首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Telomere length has been linked to disease stage and degree of (pan-)cytopenia in patients with bone marrow failure syndromes. The aim of the current study was to analyze the impact of replicative stress on telomere length in residual glycosylphosphatidylinositol-positive (GPI+) versus GPI- hematopoiesis in patients with paroxysmal nocturnal hemoglobinuria (PNH). Peripheral blood granulocytes from 16 patients and 22 healthy individuals were analyzed. For this purpose, we developed proaerolysin flow-FISH, a novel methodology that combines proaerolysin staining (for GPI expression) with flow-FISH (for telomere length measurement). We found significantly shortened telomeres in GPI- granulocytes (mean +/- SE: 6.26 +/- 0.27 telomere fluorescence units [TFU]), both compared with their GPI+ counterparts (6.88 +/- 0.38 TFU; P = .03) as well as with age-matched healthy individuals (7.73 +/- 0.23 TFU; P < .001). Our findings are in support of a selective growth advantage model of PNH assuming that damage to the GPI+ hematopoietic stem-cell (HSC) compartment leads to compensatory hyperproliferation of residual GPI- HSCs.  相似文献   

2.
Patients with paroxysmal nocturnal hemoglobinuria (PNH) have a large clonal population of blood cells deriving from hematopoietic stem cells (HSCs) deficient in glycosylphosphatidylinositol (GPI)-anchored surface molecules. A current model postulates that PNH arises through negative selection against normal HSCs exerted by autoreactive T cells, whereas PNH HSCs escape damage. We have investigated the inhibitory receptor superfamily (IRS) system in 13 patients with PNH. We found a slight increase in the proportion of T cells expressing IRS. In contrast to what applies to healthy donors, the engagement of IRS molecules on T cells from patients with PNH elicited a powerful cytolytic activity in a redirected killing assay, indicating that these IRSs belong to the activating type. This was confirmed by clonal analysis: 50% of IRS+ T-cell clones in patients with PNH were of the activating type, while only 5% were of the activating type in healthy donors. Moreover, the ligation of IRS induces (1) production of tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) and (2) brisk cytolytic activity against cells bearing appropriate IRS counter-ligands. In addition, these IRS+ T cells show natural killer (NK)-like cytolytic activity to which GPI- cells were less sensitive than GPI+ cells. Thus, T cells with NK-like features, expressing the activating isoforms of IRS, may include effector cells involved in the pathogenesis of PNH.  相似文献   

3.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired bone marrow disorder caused by expansion of a clone of hematopoietic cells lacking glycosylphosphatidylinositol (GPI)‐anchored membrane proteins. Multiple lines of evidence suggest immune attack on normal hematopoietic stem cells provides a selective growth advantage to PNH clones. Recently, frequent loss of HLA alleles associated with copy number‐neutral loss of heterozygosity in chromosome 6p (CN‐6pLOH) in aplastic anemia (AA) patients was reported, suggesting that AA hematopoiesis ‘escaped’ from immune attack by loss of HLA alleles. We report here the first case of CN‐6pLOH in a Japanese PNH patient only in GPI‐anchored protein positive (59%) granulocytes, but not in GPI‐anchored protein negative (41%) granulocytes. CN‐6pLOH resulted in loss of the alleles A*02:06‐DRB1*15:01‐DQB1*06:02, which have been reported to be dominant in Japanese PNH patients. Our patient had maintained nearly normal blood count for several years. Our case supports the hypothesis that a hostile immune environment drives selection of resistant hematopoietic cell clones and indicates that clonal evolution may occur also in normal phenotype (non‐PNH) cells in some cases.  相似文献   

