首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The aim of this study was to investigate whether melatonin, a free radical scavenger and a general antioxidant, regulates the brain cell apoptosis caused by carbon ions in mice at the level of signal transduction pathway. Young Kun-Ming mice were divided into five groups: control group, irradiation group and three melatonin (1, 5, and 10 mg/kg daily for 5 days i.p.) plus irradiation-treated groups. An acute study was carried out to determine oxidative status, apoptotic cells, and mitochondrial membrane potential (ΔΨm) as well as pro- and anti-apoptotic protein levels in a mouse brain 12 hr after irradiation with a single dose of 4 Gy. In irradiated mice, a significant rise in oxidative stress and apoptosis (TUNEL positive) was accompanied by activated expression of Bax, cytochrome c, caspase-3, and decreased ΔΨm level. Melatonin supplementation was better able to reduce irradiation-induced oxidative damage marked by carbonyl or malondialdehyde content, and stimulate the antioxidant enzyme activities (superoxide dismutase and catalase) together with total antioxidant capacity. Moreover, administration with melatonin pronouncedly elevated the expression of Nrf2 which regulates redox balance and stress. Furthermore, melatonin treatment mitigated apoptotic rate, maintained ΔΨm, diminished cytochrome c release from mitochondria, down-regulated Bax/Bcl-2 ratio and caspase-3 levels, and consequently inhibited the important steps of irradiation-induced activation of mitochondrial pathway of apoptosis. Thus, we propose that the anti-apoptotic action with the alterations in apoptosis regulator provided by melatonin may be responsible at least in part for its antioxidant effect by the abolishing of carbon ion-induced oxidative stress along with increasing Nrf2 expression and antioxidant enzyme activity.  相似文献   

2.
During apoptosis, engagement of the mitochondrial pathway involves a decisive event characterized by the release of mitochondrial intermembrane space proteins, such as cytochrome c. This permeabilization of the mitochondrial outer membrane depends on activation and oligomerization of multidomain Bcl-2-family proteins Bax or Bak. Although specific members of the Bcl-2 family can activate these proapoptotic proteins, we found that heat directly activated Bax or Bak to induce cytochrome c release. A preparation of mitochondria heated at 43 degrees C released cytochrome c in association with Bak oligomerization, and Bcl-xL prevented these events. Similarly, heat induced the oligomerization of recombinant Bax, conferring an ability to permeabilize mitochondria. Compared with wild-type cells, bax(-/-)bak(-/-) mouse embryonic fibroblasts and mitochondria isolated from these cells were resistant to heat-induced cytochrome c release. Cytosol from untreated cells inhibited heat-activated Bax or Bak; however, depletion of cytosolic Bcl-xL ablated this protection. Although mitochondria heated in the presence of cytosol did not release cytochrome c, they displayed a dramatic increase in sensitivity to permeabilization by the BH3-only protein Bid. Additionally, a peptide corresponding to the BH3 domain of Puma counteracted the inhibitory effect of cytosol and permitted heat-activated Bak to permeabilize the mitochondria. Therefore, heat represents a condition under which multidomain proapoptotic proteins are activated, and this activation is regulated by both antiapoptotic and BH3-only members of the Bcl-2 family. Our results support an emerging paradigm, wherein the activation of Bax or Bak and the blockade of antiapoptotic Bcl-2 proteins are pivotal steps in the mitochondrial pathway of apoptosis.  相似文献   

3.
Previous studies have reported that melatonin protects cells and tissues against stressful stimuli. In the present study using HL-60 cells, we show that cells acquire increased resistance to apoptosis normally induced by heat shock when they are incubated with melatonin. This effect of melatonin is saturable at nanomolar concentrations and appears to be mediated by the MT2 subtype melatonin receptor. The high affinity melatonin receptor agonist, 2-iodomelatonin, reproduced the melatonin effect while it was fully blocked by the selective MT2 antagonist 4-phenyl-2-propionamidotetraline. The melatonin response to heat shock-induced apoptosis was pertussis toxin sensitive and, interestingly, the non-selective MT1/MT2 melatonin receptor ligand luzindole was found to display agonistic activity. Furthermore, we provide evidence that melatonin enhanced HSP27 mRNA expression as a result of heat shock - HSP27, is known to play an important role in the defense of cells against apoptosis induced by stressful agents. Together, these results demonstrate that melatonin, likely via receptor mechanisms, interferes with the apoptotic pathway activated by heat shock.  相似文献   

