首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postnatal development of the 5-HT1 receptor system was studied in young rat brain cortex from birth to adulthood (14 successive ages). The high-affinity binding of [3H]5-HT was low at birth but developed markedly between the 8th and the 15th day postnatally. The basal adenylate cyclase activity produced 50 pmoles cAMP/mg protein/min at birth and increased from the 8th to the 15th day. 5-HT could stimulate the adenylate cyclase activity in adult rat brain cortex with two different affinity constants: Km = 1 nM and Km = 0.5 microM; these low- and high-affinity constants presumably correspond to 5-HT1A and 5-HT1non-A.non-B.non-C (5-HT1D) respectively. These two activities developed parallelly from the 14-15th to the 28th day. The 8-hydroxy-2-(di-n-propylamino-tetralin) (8-OH-DPAT)-induced activity described a curve similar to the one that corresponded to 10 microM 5-HT. These results establish that 5-HT1A and 5-HT1non-A.non-B.non-C receptors mainly develop during the synaptogenesis.  相似文献   

2.
Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [3H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.  相似文献   

3.
Substitution of the chlorine atom by a radio-iodine in position 5 in the zacopride molecule yielded [125I]iodo-zacopride that bound with high affinity (Kd = 4.3 nM) to 5-HT3 receptors in the rat central nervous system. Assays with membranes from the posterior (mainly entorhinal) cortex confirmed that the pharmacological properties and regional distribution of [125I]iodo-zacopride-specific binding sites were identical with those of 5-HT3 sites labelled by the reference radioligand [3H]zacopride. Autoradiographic investigations for the visualization and quantification of 5-HT3 receptors yielded similar results with both radioligands, but autoradiograms could be obtained after only 1-3 days of exposure of sections labelled with [125I]iodo-zacopride, instead of 4-6 months using [3H]zacopride. The highest density of 5-HT3 sites was found in the nucleus tractus solitarius followed by, in decreasing order, the dorsal motor nucleus of the vagus nerve, the superficial layers of the dorsal horn in the spinal cord, the nucleus of the spinal tract of the trigeminal nerve, and the area postrema. Significant labelling of 5-HT3 receptors was also observed in limbic areas (amygdala, hippocampus, frontal and entorhinal cortex), and to a much lower extent in the dorsal raphe nucleus, striatum, and substantia nigra. These multiple locations further support the idea that 5-HT3 receptors are probably involved in several 5-HT-mediated functions in the central nervous system.  相似文献   

4.
The 5-HT3 agonist 2-methyl-5-HT had previously been shown to enhance the electrically evoked release of [3H]5-HT from preloaded slices of the guinea pig brain. In the present study, 2-methyl-5-HT (1 μM) was also found to increase the K+ evoked release of [3H]5-HT from preloaded slices of the guinea pig hypothalamus and this effect was blocked by the selective 5-HT3 antagonist ondansetron. In the presence of tetrodotoxin, the enhancement of the K+-evoked release of [3H]5-HT by 2-methyl-5-HT in hypothalamus slices was blocked, thus suggesting that the 5-HT3 receptors mediating this effect are not located directly on 5-HT terminals. In agreement with this, 2-methyl5-HT did not alter the K+-evoked release of [3H]5-HT in a synaptosomal preparation of the same brain structure, even at a concentration 10-fold greater than that used in the slices. Taken together, these data indicate that these facilitatory 5-HT3 receptors are not located on 5-HT terminals in the guinea pig hypothalamus and therefore are not autoreceptors. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The regional distribution of [3H]idazoxan and [3H]rauwolscine was studied autoradiographically in human brain. [3H]Idazoxan binds with high affinity to alpha 2 adrenoceptors as well as to non-adrenergic sites (NAIBS). [3H]Rauwolscine, besides binding to alpha 2 adrenoceptors, also binds to 5-HT1A receptors. Both radioligands labelled the same population of alpha 2 adrenoceptors, defined as the epinephrine-displaceable binding component. The highest densities of alpha 2 adrenoceptors occur in the leptomeninges, cerebral cortex and claustrum; lower densities were visualised in the basal ganglia, thalamus, pons, substantia nigra, cerebellum and medulla oblongata; no alpha 2 adrenoceptors were detected in amygdala and nucleus ruber. NAIBS were present in all the examined brain areas, with the highest densities found in the basal ganglia and substantia nigra. The finding that certain brain regions, such as the amygdala, contained NAIBS but no detectable alpha 2 adrenoceptors, suggests that the binding sites are independent from each other. The regional distribution of 5-HT1A receptors labelled by [3H]rauwolscine is in agreement with previous studies using [3H]8-OH-DPAT.  相似文献   