4.
PIG-A mutations in normal hematopoiesis   总被引:7,自引:0,他引:7       下载免费PDF全文
Hu R  Mukhina GL  Piantadosi S  Barber JP  Jones RJ  Brodsky RA 《Blood》2005,105(10):3848-3854
Paroxysmal nocturnal hemoglobinuria (PNH) is caused by phosphatidylinositol glycan-class A (PIG-A) mutations in hematopoietic stem cells (HSCs). PIG-A mutations have been found in granulocytes from most healthy individuals, suggesting that these spontaneous PIG-A mutations are important in the pathogenesis of PNH. It remains unclear if these PIG-A mutations have relevance to those found in PNH. We isolated CD34+ progenitors from 4 patients with PNH and 27 controls. The frequency of PIG-A mutant progenitors was determined by assaying for colony-forming cells (CFCs) in methylcellulose containing toxic doses of aerolysin (1 x 10(-9) M). Glycosylphosphatidylinositol (GPI)-anchored proteins serve as receptors for aerolysin; thus, PNH cells are resistant to aerolysin. The frequency of aerolysin resistant CFC was 14.7 +/- 4.0 x 10(-6) in the bone marrow of healthy donors and was 57.0 +/- 6.7 x 10(-6) from mobilized peripheral blood. DNA was extracted from individual day-14 aerolysin-resistant CFCs and the PIG-A gene was sequenced to determine clonality. Aerolysin-resistant CFCs from patients with PNH exhibited clonal PIG-A mutations. In contrast, PIG-A mutations in the CFCs from controls were polyclonal, and did not involve T cells. Our data confirm the finding that PIG-A mutations are relatively common in normal hematopoiesis; however, the finding suggests that these mutations occur in differentiated progenitors rather than HSCs.  相似文献   

5.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder characterized by complement-mediated hemolysis. Abnormal hematopoietic cells from patients with PNH are deficient in glycosylphosphatidylinositol (GPI)-anchored proteins and clonally dominate various hematopoietic lineages in the bone marrow and the peripheral blood. Analysis of many patients with PNH has showed that somatic mutation in the X-linked gene PIG-A is responsible for the GPI- anchor deficiency in PNH. The PIG-A mutation must also be relevant to the clonal dominance of GPI-anchor deficient (GPI-) blood cells because two or more PIG-A mutant clones become dominant in many patients. However, whether the PIG-A mutation alone is sufficient for clonal dominance is not known. To address this question, we generated chimeric mice using Pig-a (the murine homologue of PIG-A) disrupted embryonic stem (ES) cells, in which the animals are chimeric with respect to the surface expression of GPI-anchored proteins. The chimerism of hematopoietic and nonhematopoietic tissues in such mice was always low, suggesting that the higher contribution of Pig-a disrupted GPI- cells had a lethal effect on the chimera. GPI- cells appeared in the peripheral blood of some of the chimeric mice. However, the percentage of GPI- erythrocytes did not increase for 10 months after birth, implying that the Pig-a mutation alone does not immediately cause the clonal dominance of GPI- blood cells; another pathologic or physiologic change(s) in the hematopoietic environments or in the clone itself may be necessary.  相似文献   

6.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder characterized by clonal blood cells that are deficient in glycosylphosphatidylinositol-anchored proteins because of somatic mutations of the PIG-A gene. Many patients with PNH have more than one PNH clone, but it is unclear whether a single PNH clone remains dominant or minor clones eventually become dominant. Furthermore, it is unknown how many hematopoietic stem cells (HSCs) sustain hematopoiesis and how long a single HSC can support hematopoiesis in humans. To understand dynamics of HSCs, we reanalyzed the PIG-A gene mutations in 9 patients 6 to 10 years after the previous analyses. The proportion of affected peripheral blood polymorphonuclear cells (PMNs) in each patient was highly variable; it increased in 2 (from 50% and 65% to 98% and 97%, respectively), was stable in 4 (changed less than 20%), and diminished in 3 (94%, 99%, and 98% to 33%, 57%, and 43%, respectively) patients. The complexity of these results reflects the high variability of the clinical course of PNH. In all patients, the previously predominant clone was still present and dominant. Therefore, one stem cell clone can sustain hematopoiesis for 6 to 10 years in patients with PNH. Two patients whose affected PMNs decreased because of a decline of the predominant PNH clone and who have been followed up for 24 and 31 years now have an aplastic condition, suggesting that aplasia is a terminal feature of PNH.  相似文献   