4.
The anti-apoptotic effect of melatonin has been described in vivo and in vitro. A previous report has revealed that melatonin suppresses nitric oxide (NO)-induced apoptosis via the induction of Bcl-2 expression in PGT-beta pineal cells. To investigate the protective mechanism of melatonin on NO donor S-nitroso-N-acetyl-penicillamine (SNAP)-induced apoptosis, we examined the anti-apoptotic upstream signaling pathway of Bcl-2 in the human neuroblastoma cell line SK-N-MC. The flow cytometry results revealed that apoptosis occurred in NO-treated cells, while cell death was inhibited by pretreatment with melatonin (100 microm). In addition, decreased Bax expression, increased Bcl-2 expression and a decreased release of cytochrome c into the cytosol were observed in the melatonin-pretreated SK-N-MC cells. We also found that melatonin treatment induced the activation of Akt/PKB and the phosphorylation of GSK3alpha/beta and Bad. Furthermore, melatonin treatment not only increased the protein-protein interactions between 14-3-3beta and p-Bad, but also decreased the release of cytochrome c from mitochondria into the cytosol. In summary, the protective effect of melatonin against NO-induced apoptosis was mediated by the inhibition of Bad translocation from the cytosol to the mitochondria by the induction of protein-protein interactions between 14-3-3beta and p-Bad.  相似文献   

5.
Nicorandil has been shown to inhibit myocyte apoptosis by opening of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and nitrate-like effect against oxidative stress. However, the detailed mechanism of nicorandil-mediated cardioprotection under hypoxic conditions remains to be largely unknown. The present study examined whether nicorandil can inhibit apoptosis via regulation of Bcl-2 family proteins in hypoxic myocytes. Neonatal rat cardiac myocytes were exposed to hypoxia for 7 hours. Hypoxia-induced myocyte apoptosis (13.9+/-0.9%) under glucose-rich conditions. Myocyte apoptosis was accompanied by loss of mitochondrial membrane potential (Deltapsi(m)), cytochrome c release from mitochondria into cytosol, and activation of caspase-3. Hypoxia also significantly increased Bax and decreased Bcl-2 mRNA and protein expression, thereby increasing Bax/Bcl-2 ratio. Nicorandil 100 micromol/l significantly decreased the percentage of apoptotic myocytes (7.2+/-0.5%) by inhibiting loss of Deltapsi(m) and translocation of cytochrome c. These effects of nicorandil were partially but significantly inhibited by cotreatment of either 500 micromol/l 5-hydroxydecanoate, a selective mitoK(ATP) channel antagonist, or 10 micromol/l 1H-[1,2,4]oxidazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Moreover, nicorandil significantly inhibited the hypoxia-induced changes in Bax and Bcl-2 expression, and concomitant increased Bax and decreased Bcl-2 immunoreactivity in mitochondria. These effects of nicorandil in Bax and Bcl-2 expression were significantly blunted by cotreatment of ODQ and 5-HD, respectively. Cotreatment of KT5823, an inhibitor of protein kinase G, significantly blocked the effect of nicorandil on Bax expression and 8-bromo-cyclic guanosine 3',5' monophosphate (8-bromo-cGMP), a cGMP analog, mimicked the effect of nicorandil on Bax expression. The present study demonstrates that nicorandil regulates Bcl-2 family proteins via opening of mitoK(ATP) channels and nitric oxide-cGMP signaling and inhibits hypoxia-induced mitochondrial death pathway.  相似文献   

6.
Melatonin is an indoleamine that is synthesized in the pineal gland and has an extensive repertoire of biological activities. In the present study, we found that melatonin reduced the growth of the human myeloid leukemia cells HL-60, inhibiting progression from G(1) to S phase of the cell cycle and increasing apoptotic cell death. Furthermore, melatonin treatment elevated cytochrome c release from mitochondria and augmented caspase-3 and caspase-9 activities. Upregulation of Bax and downregulation of Bcl-2 was also observed upon melatonin treatment. The effects of melatonin were found not to be mediated by membrane receptors for the indoleamine. Together, our results suggest that melatonin reduces the viability of HL-60 cells via induction of apoptosis primarily through regulation of Bax/Bcl-2 expression.  相似文献   