6.
The tree shrew is a mammalian species, which is phylogenetically related to insectivores and primates. The aim of the present study was to investigate the distribution of dopamine receptor D1- and D2-like binding sites in the brain of this non-rodent, non-primate mammal. Using in vitro autoradiography and employing the radioligands [3H]-SCH23390 and [125I]-epidepride, dopamine receptors were mapped and quantified. Significant findings with regard to the D1-like binding pattern include the presence of a “patchy” binding in the striatum. In the cortex, D1-like binding sites were observed in both the superficial and the deep layers. In the hippocampal formation, D1-like binding sites were seen primarily in the CA1 region and not in the dentate gyrus. These characteristics of the D1 pattern in the tree shrew brain are shared by cat and monkey and human brain, but not by rodent brain. Significant findings with regard to the D2-like binding pattern include the presence of D2-like binding in the claustrum. In addition, the striatum demonstrated “patchy” D2-like binding. These characteristics of the D2 pattern in the tree shrew brain are shared by cat and monkey and human brain, but not by rodent brain. On the other hand, the significant densities of D2-like binding sites in the glomerular layer of the tree shrew olfactory bulb is a finding that discriminates tree shrews from higher evolutionary species who lack such binding. Overall, the evidence coincides with the view that tree shrews are phylogenetically related to primates.  相似文献   

7.
Substance P (SP) is a putative neurotransmitter in both the peripheral and central nervous systems. In the present report we have used a modification of the Young and Kuhar technique to investigate some of the SP receptors binding properties and the distribution of SP receptors in rat brain. Tritiated SP ([3H]SP) adsorbed extensively to glass but this adsorption was greatly reduced by preincubating the slide-mounted tissue sections in a solution containing the cationic polymer polyethylenimine. [3H]SP was found to bind to rat tissue in a saturable fashion with a Bmax of 14.7 fmol/mg tissue wet weight and a Kd of 1.1 nM. The rank order of potencies for displacing [3H]SP binding from rat tissue sections was SP > SP sulphoxide > DiMeC7 > Eledoisin >0. SP(5–11) > SP(COOH) > SP(1–9) amide.Using autoradiography coupled with LKB tritium-sensitive Ultrofilm or the dry emulsion-coated coverslip technique the distribution of [3H]SP binding sites was found to be very dense within the olfactory bulb, amygdalo-hippocampal area and the nucleus of the solitary tract. Heavy concentrations of receptors were observed in the septum, diagonal band of Broca, striatum, subiculum, hypothalamus, locus coeruleus, parabrachial nucleus and lobule 9 and 10 of the cerebellum. Moderate to low concentrations of receptors were observed in the cerebral cortex, globus pallidus, raphe nuclei and the trigeminal nucleus. Very low densities were observed in most aspects of the dorsal thalamus, substantia nigra and cerebellum (other than lobule 9 and 10).Comparisons of the present data with SP peptide levels indicate that in some areas of the brain there is a rough correlation between peptide and receptor levels. However, in other brain areas (olfactory bulb, globus pallidus and substantia nigra) there is little obvious correlation between the two.  相似文献   

