine responses were compared. IL-23p19-/- mice displayed transient but impaired clearance of infection, which was most apparent 2 weeks after inoculation. In confirmatory studies, the administration of either anti-IL-23p19 or anti-IL-17 neutralizing antibody to wild-type mice infected with P. carinii also caused increases in fungal burdens. IL-17 and the lymphocyte chemokines IP-10, MIG, MIP-1alpha, MIP-1beta, and RANTES were decreased in the lungs of infected IL-23p19-/- mice in comparison to their levels in the lungs of wild-type mice. In IL-23p19-/- mice infected with P. carinii, there were fewer effector CD4(+) T cells in the lung tissue. Collectively, these studies indicate that the IL-23-IL-17 axis participates in host defense against P. carinii.  相似文献   

11.
The pathogenesis of asthma has been linked to the production of type 2 cytokines, which can be expressed by several cell types in the lung. These studies investigated CD8(+) T cell responses in a murine cockroach antigen (CRA) model of asthma. The results from these present studies show that depletion of CD8(+) T cells after allergen sensitization to CRA significantly reduces airway hyperreactivity, airway eosinophilia and pulmonary type 2 cytokine levels. The data demonstrate that CD8(+) T cells from CRA-sensitized mice can produce type 2 cytokines IL-4, IL-5 and IL-13 upon antigen challenge, and that the transfer of these cells into naive mice will cause airway hyperreactivity when exposed to CRA. We found that the transferred airway response is dependent on both IL-4 and IL-13 from CD8(+) T cells using cytokine knockout mice. Compared to CD4(+) T cells, CD8(+) T cells were not as numerous in the lungs of sensitized and challenged mice, but were as efficacious in the transfer of airway disease. The most severe airway response was observed when both CD4(+) and CD8(+) T cells were transferred at the same time. Altogether, these studies highlight a role for CD8(+) T lymphocytes in the development of allergen-induced airway responses.  相似文献   

12.
C57BL/6 mice develop an allergic bronchopulmonary mycosis following intratracheal inoculation of Cryptococcus neoformans 24067. We determined that only low levels of tumor necrosis factor alpha (TNF-alpha) are produced in the lungs following infection. Thus, the objective of the present studies was to determine whether treatment with a TNF-alpha-expressing adenoviral vector (adenoviral vector with the murine TNF-alpha transgene under the control of the human cytomegalovirus promoter [AdTNFalpha]) could switch the type 2 (T2) T-cell response/T1 T-cell response balance toward the T1 T-cell response. AdTNFalpha induced an increase in TNF-alpha expression at days 3 and 7. At days 7 to 14, the number of cryptococcal lung CFU continued to increase in both untreated and control adenoviral vector (empty adenovirus type 5 backbone)-treated mice, but the number was ultimately 100-fold lower following AdTNFalpha treatment. AdTNFalpha markedly increased neutrophil and macrophage numbers, and pulmonary eosinophilia did not develop. CXCL1, CXCL2, and gamma interferon were also up-regulated, while eotaxin, interleukin-4 (IL-4), and IL-5 were down-regulated. AdTNFalpha treatment also increased the number of CD80(+) and CD40(+) cells and decreased the number of CD86(+) cells (CD11b(+) and CD11c(+)) in the lungs. Major histocompatibility complex class II levels on CD11b(+) cells were increased. Whole-lung expression of inducible nitric oxide synthase was increased, while YM2 expression and acidic mammalian chitinase expression were decreased. None of these effects were observed with the control (empty) adenoviral vector. Overall, these results support the hypothesis that early TNF-alpha expression promotes a shift in T-cell and macrophage polarization from T2/alternatively activated macrophages toward T1/classically activated macrophages, resulting in control of the fungal infection and prevention of the allergic response.  相似文献   

13.
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T‐cell responses. Type 1 responses, characterized by interferon‐γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin‐17A (IL‐17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL‐5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T‐cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune‐compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T‐cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.  相似文献   

14.
T cell responses of interleukin (IL)-4(-/-) and wild-type (WT) mice infected with the helper T cell 2 (Th2) response-inducing pathogen Schistosoma mansoni were compared. As expected, given the important role of IL-4 in Th2 response induction, the absence of IL-4 resulted in diminished Th2 responses, apparent as reduced production of IL-4, -5, and -10 by CD4(+) cells isolated from the spleens of infected IL-4(-/-) mice. Surprisingly, these cells produced significantly less interferon (IFN)-gamma and proliferated less than did those from infected WT mice after T cell receptor ligation. CD8(+) cells isolated from infected IL-4(-/-) mice also produced less IFN-gamma than WT CD8 cells, although there was no difference in the proliferative responses of these cell populations. After infection, spleens of infected IL-4(-/-) mice did not enlarge to the same extent as those of WT mice, and attrition of the CD8(+) cell population within this lymphoid organ was noted. Taken together, the data indicate that in addition to inhibiting Th2 response development, the lack of IL-4 during schistosomiasis significantly affects additional aspects of T cell responses.  相似文献   