7.
Abstract:  The anti-apoptotic effect of melatonin has been described in vivo and in vitro. A previous report has revealed that melatonin suppresses nitric oxide (NO)-induced apoptosis via the induction of Bcl-2 expression in PGT-β pineal cells. To investigate the protective mechanism of melatonin on NO donor S -nitroso- N -acetyl-penicillamine (SNAP)-induced apoptosis, we examined the anti-apoptotic upstream signaling pathway of Bcl-2 in the human neuroblastoma cell line SK-N-MC. The flow cytometry results revealed that apoptosis occurred in NO-treated cells, while cell death was inhibited by pretreatment with melatonin (100 μ m ). In addition, decreased Bax expression, increased Bcl-2 expression and a decreased release of cytochrome c into the cytosol were observed in the melatonin-pretreated SK-N-MC cells. We also found that melatonin treatment induced the activation of Akt/PKB and the phosphorylation of GSK3α/β and Bad. Furthermore, melatonin treatment not only increased the protein–protein interactions between 14-3-3β and p-Bad, but also decreased the release of cytochrome c from mitochondria into the cytosol. In summary, the protective effect of melatonin against NO-induced apoptosis was mediated by the inhibition of Bad translocation from the cytosol to the mitochondria by the induction of protein–protein interactions between 14-3-3β and p-Bad.  相似文献   

8.
The antiapoptotic effect of melatonin has been described in several systems. In this study, the antagonistic effect of the methoxyindole on dexamethasone-induced apoptosis in mouse thymocytes was examined. Melatonin decreased both DNA fragmentation, and the number of annexin V-positive cells incubated in the presence of dexamethasone. Analysis of the expression of the members of the Bcl-2 family indicated that the synthetic glucocorticoid increased Bax protein levels without affecting the levels of Bcl-2, Bcl-XL, Bcl-XS, or Bak. This effect correlated with an increase in thymocytes bax mRNA levels. Dexamethasone also increased the release of cytochrome C from mitochondria. All of these effects were reduced in the presence of melatonin, which was ineffective per se on these parameters. In addition, the involvement of cAMP on glucocorticoid/melatonin antagonism was examined. Both melatonin and dexamethasone decreased the levels of this nucleotide in mouse thymocytes, indicating that the antagonistic action between both hormones involves a cAMP-independent pathway. In summary, the present results suggest that the antiapoptotic effect of melatonin on glucocorticoid-treated thymocytes would be a consequence of an inhibition of the mitochondrial pathway, presumably through the regulation of Bax protein levels.  相似文献   

9.
Previously we reported that proteasome inhibitors were able to overcome Bcl-2-mediated protection from apoptosis. Here we show that inhibition of the proteasome activity in Bcl-2-overexpressing cells accumulates the proapoptotic Bax protein to mitochondria/cytoplasm, where it interacts to Bcl-2 protein. This event was followed by release of mitochondrial cytochrome c into the cytosol and activation of caspase-mediated apoptosis. In contrast, proteasome inhibition did not induce any apparent changes in Bcl-2 protein levels. In addition, treatment with a proteasome inhibitor increased levels of ubiquitinated forms of Bax protein, without any effects on Bax mRNA expression. We also established a cell-free Bax degradation assay in which an in vitro-translated, (35)S-labeled Bax protein can be degraded by a tumor cell protein extract, inhibitable by addition of a proteasome inhibitor or depletion of the proteasome or ATP. The Bax degradation activity can be reconstituted in the proteasome-depleted supernatant by addition of a purified 20S proteasome or proteasome-enriched fraction. Finally, by using tissue samples of human prostate adenocarcinoma, we demonstrated that increased levels of Bax degradation correlated well with decreased levels of Bax protein and increased Gleason scores of prostate cancer. Our studies strongly suggest that ubiquitin/proteasome-mediated Bax degradation is a novel survival mechanism in human cancer cells and that selective targeting of this pathway should provide a unique approach for treatment of human cancers, especially those overexpressing Bcl-2.  相似文献   

10.
The in vivo effects of melatonin on proliferation and apoptosis of 17-beta-estradiol (E2)-induced pituitary prolactin-secreting tumor (prolactinoma) were investigated in rats kept in 12 L/12 D (lights on: 06:00-18:00 hr). As melatonin was shown to induce apoptosis of breast and liver tumor cells, we examined whether melatonin would induce apoptosis of rat pituitary prolactinoma cells. 0.125, 0.25, 0.50 or 1.0 mg melatonin/day/rat was administrated subcutaneously at 17:30-18:00 hr. The weight of prolactinomas was measured. Apoptosis was evaluated using the TdT-mediated dUTP nick-end labeling method. It was found that treatment with 0.25 and 0.50 mg melatonin for 97 days inhibited prolactinoma cell proliferation and increased prolactinoma cell apoptosis. Furthermore, melatonin induced mRNA expression of Bax and cytochrome c protein expression. Conversely, mRNA expression of Bcl-2, and mitochondrial membrane potential were inhibited by melatonin treatment. These results suggest that melatonin inhibits the proliferation and induces apoptosis of rat pituitary prolactin-secreting tumor via perturbation of mitochondria physiology.  相似文献   