8.
Summary The tritiated derivative of the potent 5-HT1A receptor agonist S-14506 {1[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphtyl)piperazine} was tested for its capacity to selectively label the serotonin 5-HT1A receptors both in vitro in the rat and the mouse brain, and in vivo in the mouse. In vitro studies showed that the pharmacological profile and the distribution of [3H]S-14506 specific binding sites (Kd=0.15 nM) in different brain regions matched perfectly those of the prototypical 5-HT1A receptor ligand [3H]8-OH-DPAT. However, in the three regions examined (hippocampus, septum, cerebral cortex), the density of [3H]S-14506 specific binding sites was significantly higher (+ 66–90%) than that found with [3H]8-OH-DPAT. Whereas the specific binding of [3H]8-OH-DPAT was markedly reduced by GTP and Gpp(NH)p and increased by Mn2+, that of [3H]S-14506 was essentially unaffected by these compounds. In addition, the alkylating agent N-ethylmaleimide was much less potent to inhibit the specific binding of [3H]S-14506 than that of [3H]8-OH-DPAT. Measurement of in vivo accumulation of tritium one hour after i.v. injection of [3H]S-14506 to mice revealed marked regional differences, with about 2.5 times more radioactivity in the hippocampus than in the cerebellum. Pretreatment with 5-HT1A receptor ligands prevented tritium accumulation in the hippocampus but not in the cerebellum. Autoradiograms from brain sections of injected mice confirmed the specific in vivo labeling of 5-HT1A receptors by [3H]S-14506, therefore suggesting further developments with derivatives of this molecule for positron emission tomography in vivo in man.  相似文献   

9.
T Alexi  E C Azmitia 《Brain research》1991,544(2):243-247
We examined ethanol's interactions with serotonin (5-HT) receptor-mediated [3H]5-HT high-affinity uptake by adult rat forebrain synaptosomes. The serotonergic transport mechanism was chosen because ethanol consumption patterns can be manipulated by serotonin receptors and uptake blockers. We report that a dose of ethanol which causes general anesthesia in humans (54 mM) applied in vitro enhanced rat synaptosomal [3H]5-HT uptake after 5 min at 37 degrees C. Similar levels of stimulation by 54 mM ethanol were seen in hippocampal, cerebral cortex and brainstem synaptosomes. Significant inhibition of uptake was not detected until concentrations of ethanol reached 2.1 M, which is lethal in vivo. Ryanodine and the 5-HT2 agonist, DOI, are believed to cause an increase in intracellular Ca2+ levels. We observed that they also caused an elevation of [3H]5-HT uptake, and this stimulation was less than additive with the ethanol-induced increase. Inhibition of the 5-HT3, receptor-mediated Na+ channel with the antagonist ICS 205930, partially reversed ethanol's stimulatory effects on [3H]5-HT uptake. Blockade of voltage-dependent Na+ flux with tetrodotoxin and lidocaine, however, had no effect on the stimulation by ethanol. But tetraethylammonium, which blocks voltage-dependent K+ channels, partially counteracted ethanol's action on [3H]5-HT uptake. These compounds had no effect on uptake by themselves. These results indicate that ethanol's stimulation of [3H]5-HT uptake involves a rise in [Ca2+]i which is sensitive to voltage-dependent K+ flux and 5-HT3 receptor-mediated Na+ flux, and would decrease the availability of synaptic 5-HT.  相似文献   

10.
  • 1.1. Antagonists at 5-HT3 receptors have shown activity in animal models of mental illness, however, few radiolabeled 5-HT3 ligands are available for preclinical studies. MIZAC, an analogue of the selective 5-HT3 antagonist, zacopride, binds with high affinity (1.3–1.5 nM) to CNS 5-HT3 sites. The authors report here the selectivity of MIZAC for these sites in rat brain homogenates.
  • 2.2. Ninety-seven percent of total specific binding of [125I]MIZAC (0.1 nM) of was displaced by bemesetron (3 μM), a selective 5-HT3 antagonist. Competition studies using ligands with known affinities for 5-HT3 sites give a high correlation with reported pKi values (r2 0.98). Bemesetron displaceable binding has a regional distribution consistent with that of the 5-HT3 Receptor I.E. highest in cortex and hippocampus, and lowest in striatum and cerebellum.
  • 3.3. Potent antagonists present at concentrations sufficient to occupy 95% of other 5-HT receptor populations (1A, 1B, 1D, 2A, 2B, 2C, 5A, 5B, 6, and 7) showed minimal ability to displace [125I]MIZAC binding (3 nM). Specificity studies using radioligand binding assays selective for 5-HT4, 5-HT6, and 5-HT7 receptors, and for binding sites of other neurotransmitters indicate a high degree of selectivity of [125I]MIZAC for the 5-HT3 receptor.
  • 4.4. [125I]MIZAC binds to an apparent low affinity (benzac) site having a unique pharmacology. Low affinity binding was displaceable by benztropine, but not by other muscarinic agents nor inhibitors of dopamine uptake. The regional distribution of the low affinity site differed markedly from that of the high affinity site. The apparent affinity of [125I]MIZAC for the benzac site is two orders of magnitude lower than for the 5-HT3 receptor. Given its high selectivity for 5-HT3 binding sites, [125I]MIZAC appears to be a promising ligand for labeling 5-HT3 receptors in vitro and in vivo.
  相似文献   