7.
Paroxysmal nocturnal hemoglobinuria (PNH) results from somatic mutations of the X-linked PIG-A (phosphatidylinositol glycan-class A) gene, which occurs on a hematopoietic stem cell level, leading to a proportion of blood cells being deficient in all glycosylphosphatidylinositol (GPI)-anchored surface proteins. Although these GPI-deficient cells can explain many of the clinical symptoms of PNH, the pathogenesis of PNH is still somewhat obscure and many questions remain. To assess the hematopoietic defect involved in PNH, CD34+ CD59+ (normal phenotype hematopoietic stem/progenitor) and CD34+ CD59- (PNH phenotype) cells from PNH patients (n = 16) and CD34+ CD59+ cells from healthy volunteers (n = 10) were sorted as single cells into 96-well flat-bottom culture plates containing culture medium supplemented with stem cell factor, interleukin (IL)-3, erythropoietin, granulocyte-macrophage-colony-stimulating factor (GM-CSF), G-CSF, IL-6, thrombopoietin, and Flt-3 ligand. We found that the single PNH CD34+ CD59- cells had a growth advantage over the single CD34+ CD59+ cells to some extent, but they both had impaired growth abilities compared with CD34+ cells from healthy volunteers.  相似文献   

8.
Paroxysmal nocturnal hemoglobinuria (PNH) arises from somatic mutation of a bone marrow progenitor that disrupts glycosylinositol phospholipid (GPI) anchoring of cell surface proteins. We recently characterized the expression of GPI-anchored decay acclerating factor (DAF) and CD59 during hematopoietic development in PNH marrow. We found that, although a subset of early hematopoietic precursors identified by the CD34+CD38- phenotype exhibits normal DAF and CD59 expression, DAF and CD59 are absent on the majority of CD34+CD38- cells. Pluripotent CD34+CD38- hematopoietic stem cells normally circulate in the peripheral blood and can be collected by apheresis, cryopreserved, and later used for reconstitution of hematopoiesis. In this study, we examined the phenotypes of CD34+ cells that are released into the blood of PNH patients. Analyses of apheresis samples from three affected individuals showed discrete populations of circulating DAF+CD59+CD34+ and DAF-CD59- CD34+ cells. Variable proportions of CD34+CD38- cells were present within the peripheral blood CD34+ cells of each patient, but in all three cases the DAF+CD59+CD34+CD38- cell subset subset. Because CD34+ cells lacking CD38 antigen are highly enriched for self-renewing hematopoietic stem cells, these findings indicate that apheresis samples can serve as a source of unaffected stem cells for autologous marrow transplantation of PNH patients.  相似文献   

9.
《Seminars in hematology》2022,59(3):143-149
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disorder caused by a mutation of the X-linked PIGA gene, resulting in a deficient expression of glycosylphosphatidylinositol (GPI)-anchored proteins. While large clonal expansions of GPI(?) cells cause hemolytic symptoms, tiny GPI(?) cell populations can be found in healthy individuals and remain miniscule throughout life. The slight expansion of PNH clones often occurs in patients with acquired aplastic anemia (AA), an autoimmune bone marrow (BM) failure caused by autoreactive cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells (HSPCs). The presence of PNH clones is thought to represent the immune pathophysiology of BM failure and be derived from GPI(?) HSPCs that evaded immune attack against HSPCs. However, which mechanisms underlie the selection of GPI(?) HSPCs as well as their overwhelming clonal expansion remains unclear. Ancestral or secondary somatic mutations in GPI(?) HSPCs contribute to the clonal expansion of the aberrant HSPCs in certain patients with PNH; however, it remains unclear whether such driver mutations are responsible for clonal expansion of all patients. Increased sensitivity to TGF-β in GPI(?) HSPCs partly explains the predominance of GPI(?) erythrocytes in immune-mediated BM failure. CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs also contribute to the immune escape of GPI(–) HSPCs. Studying the evolution of HSPCs in AA and PNH will yield further information for understanding human autoimmunity and stem cell biology.  相似文献   