11.
Melatonin has both the ability to induce intrinsic apoptosis in tumor cells while it inhibits it in non-tumor cells. Melatonin kills tumor cells through induction of reactive oxygen species generation and activation of pro-apoptotic pathways. In contrast, melatonin promotes the survival of non-tumor cells due to its antioxidant properties and the inhibition of pro-apoptotic pathways. In primary human villous trophoblast, a known pseudo-tumorigenic tissue, melatonin promotes the survival through inhibition of the Bax/Bcl-2 pathway while in BeWo choriocarcinoma cell line melatonin induces permeabilization of the mitochondrial membrane leading to cellular death. These findings suggest that the trophoblast is a good model to study the differential effects of melatonin on the intrinsic apoptosis pathway. This review describes the differential effects of melatonin on the intrinsic apoptosis pathway in tumor and non-tumor cells and presents the trophoblast as a novel model system in which to study these effects of melatonin.  相似文献   

12.
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic Bcl-2 family members such as Bax and Bak induce apoptogenic mitochondrial cytochrome c release and membrane potential (Deltapsi) loss in isolated mitochondria. Using isolated mitochondria, we showed that Bid and Bik, BH3-only proteins from the Bcl-2 family, induced cytochrome c release but not Deltapsi loss. Unlike Bax/Bak, the cytochrome c release induced by Bid/Bik was Ca(2+)-independent, cyclosporin A-insensitive, and respiration-independent. Furthermore, in contrast to Bax/Bak, Bid/Bik neither interacted with VDAC nor directly affected the VDAC activity in liposomes. Consistently, Bid/Bik induced apoptosis without Deltapsi loss, whereas Bax induced apoptosis with Deltapsi loss. These findings indicated the involvement of a different mechanism in BH3-only, protein-induced apoptogenic cytochrome c release.  相似文献   

13.
目的 探讨褪黑素(MT)体外抑制胰腺癌细胞株SW1990增殖及诱导其凋亡的作用.方法 以不同浓度的MT(0.1、0.5、1.0、2.5及5.0 mmol/L)处理体外培养的胰腺癌细胞株SW1990细胞24、48、72 h.用MTT法测定细胞增殖,以Annexin V/PI检测细胞凋亡,流式细胞仪分析细胞周期及Western blotting检测细胞Bcl-2、Bax蛋白表达.结果 MT呈浓度和时间依赖性抑制SW1990细胞的增殖.0.1~5.0 mmol/L MT作用48 h后,细胞的增殖抑制率为7.4%~85.8%.1.0~5.0 mmoL/L MT作用48 h后,G0/G1期比例为72.6%~85.3%,细胞凋亡率为21.5%~41.7%,同时Bcl-2蛋白表达下调,Bcl-2/Bax比值下降.结论 MT可以抑制SW1990细胞增殖,其机制可能与上调Bax表达,下调Bcl-2表达,促进细胞凋亡,将细胞周期阻止于G0/G1期有关.  相似文献   

14.
Among the non-neurological functions of melatonin, much attention is being directed to the ability of melatonin to modulate the immune system, whose cells possess melatonin-specific receptors and biosynthetic enzymes. Melatonin controls cell behaviour by eliciting specific signal transduction actions after its interaction with plasma membrane receptors (MT(1), MT(2)); additionally, melatonin potently neutralizes free radicals. Melatonin regulates immune cell loss by antagonizing apoptosis. A major unsolved question is whether this is due to receptor involvement, or to radical scavenging considering that apoptosis is often dependent on oxidative alterations. Here, we provide evidence that on U937 monocytic cells, apoptosis is antagonized by melatonin by receptor interaction rather than by radical scavenging. First, melatonin and a set of synthetic analogues prevented apoptosis in a manner that is proportional to their affinity for plasma membrane receptors but not to their antioxidant ability. Secondly, melatonin's antiapoptotic effect required key signal transduction events including G protein, phospholipase C and Ca(2+) influx and, more important, it is sensitive to the specific melatonin receptor antagonist luzindole.  相似文献   