11.
We have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [3H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradiographic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue.  相似文献   

12.
Summary The binding of [3H]paroxetine and [3H]citalopram to the human brain serotonin (5-HT) uptake site has been characterized and compared. Our results reveal that the binding exclusively involved with the 5-HT uptake site is identical for both [3H]ligands. The selective 5-HT uptake inhibitor citalopram displays the highest affinity for this uptake site, as compared with the affinities obtained for desipramine and norzimeldine, which is in accordance with their respective blockage of 5-HT uptake. Similar Bmax values were obtained for both radioligands in the brain regions studied, indicating their binding to the same presynaptic membrane protein. Together these findings suggest that both [3H]paroxetine and [3H]citalopram are good markers of the 5-HT transporter as both bind selectively and with high affinity to the serotonin uptake sites. However, the higher affinity of [3H]paroxetine confirms that this compound is the best radioligand for the 5-HT uptake site available today.  相似文献   

13.
Thyrotropin releasing hormone (TRH) is a putative neurotransmitter in both the central and peripheral nervous system. In the present report, we have used autoradiography coupled with densitometric analysis of tritium-sensitive film to investigate the distribution of [3H][3-Me-His2]TRH [( 3H]MeTRH)-binding sizes in the rat brain. Previous pharmacological reports have established that many of these [3H]MeTRH-binding sites have a structure-activity profile consistent with being a physiological TRH receptor. A high level of TRH receptors were observed in the accessory olfactory bulb, lateral nucleus of the amygdala, dentate gyrus, and entorhinal cortex. Moderate levels of TRH receptors were observed in the rhinal cortex, hypothalamus, superior colliculus, several brainstem motor nuclei, and lamina I of the spinal trigeminal nucleus pars candalis, while low concentrations of receptors are present in the cerebral cortex, striatum and ventral horn of the spinal cord. Very low levels of receptors were observed in the globus pallidus and in most nuclei of the dorsal thalamus. Comparisons of the distribution of TRH receptors to TRH-immunoreactive content indicates that, while in some areas of the brain there is a rough correlation between levels of TRH peptide and its receptor, in most brain areas there is little obvious correlation between the two. While such a discrepancy has been observed for other peptides and their receptors, the extensive distribution of TRH receptors in the central nervous system does provide an explanation for the variety of behavioral effects observed when TRH is infused into the central nervous system.  相似文献   

14.
Chronic administration of testosterone propionate (TP) was found to decrease the concentration of [3H]quipazine binding at 5-HT3 receptors in the lateral and basal amygdaloid nuclei of the brains of castrated male rats. TP had no effect on the binding of [3H]quipazine at 5-HT3 receptors in the posterolateral or posteromedial cortical amygdaloid nuclei, or in the amygdalohippocampal areas. It is suggested that the effects of testosterone on sexual and other social behaviors in male rats may be mediated, at least in part, by decreases in the activation of 5-HT3 receptors in the amygdala.  相似文献   

15.
The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea that high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.  相似文献   

16.
17.
Traditionally, autoradiography of neuroreceptors is performed in vitro using tritiated ligands and low sensitivity X-ray film, requiring long exposure times. In vivo imaging of neuroreceptors using positron emission tomography (PET) suffers poor spatial resolution, but in vitro PET autoradiography is difficult with film due to the short half-life of the isotopes. Storage phosphor screens provide an extremely sensitive alternative to film. To demonstrate and validate quantitative in vitro phosphor imaging with PET and tritiated ligands, we treated rats chronically with the antidepressant desipramine, which results in decreased binding to serotonin 5-HT(2) receptors. Serotonin 5-HT(2) binding decreased significantly in all cortical regions examined as measured by both [(3)H]ketanserin and [(18)F]setoperone. The data from the two radioligands were not significantly different, and the distribution of the receptors was in agreement with previous reports. We also present data on the reusability of tritium-sensitive phosphor screens, and show that the use of simple corrections allows receptor binding data with PET ligands to be compared across different days. The results indicate that phosphor imaging is a valid, fast, and quantifiable technique for measuring neuroreceptor regulation, and that it provides an excellent tool to corroborate in vivo PET data in vitro at higher resolution.  相似文献   