10.
To investigate the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor in the granulocytes of paroxysmal nocturnal hemoglobinuria (PNH), the glycolipids of granulocytes from PNH patients and normal volunteers were biosynthetically labeled with [3H]mannose in the presence of tunicamycin. Extracted glycolipids were examined by thin-layer chromatography and compared with known biosynthetic intermediates. Normal granulocytes consistently showed [3H]mannose incorporation into the complete GPI core, several GPI biosynthetic intermediates, and dolichol phosphate mannose (DPM). The granulocytes of 10 patients with PNH that had no expression of CD55 and CD59 on greater than 95% of the cells were able to incorporate [3H]mannose into DPM, but were not able to incorporate detectable amounts into the complete GPI core. THus, PNH granulocytes do not synthesize detectable amounts of the complete GPI core and this defect likely accounts for the absence of GPI-linked membrane proteins on hematopoietic cells in this syndrome.  相似文献   

11.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired, clonal hematopoietic stem cell disorder in which PIG-A, gene essential for the biosynthesis of the glycosyl-phosphatidyl-inositol (GPI) anchor, is somatically mutated. Absence of GPI-linked proteins from the surface of blood cells is characteristic of the PIG-A mutant (PNH) clone and is also accountable fo certain manifestations, such as intravascular hemolysis. It is unclear how the PNH clone expands and comes to dominate hematopoiesis. In this study, CD34+ cells--committed progenitors (colony-forming cells) representing immature hematopoietic stem cells--and reticulocytes representing the differentiated erythroid cells were quantitated in peripheral blood of patients with PNH. Compared with normal controls (n = 29), CD34+ cell levels were significantly lower in PNH patients who did not have preexisting aplastic anemia (AA) (n = 12) (2.47+/-1.23 versus 4.68+/-1.05 x 106/L, mean +/- standard error; P = .022). PNH patients with precedent aplastic anemia (AA+/PNH) showed markedly low CD34+ cell levels compared with normal control subjects (0.6+/-0.29 versus 4.68+/-1.05 x 10(6)/L; P = .0001). In addition, colony-forming cells from PNH patients were significantly decreased compared with those from normal volunteers (erythroid burst-forming units, 2.8+/-1.2 versu 25.6+/-6.2/5 x 10(5) mononuclear cells; P = .0006; and granulocyte/macrophage colony-forming units, 1.2+/-0.5 versus 13.3+/-3.0/ 5 x 10(5) mononuclear cells; P = .0006). These findings occur in both aplastic and hemolytic types of PNH, suggesting hematopoietic failure in PNH. On the contrary, the numbers of reticulocytes and the reticulocyte production index of PNH patients were significantly higher than those of normal persons and comparable to those from patients with autoimmune hemolytic anemia, indicating accelerating erythropoiesis in PNH. The degree of reticulocytosis correlated well with the proportion of CD59- (PNH) reticulocytes. All of the findings suggest that in the condition of deficient hematopoiesis, the PNH clone arising from the mutated hematopoietic stem cell expands and maintains a substantial proportion of the patient's hematopoiesis.  相似文献   