15.
The pro‐apoptotic signalling cascades induced by tumour necrosis factor‐alpha (TNF‐α) have been intensively studied in multiple cellular systems. So far, it is known that TNF‐α can simultaneously activate survival and apoptotic cell death responses. The balance between these signals determines the ultimate response of the cell to TNF‐α. Moreover, emerging evidence suggests that melatonin may be involved in the protection of different cell types against apoptosis. Thus, the objective of this study was to evaluate the effect of melatonin on TNF‐α‐induced apoptosis in human leucocytes. Cells were treated with TNF‐α alone or in the presence of cycloheximide (CHX), which promotes caspase‐8 activation by eliminating the endogenous caspase‐8 inhibitor, c‐FLIP. Treatment with TNF‐α/CHX led to apoptotic cell death, as ascertained by annexin V/propidium iodide (PI) staining. Likewise, in the presence of CHX, TNF‐α stimulation produced cFLIP down‐regulation and subsequent caspase‐8 activation, thus directly triggering caspase‐3 activation and causing Bid truncation and subsequent caspase‐9 activation. Conversely, pre‐incubation of cells with melatonin inhibited TNF‐α‐/CHX‐evoked leucocyte apoptosis. Similarly, pretreatment of leucocytes with melatonin increased cFLIP protein levels, thereby preventing TNF‐α‐/CHX‐mediated caspase processing. Blockade of melatonin membrane receptor MT1/MT2 or extracellular signal‐regulated kinase (ERK) pathway with luzindole or PD98059, respectively, abolished the inhibitory effects of melatonin on leucocyte apoptosis evoked by TNF‐α/CHX. In conclusion, the model proposed by these findings is that the MT1/MT2 receptors, which are under the positive control of melatonin, trigger an ERK‐dependent signalling cascade that interferes with the anti‐apoptotic protein cFLIP modulating the cell life/death balance of human leucocytes.  相似文献   

16.
目的 探讨沉默热休克蛋白(HSP)70-2对肝癌细胞生长、凋亡的影响,以及诱导肝癌细胞凋亡的详细作用机制. 方法 Westem blot、免疫细胞化学法检测HSP70-2在4种肝癌细胞和正常肝细胞中的表达.设计合成针对HSP70-2基因的特异性短发夹状RNA(shRNA),构建真核表达载体HSP70-2 shRNA1和HSP70-2 shRNA2.转染肝癌细胞后,四甲基偶氮唑盐法检测细胞增殖,膜联蛋白/碘化丙啶双染法检测细胞凋亡情况,罗丹明染色检测细胞线粒体跨膜电位变化,Western blot检测多聚ADP-核糖聚合酶、caspase-3、caspase-9蛋白切割情况,以及细胞色素C、Bax,Bcl-2蛋白的表达变化. 结果 HSP70-2在4种肝癌细胞中均高表达,在L02细胞中仅有微量表达.HSP70-2 shRNA1、shRNA2均能有效抑制肝癌细胞中HSP70-2的表达.沉默HSP70-2基因显著抑制肝癌细胞生长,诱导肝癌细胞凋亡,转染48 h后,shRNA1和shRNA2诱导HepG2细胞的凋亡指数分别为55.8%±1.8%和57.1%±1.6%,诱导Huh细胞凋亡指数分别为54.9%±1.1%和60.2%±2.6%,与对照组相比,差异均有统计学意义,P值均<0.01.转染HSP70-2 shRNA 48 h后,肝癌细胞线粒体跨膜电位显著下降,细胞色素C从线粒体释放到胞质中,caspase-3、caspase-9激活,多聚ADP核糖聚合酶被剪切降解,抗凋亡蛋白Bcl-2表达减少,促凋亡蛋白Bax表达明显增加.结论 沉默HsP70-2能通过激活线粒体凋亡通路导致肝癌细胞凋亡.  相似文献   