15.
Mice deficient in CD8 T cells demonstrated levels of Th1 cytokines and granulomatous responses in the lungs very similar to those demonstrated by normal control mice and were fully capable of controlling pulmonary mycobacterial infection by Mycobacterium bovis BCG as assessed at day 37 postinfection. In comparison, mice deficient in CD4 T cells had similar levels of interleukin-12 (IL-12) and tumor necrosis factor alpha but lower levels of gamma interferon in the lungs and were still able to mount tissue granulomatous responses and control pulmonary mycobacterial infection. In contrast, IL-12−/− mice with impaired CD4 and CD8 T-cell responses had a markedly weakened control of infection, whereas SCID mice deficient in all T cells succumbed to such pulmonary mycobacterial infections.  相似文献   

16.
Resistance to Toxoplasma gondii has been shown to be mediated by gamma interferon (IFN-gamma) produced by NK, CD4(+), and CD8(+) T cells. While studies of SCID mice have implicated NK cells as the source of the cytokine in acute infection, several lines of evidence suggest that IFN-gamma production by CD4(+) T lymphocytes also plays an important role in controlling early parasite growth. To evaluate whether this function is due to nonspecific as opposed to T-cell receptor (TCR)-dependent stimulation by the parasite, we have examined the resistance to T. gondii infection of pigeon cytochrome c transgenic (PCC-Tg) Rag-2(-/-) mice in which all CD4(+) T lymphocytes are unreactive with the protozoan. When inoculated with the ME49 strain, PCC-Tg animals exhibited only temporary control of acute infection and succumbed by day 17. Intracellular cytokine staining by flow cytometry revealed that, in contrast to infected nontransgenic controls, infected PCC-Tg animals failed to develop IFN-gamma-producing CD4(+) T cells. Moreover, the CD4(+) lymphocytes from these mice showed no evidence of activation as judged by lack of upregulated expression of CD44 or CD69. Nevertheless, when acutely infected transgenic mice were primed by PCC injection, the lymphokine responses measured after in vitro antigen restimulation displayed a strong Th1 bias which was shown to be dependent on endogenous interleukin 12 (IL-12). The above findings argue that, while T. gondii-induced IL-12 cannot trigger IFN-gamma production by CD4(+) T cells in the absence of TCR ligation, the pathogen is able to nonspecifically promote Th1 responses against nonparasite antigens, an effect that may explain the immunostimulatory properties of T. gondii infection.  相似文献   

17.
We have previously reported that C57BL/6 mice vaccinated with a live, attenuated mutant of Coccidioides posadasii, referred to as the ΔT vaccine, are fully protected against pulmonary coccidioidomycosis. This model was used here to explore the nature of vaccine immunity during the initial 2-week period after intranasal challenge. Elevated neutrophil and eosinophil infiltration into the lungs of nonvaccinated mice contrasted with markedly reduced recruitment of these cells in vaccinated animals. The numbers of lung-infiltrated macrophages and dendritic cells showed a progressive increase in vaccinated mice and corresponded with reduction of the lung infection. Concentrations of selected inflammatory cytokines and chemokines were initially higher in lung homogenates of vaccinated mice but then generally decreased at 14 days postchallenge in correlation with containment of the organism and apparent dampening of the inflammation of host tissue. Profiles of cytokines detected in lung homogenates of ΔT-vaccinated mice were indicative of a mixed T helper 1 (Th1)-, Th2-, and Th17-type immune response, a conclusion which was supported by detection of lung infiltration of activated T cells with the respective CD4(+) gamma interferon (IFN-γ)(+), CD4(+) interleukin-5 (IL-5)(+), and CD4(+) IL-17A(+) phenotypes. While Th1 and Th2 immunity was separately dispensed of by genetic manipulation without loss of ΔT vaccine-mediated protection, loss of functional Th17 cells resulted in increased susceptibility to infection in immunized mice. Characterization of the early events of protective immunity to Coccidioides infection in vaccinated mice contributes to the identification of surrogates of immune defense and provides potential insights into the design of immunotherapeutic protocols for treatment of coccidioidomycosis.  相似文献   