12.
Deficiency of glycosylphosphatidylinositol (GPI)-anchored molecules on blood cells accounts for most features of paroxysmal nocturnal hemoglobinuria (PNH) but not for the expansion of PNH (GPI(-)) clone(s). A plausible model is that PNH clones expand by escaping negative selection exerted by autoreactive T cells against normal (GPI(+)) hematopoiesis. By a systematic analysis of T-cell receptor beta (TCR-beta) clonotypes of the CD8+ CD57+ T-cell population, frequently deranged in PNH, we show recurrent clonotypes in PNH patients but not in healthy controls: 11 of 16 patients shared at least 1 of 5 clonotypes, and a set of closely related clonotypes was present in 9 patients. The presence of T-cell clones bearing a set of highly homologous TCR-beta molecules in most patients with hemolytic PNH is consistent with an immune process driven by the same (or similar) antigen(s)-probably a nonpeptide antigen, because patients sharing clonotypes do not all share identical HLA alleles. These data confirm that CD8+ CD57+ T cells play a role in PNH pathogenesis and provide strong new support to the hypothesis that the expansion of the GPI(-) blood cell population in PNH is due to selective damage to normal hematopoiesis mediated by an autoimmune attack against a nonpeptide antigen(s) that could be the GPI anchor itself.  相似文献   

13.
OBJECTIVE: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal defect of hematopoietic stem cells characterized by deficiency in GPI-anchored surface proteins. It is not yet known how GPI-deficient stem cells are able to expand within the bone marrow and contribute considerably to the hematopoiesis. In PNH, as well as in AA and MDS, genetic instability and increased mutation frequency have been detected. Therefore, a second event is very likely, such as additional mutations, leading to clonal expansion of GPI-deficient bone marrow stem cell in PNH. METHODS: In order to elucidate the molecular basis of clonal expansion in PNH, we identified several genes differentially expressed in normal and GPI-deficient cells of PNH patients by combination of RNA fingerprinting and cDNA array hybridization. RESULTS: Expression of two of these genes, EGR-1 and TAXREB107, has been further investigated. EGR-1 is upregulated in granulocytes of all PNH patients analyzed so far. In contrast, significant upregulation of TAXREB107 is present only in some of our PNH patients. Further analysis confirmed their overexpression in PNH and excluded a possible secondary event character of observed overexpression. Moreover, similar levels of expression in cases of other clonal diseases, such as MPS and MDS, has been identified. CONCLUSION: Our data suggest that additional genetic alterations apart from PIG-A mutations could be present in PNH granulocytes. In addition, these genetic changes might contribute to clonal expansion of GPI-deficient cells in PNH.  相似文献   

14.
Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder resulting from mutations in an X-linked gene, PIG-A, that encodes an enzyme required for the first step in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutations result in absent or decreased cell surface expression of all GPI-anchored proteins. Although many of the clinical manifestations (e.g., hemolytic anemia) of the disease can be explained by a deficiency of GPI-anchored complement regulatory proteins such as CD59 and CD55, it is unclear why the PNH clone dominates hematopoiesis and why it is prone to evolve into acute leukemia. We found that PIG-A mutations confer a survival advantage by making cells relatively resistant to apoptotic death. When placed in serum-free medium, granulocytes and affected CD34+ (CD59) cells from PNH patients survived longer than their normal counterparts. PNH cells were also relatively resistant to apoptosis induced by ionizing irradiation. Replacement of the normal PIG-A gene in PNH cell lines reversed the cellular resistance to apoptosis. Inhibited apoptosis resulting from PIG-A mutations appears to be the principle mechanism by which PNH cells maintain a growth advantage over normal progenitors and could play a role in the propensity of this disease to transform into more aggressive hematologic disorders. These data also suggest that GPI anchors are important in regulating apoptosis.  相似文献   