17.
Jia L  Macey MG  Yin Y  Newland AC  Kelsey SM 《Blood》1999,93(7):2353-2359
It has been suggested that the ratio of Bcl-2 family proapoptotic proteins to antiapoptotic proteins determines the sensitivity of leukemic cells to apoptosis. However, it is believed that Bcl-2 family proteins exert their function on apoptosis only when they target to the mitochondrial outer membrane. The vinblastine-resistant T-lymphoblastic leukemic cell line CEM/VLB100 has increased sensitivity to tumor necrosis factor-alpha (TNF-alpha)-induced cytochrome c release, mitochondrial respiratory inhibition, and consequently apoptosis, compared with parental CEM cells. However, there was no difference between the two cell lines in the expression of Bcl-2 family proteins Bcl-2, Bcl-XL, Bcl-XS, Bad, and Bax at the whole cell level, as analyzed by Western blotting. Bcl-2 mainly located to mitochondria and light membrane as a membrane-bound protein, whereas Bcl-XL was located in both mitochondria and cytosol. Similar levels of both Bcl-2 and Bcl-XL were present in the resting mitochondria of the two cell lines. Although the proapoptotic proteins Bcl-XS, Bad, and Bax were mainly located in the cytosol, CEM/VLB100 mitochondria expressed higher levels of these proapoptotic proteins. Subcellular redistribution of the Bcl-2 family proteins was detected in a cell-free system by both Western blotting and flow cytometry after exposure to TNF-alpha. The levels of Bcl-2 family proteins were not altered at the whole cell level by TNF-alpha. However, after exposure to TNF-alpha, Bax, Bad, and Bcl-XS translocated from the cytosol to the mitochondria of both cell lines. An increase in Bcl-2 levels was observed in CEM mitochondria, which showed resistance to TNF-alpha-induced cytochrome c release. By contrast, decreased mitochondrial Bcl-2 was observed in CEM/VLB100 cells, which released cytochrome c from the mitochondria and underwent apoptosis as detected by fluorescence microscopy. We conclude that mitochondrial levels of Bcl-2 family proteins may determine the sensitivity of leukemic cells to apoptosis and that, furthermore, these levels may change rapidly after exposure of cells to toxic stimuli.  相似文献   

18.
We examined the effect of daily melatonin supplementation on liver apoptosis induced by aging in rats. Young (3-month-old) and aged (24-month-old) Wistar rats were supplemented daily with melatonin in their drinking water (20 mg/L) for 4 weeks. Aged rats showed increases in the liver concentration of thiobarbituric acid-reactive substances and in the oxidized/reduced glutathione ratio. These increases were accompanied by apoptotic ultrastructural alterations and increases in cytochrome c mitochondrial release, Bax to Bcl-2 relative expression, and activity of caspase-3. No significant changes were observed in Fas-ligand (Fas-L) expression and caspase-8 activity. Melatonin administration was able to abrogate changes detected in aged rats. Data suggest that liver apoptotic cell death is induced by reactive oxygen species, via the intrinsic signalling pathway, and that the antiapoptotic action provided by melatonin is related to its antioxidant effect, with reduction of cytochrome c release by the modulation of Bcl-2 and Bax genes.  相似文献   

19.
The exact mechanism of apoptosis in neutrophils (PMNs) and the explanation for the antiapoptotic effect of granulocyte colony-stimulating factor (G-CSF) in PMNs are unclear. Using specific fluorescent mitochondrial staining, immunofluorescent confocal microscopy, Western blotting, and flow cytometry, this study found that PMNs possess an unexpectedly large number of mitochondria, which are involved in apoptosis. Spontaneous PMN apoptosis was associated with translocation of the Bcl-2-like protein Bax to the mitochondria and subsequent caspase-3 activation, but not with changes in the expression of Bax. G-CSF delayed PMN apoptosis and prevented both associated events. These G-CSF effects were inhibited by cycloheximide. The general caspase inhibitor z-Val-Ala-DL-Asp-fluoromethylketone (zVAD-fmk) prevented caspase-3 activation and apoptosis in PMNs, but not Bax redistribution. PMN-derived cytoplasts, which lack a nucleus, granules, and mitochondria, spontaneously underwent caspase-3 activation and apoptosis (phosphatidylserine exposure), without Bax redistribution. zVAD-fmk inhibited both caspase-3 activation and phosphatidylserine exposure in cultured cytoplasts. Yet, G-CSF prevented neither caspase-3 activation nor apoptosis in cytoplasts, confirming the need for protein synthesis in the G-CSF effects. These data demonstrate that (at least) 2 routes regulate PMN apoptosis: one via Bax-to-mitochondria translocation and a second mitochondria-independent pathway, both linked to caspase-3 activation. Moreover, G-CSF exerts its antiapoptotic effect in the first, that is, mitochondria-dependent, route and has no impact on the second.  相似文献   

20.
The function of melatonin as a protective agent against newborn hypoxic‐ischemic (H‐I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H‐I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H‐I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H‐I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H‐I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号