18.
P W Mantyh  S P Hunt  J E Maggio 《Brain research》1984,307(1-2):147-165
Substance P (SP) is a putative neurotransmitter in both the peripheral and central nervous systems. In the present report we have used a modification of the Young and Kuhar technique to investigate some of the SP receptors binding properties and the distribution of SP receptors in rat brain. Tritiated SP [( 3H]SP) absorbed extensively to glass but this adsorbtion was greatly reduced by preincubating the slide-mounted tissue sections in a solution containing the cationic polymer polyethylenimine. [3H]SP was found to bind to rat tissue in a saturable fashion with a Bmax of 14.7 fmol/mg tissue wet weight and a Kd of 1.1 nM. The rank order of potencies for displacing [3H]SP binding from rat tissue sections was SP greater than SP sulphoxide greater than DiMeC7 greater than Eledoisin greater than SP(5-11) greater than SP(COOH) greater than SP(1-9) amide. Using autoradiography coupled with LKB tritium-sensitive Ultrofilm or the dry emulsion-coated coverslip technique the distribution of [3H]SP binding sites was found to be very dense within olfactory bulb, amygdalo-hippocampal area and the nucleus of the solitary tract. Heavy concentrations of receptors were observed in the septum, diagonal band of Broca, striatum subiculum, hypothalamus, locus coeruleus, parabrachial nucleus and lobule 9 and 10 of the cerebellum. Moderate to low concentrations of receptors were observed in the cerebral cortex, globus pallidus, raphe nuclei and the trigeminal nucleus. Very low densities were observed in most aspects of the dorsal thalamus, substantia nigra and cerebellum (other than lobule 9 and 10). Comparisons of the present data with SP peptide levels indicate that in some areas of the brain there is a rough correlation between peptide and receptor levels. However, in other brain areas (olfactory bulb, globus pallidus and substantia nigra) there is little obvious correlation between the two.  相似文献   

19.
J D Geiger 《Brain research》1986,363(2):404-407
The localization of adenosine receptors labelled with [3H]cyclohexyladenosine ([3H]CHA) and adenosine transport sites labelled with [3H]nitrobenzylthioinosine ([3H]NBI) was examined in striatum and superior colliculus (SC) using radioligand binding and lesioning methods. Striatal kainic acid lesions significantly reduced the number (Bmax) of a single class of high affinity binding sites for [3H]CHA by 50% and that for [3H]NBI by 15% without altering Kd values for either ligand. In SC, enucleations significantly reduced both high and low affinity [3H]CHA binding sites by about 60% while levels of [3H]NBI binding were unaffected. Thus, adenosine receptors are present on striatal interneurons and retinal projections to the SC and some [3H]NBI binding sites are located on striatal interneurons.  相似文献   

20.
The binding of [3H]5-hydroxytryptamine ([3H]5-HT) to cortical membranes was examined in female rats during diestrus, proestrus and estrus. Serotonin binding was lowest during the early afternoon of proestrus and highest during the afternoon of estrus with diestrous values in between. The high estrous values were associated with a significant increase in Bmax and a decrease in Kd. However, the increase in binding actually took place during the late afternoon of proestrus, when there was a rapid increase in binding from noon to 18.00 h. Binding remained at this elevated level throughout the next day. There were no changes in the binding of [3H]ketanserin or [3H]spiroperidol to cortical membranes during the estrous cycle, so the differential binding of [3H]5-HT is most likely the result of variations in 5-HT1 rather than 5-HT2 receptors. These observations of changes in serotonin binding in a brain area nearly devoid of sex steroid receptors suggest that the hormonal fluctuations accompanying the female estrous cycle influence brain areas other than those classically thought to regulate neuroendocrine function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号