15.
To clarify the pathologic significance of granulocytes exhibiting the paroxysmal nocturnal haemoglobinuria (PNH) phenotype in patients with aplastic anaemia (AA), we examined peripheral blood from 100 patients with AA for the presence of granulocytes deficient in glycosylphosphatidylinositol (GPI)-anchored proteins using a sensitive flow cytometric assay. A significant increase in the frequency of CD55-CD59-CD11b+ granulocytes (>0.003%) compared to normal individuals was observed in 31 of 35 (88.6%) patients with untreated AA at diagnosis. The proportions of patients showing increased PNH granulocytes in treated AA patients with a short (<5 yr) and long (>5 yr) disease duration were 68.6% (11/16) and 20.4% (10/49), respectively. When 19 patients showing increased frequency of PNH granulocytes before therapy were studied 6-12 months after antithymocyte globulin plus cyclosporin A therapy, the frequency decreased to 0.01-90% of pretreatment values in 15 recovering patients. These findings suggest that a relative increase in the number of PNH granulocytes is a common feature of AA at diagnosis, and that it may represent the presence of immunologic pressure to normal haematopoietic stem cells as a cause of AA.  相似文献   

16.
Richards SJ  Morgan GJ  Hillmen P 《Blood》2000,96(10):3522-3528
Peripheral blood B cells in patients with paroxysmal nocturnal hemoglobinuria (PNH) comprise variable mixtures of normal B cells produced before the onset of disease and glycosylphosphatidylinositol (GPI)-deficient B cells derived from the PNH hematopoietic stem cell. In a detailed phenotypic analysis of 29 patients with PNH, this study shows consistent phenotypic differences between PNH B cells and residual normal B cells. In the majority of patients with active disease, PNH B cells comprised mainly naive cells with a CD27(-)IgM(+)IgD(strong+)IgG(-) phenotype. The proportion of CD27(+) memory cells within this compartment was related to disease duration (Spearman [r(s)] 0.403; P =.030). In PNH patients with predominantly GPI-deficient hematopoiesis, that is, a large granulocyte PNH clone, the residual normal B cells had a predominantly memory (CD27(+)) phenotype. Furthermore, the majority of these memory B cells were not immunoglobulin (Ig) class switched and had an IgM(+)IgD(+)IgG(-) phenotype. Using PNH as a novel model with which to study B lymphopoiesis, this study provides direct evidence that production of new naive B cells occurs throughout life and that the major population of long-lived memory B cells are IgM(+)IgD(+). Moreover, studies of GPI(-) B cells in 2 patients in remission from PNH suggest that the life span of a B-cell clone can be more than 24 years.  相似文献   

17.
Aplastic anaemia and paroxysmal nocturnal haemoglobinuria (PNH) are closely related disorders. In PNH, haematopoietic stem cells that harbour PIGA mutations give rise to blood elements that are unable to synthesize glycosylphosphatidylinositol (GPI) anchors. Because the GPI anchor is the receptor for the channel-forming protein aerolysin, PNH cells do not bind the toxin and are unaffected by concentrations that lyse normal cells. Exploiting these biological differences, we have developed two novel aerolysin-based assays to detect small populations of PNH cells. CD59 populations as small as 0.004% of total red cells could be detected when cells were pretreated with aerolysin to enrich the PNH population. All PNH patients displayed CD59-deficient erythrocytes, but no myelodysplastic syndrome (MDS) patient or control had detectable PNH cells before or after enrichment in aerolysin. Only one aplastic anaemia patient had detectable PNH red cells before exposure to aerolysin. However, 14 (61%) had detectable PNH cells after enrichment in aerolysin. The inactive fluorescent proaerolysin variant (FLAER) that binds the GPI anchors of a number of proteins on normal cells was used to detect a global GPI anchor deficit on granulocytes. Flow cytometry with FLAER showed that 12 out of 18 (67%) aplastic anaemia patients had FLAER-negative granulocytes, but none of the MDS patients or normal control subjects had GPI anchor-deficient cells. These studies demonstrate that aerolysin-based assays can reveal previously undetectable multilineage PNH cells in patients with untreated aplastic anaemia. Thus, clonality appears to be an early feature of aplastic anaemia.  相似文献   