18.
The role of T-cell receptor (TCR) gammadelta T cells in the induction of protective TCR alphabeta T cells against infection by the intracellular bacteria Listeria monocytogenes was analysed. We found that depletion of gammadelta T cells by anti-TCR delta monoclonal antibody treatment before intravenous immunization of mice with a sublethal dose of viable L. monocytogenes resulted in reduction of protection against secondary challenge infection in the immunized mice. The gammadelta T-cell depletion also reduced induction of protective alphabeta T cells capable of transferring the protection against challenge infection of L. monocytogenes into naive mice. Furthermore, the protective T cells that were affected by the gammadelta T-cell depletion were suggested to be CD8+ cytotoxic T cells rather than CD4+ T cells by the following observations. First, induction of cytotoxic T lymphocytes specific to a L. monocytogenes-derived H-2Kd-restricted peptide (listeriolysin O 91-99) was significantly suppressed by gammadelta T-cell depletion before immunization. Second, gammadelta T-cell depletion did not affect cytokine production and proliferation of T cells from immunized mice in response to in vitro stimulation with heat-killed Listeria which preferentially stimulates CD4+ T cells. Third, CD8+ alphabeta T cells from control immunized mice transferred protection against infection of L. monocytogenes into naive mice but only a limited degree of protection was transferred by CD8+ T cells from the gammadelta T-cell-depleted immunized mice; and fourth, CD4+ alphabeta T cells from the gammadelta T-cell-depleted mice transferred a similar level of protection as those from the control immunized mice. All these results suggest that gammadelta T cells participate in establishment of protective immunity against intracellular bacteria by supporting priming of bacterial antigen-specific CD8+ cytotoxic T cells.  相似文献   

19.
The role of CD8(+) T cells in the development of allergic airway disease is controversial. On the one hand, CD8(+) T cells are known to inhibit the development of airway hyperreactivity (AHR) in murine models of asthma. In humans, IL-10-producing CD8(+) T cells were shown to act as regulatory cells, inhibiting both proliferation and cytokine secretion of T cells. On the other hand, CD8(+) T cells can promote IL-5-mediated eosinophilic airway inflammation and the development of AHR in animal models. To examine this, we investigated the role of CD8(+) T cells during the induction of allergen-induced AHR and demonstrated a protective effect of CD8(+) T cells. Depletion of CD8(+) T cells prior to the immunization led to increased Th2 responses and increased allergic airway disease. However, after development of AHR, CD8(+) T cells that infiltrated the lungs secreted high levels of IL-4, IL-5 and IL-10, but little IFN-gamma, whereas CD8(+) T cells in the peribronchial lymph nodes or spleen produced high levels of IFN-gamma, but little or no Th2 cytokines. These data demonstrate protective effects of CD8(+)T cells against the induction of immune responses and show a functional diversity of CD8(+) T cells in different compartments of sensitized mice.  相似文献   

20.
Cysteine-cysteinyl chemokine receptor 4 (CCR4) is expressed by a variety of T-cell subsets and leukocytes. This study examined the participation of CCR4 in response to pulmonary infection with Mycobacterium bovis Bacille-Calmette-Guerin (BCG). Constitutive and induced CCR4 agonist expression was detected among large mononuclear cells. The course of infection and mobilization of effector cell populations were then analyzed in CCR4 knockout (CCR4(-/-)) mice. Compared with controls, CCR4(-/-) mice displayed delayed innate stage (<2 weeks) bacterial clearance and reduced late stage inflammation. Innate impairment was associated with reduced natural killer cell activation. In the adaptive phase, CCR4(-/-) mice generated effector T cells in draining lymph nodes and accumulated effector T cells in lungs, which resulted in normal adaptive stage bacterial elimination at 2 to 4 weeks. However, during the late stage, CCR4(-/-) mice had reduced interferonγ+CD4(+)α/β+ (Th1) and interleukin (IL)-17+CD4(+)α/β+ (Th17) T helper cells in lungs. In contrast, IL-17+ γ/δ T cells in lungs were unaffected. When challenged with mycobacterial antigen- (Ag-) Ag-coated beads to elicit a recall granulomatous response, CCR4(-/-) mice displayed abrogated recall granuloma formation and reduced interferon γ+ Th1 cells. These findings indicate that CCR4 supports innate natural killer cell activation and sustains later CD4(+) Th effector/memory antimycobacterial responses in the lung but is redundant in the early adaptive elimination phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号