18.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired genetic disorder of the bone marrow that produces intravascular hemolysis, proclivity to venous thrombosis, and hematopoietic failure. Mutation in the PIG-A gene of a hematopoietic stem cell abrogates synthesis of glycosylphosphoinositol (GPI) anchors and expression of all GPI-anchored proteins on the surface of progeny erythrocytes, leukocytes, and platelets. Urokinase plasminogen activator receptor (uPAR), a GPI-linked protein expressed on neutrophils, mediates endogenous thrombolysis through a urokinase-dependent mechanism. Here we show that membrane GPI-anchored uPAR is decreased or absent on granulocytes and platelets of patients with PNH, while soluble uPAR (suPAR) levels are increased in patients' plasma. Serum suPAR concentrations correlated with the number of GPI-negative neutrophils and were highest in patients who later develop thrombosis. In vitro, suPAR is released from PNH hematopoietic cells and from platelets upon activation, suggesting that these cells are the probable source of plasma suPAR in the absence of GPI anchor synthesis and trafficking of uPAR to the cell membrane. In vitro, the addition of recombinant suPAR results in a dose-dependent decrease in the activity of single-chain urokinase. We hypothesized that suPAR, prevents the interaction of urokinase with membrane-anchored uPAR on residual normal cells.  相似文献   

19.
The molecular basis of paroxysmal nocturnal hemoglobinuria   总被引:8,自引:0,他引:8  
Rosti V 《Haematologica》2000,85(1):82-87
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disease characterized by chronic intravascular hemolysis, cytopenia due to bone marrow failure and increased tendency to thrombosis. All patients with PNH studied so far have a somatic mutation in an X-linked gene, called PIG-A (phosphatidyl inositol glycan complementation group A), which encodes for a protein involved in the biosynthesis of the glycosyl phosphatidylinositol (GPI) molecule, that serves as an anchor for many cell surface proteins. The mutation occurs in a hematopoietic stem cell and leads to a partial or total deficiency of the PIG-A protein with consequent impaired synthesis of the GPI anchor: as a result, a proportion of blood cells is deficient in all GPI-linked proteins. The mutations are spread all over the gene and in some patients more than one mutated clone have been identified. The absence of GPI-anchored proteins on PNH cells explains some of the clinical symptoms of the disease but not the mechanism that enables the PNH clone to expand in the bone marrow of patients. Both in vitro and in vivo experiments have shown that PIG-A inactivation per se does not confer a proliferative advantage to the mutated hematopoietic stem cell. Clinical observations have shown a close relationship between PNH and aplastic anemia. Taken together, these findings corroborate the hypothesis that one or more additional factors are needed for the expansion of the mutant clone. Selective damage to normal hematopoiesis could be the cause which enables the PNH clone(s) to proliferate.  相似文献   

20.
The mechanism responsible for the bone marrow failure that is almost invariable in paroxysmal nocturnal haemoglobinuria (PNH) is unknown. Based on the close association between PNH and idiopathic aplastic anaemia, a plausible pathogenetic model predicts that, in PNH, autoreactive T cells specific for haemopoietic stem cells (HSCs) cause depletion of normal HSCs, whereas PNH HSCs escape this T-cell-mediated attack. In this study, we addressed the hypothesis that PNH HSCs are resistant to the cytotoxic effect of T cells because they lack surface expression of one or more glycosylphosphatidylinositol (GPI)-linked molecules. We tested the sensitivity of normal and PNH Epstein-Barr virus (EBV)-transformed B-cell lymphoblastoid cell lines (BLCLs) to the cytotoxic effect of autologous EBV-specific T-cell lines and clones from a patient with PNH in an in vitro experimental system. We found that the PNH BLCLs were no less sensitive to T-cell-mediated cytotoxicity than non-PNH isogenic BLCLs, indicating that GPI-linked molecules on the surface of target cells are not required for killing by T cells. This suggests that the mechanism whereby PNH HSCs survive T-cell attack is not because of the lack of surface expression of one or more GPI-linked molecules. By implication, other mechanisms become more probable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号