首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
The degradation kinetics of a new cephalosporin derivative (1) in aqueous solution were investigated at 60 degrees, mu = 0.05, at pH 2.0-10.0. The observed degradation rates followed pseudo-first-order kinetics and were influenced significantly by H2O and OH- catalysis. No primary salt effect was observed in the acid region, but a positive salt effect was observed at pH 9.4. A general base catalytic effect by a phosphate buffer species was observed at pH 7-8. The pH-rate profile for I exhibited a degradation minimum at pH 6.05. The Arrhenius activation energies determined at pH 4.0 and 9.4 were 27.2 and 24.5 kcal/mole, respectively. Excellent agreement between the theoretical pH-rate profile and the experimental data supported the hypothesized degradation process. A comparison of I and cefazolin revealed close structural and stability analogies.  相似文献   

2.
The degradation kinetics of nicotinyl 6-aminonicotinate in aqueous buffer solutions were studied over the pH range from 4.0 to 10.0. In all cases, pseudo-first-order kinetics were observed at constant hydronium ion concentration. The pH-rate profile indicated that the hydrolysis of nicotinyl 6-aminonicotinate may be described by at least two catalytic terms. In alkaline solution the hydrolysis is catalyzed primarily by hydroxyl ions. In acidic solution the hydrolysis may be attributed to either the water-catalyzed reaction of the protonated species or the hydronium ion catalyzed reaction of the free base. The resulting catalytic profile afforded a sharp pH minimum of approximately 5.90 at 65 degrees C. An activation energy of 16 Kcal/mol was obtained in a phosphate buffer solution at a pH of approximately 5.90 +/- 0.2. The first- and second-order reaction constants for water and hydroxyl ion catalysis were determined, and the temperature dependency of the reaction was studied. The buffer effect and solvent effect on the hydronium and hydroxyl ion catalysis was also investigated.  相似文献   

3.
Kinetics of degradation of cefazolin and cephalexin in aqueous solution.   总被引:2,自引:0,他引:2  
The kinetics of degradation of cefazolin and cephalexin in aqueous solution were investigated at 60 degrees C and constant ionic strength over the entire pH range. The observed degradation rates were obtained by measuring the residual cephalosporin and were shown to follow pseudo-first-order-kinetics. They were influenced significantly by solvolytic and hydroxide ion catalysis. No primary salt effect was observed in the acid or basic pH region. Of the buffer systems employed in the kinetics studies only the phosphate buffer system showed a catalytic effect. The pH-rate profile for cefazolin showed a degradation minimum between pH 5.5 and 6.5. Cephalexin did not show a pH minimum in that region. The apparent energies of activation were determined for cefazolin and cephalexin at pH 5.5 and were calculated to be 24.3 Kcal/mole and 26.2 Kcal/mole, respectively. The agreement between the calculated theoretical pH-rate profiles and the experimental points for both compounds support the hypothesis presented concerning the reactions involved in their respective degradation pathways.  相似文献   

4.
Nefopam hydrochloride degradation kinetics in solution   总被引:2,自引:0,他引:2  
A stability-indicating reversed-phase high performance liquid chromatographic method was developed for the detection of nefopam hydrochloride and its degradation products under accelerated degradation conditions. The degradation kinetics of nefopam hydrochloride in aqueous solutions over a pH range of 1.18 to 9.94 at 90 +/- 0.2 degrees C was studied. The degradation of nefopam hydrochloride was found to follow apparent first-order kinetics. The pH-rate profile shows that maximum stability of nefopam hydrochloride was obtained at pH 5.2-5.4. No general acid or base catalysis from acetate, phosphate, or borate buffer species was observed. The catalytic rate constants on the protonated nefopam imposed by hydrogen ion and water was determined to be 7.16 X 10(-6) M-1 sec-1, and 4.54 X 10(-9) sec-1, respectively. The pKa of nefopam hydrochloride in aqueous solution was determined to be 8.98 +/- 0.33 (n = 3) at 25 +/- 0.2 degrees C by the spectrophotometric method. The catalytic rate constant of hydroxyl ion on the degradation of nefopam in either protonated or nonprotonated form was determined to be 6.63 X 10(-6) M-1 sec-1 and 4.06 X 10(-6) M-1 sec-1, respectively. A smaller effect of hydroxyl ion on the degradation of nonprotonated than on the degradation of protonated nefopam was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The kinetics of epimerization and degradation of moxalactam in aqueous solution was investigated by HPLC. The pH-rate profiles of the degradation and epimerization were determined separately over the pH range of 1.0-11.5 at 37 degrees C and constant ionic strength 0.5. The degradation and simultaneous epimerization were followed by measuring both of the residual R- and S-epimers of moxalactam and were found to follow pseudo-first-order kinetics. The degradation was subjected to hydrogen ion and hydroxide ion catalyses and influenced by the dissociation of the side chain phenolic group. The epimerization rates were influenced significantly in the acidic region by the dissociation of the side chain carboxylic acid group and in the basic region by hydroxide ion catalysis. The pH-degradation rate profile of moxalactam showed a minimum degradation rate constant between pH 4.0 and 6.0. The pH-epimerization rate profiles of moxalactam showed minimum epimerization rate constants at pH 7.0. The epimerization rate constants of the R- and S-epimers were not very different.  相似文献   

6.
The degradation kinetics of ifosfamide in aqueous solution have been investigated over the pH region 1-13 at 70 degrees C. A stability indicating high-performance liquid chromatographic assay with UV detection was used to separate degradation products from the parent compound. The degradation kinetics were studied as related to pH, buffer composition, ionic strength, temperature and drug concentration. A pH-rate profile at 70 degrees C, obtained from (pseudo) first-order kinetic plots, was constructed after corrections for buffer effects were made. The degradation reactions of ifosfamide were found to be largely independent of pH, although proton or hydroxyl catalysis occurs at extreme pH values. Ifosfamide shows maximum stability in the pH region 4-9, corresponding to a half-life of 20 h.  相似文献   

7.
The chemical stability of ricobendazole (RBZ) was investigated using a stability-indicating high performance liquid chromatographic (HPLC) assay with ultraviolet detection. The degradation kinetics of RBZ in aqueous solution was evaluated as a function of pH, buffer strength and temperature. The oxidation reaction in hydrogen peroxide solution was also studied. Degradation products were analyzed by mass spectroscopy and degradation pathways are proposed. Degradation of RBZ followed pseudo first-order kinetics and Arrhenius behavior over the temperature range 24–55 °C. A V-shaped pH-rate profile over the pH range 2–12 was observed with maximum stability at pH 4.8. The shape of the pH-rate profile was rationalized by catalytic effects of various components in the solution on each RBZ species. At pH 11 the activation energy for hydrolysis was 79.5 kJ/mol, and phosphate catalysis was not observed. Oxidation occurred in hydrogen peroxide solutions and was catalyzed by the presence of copper (Cu2+) ions. Ricobendazole amine and albendazole sulfone were identified by MS assay to be the degradation products of hydrolysis and oxidation respectively.  相似文献   

8.
The individual degradation rate constants for cefotaxime in aqueous solution were calculated within a pH range of 1.6-10.0 at 37 degrees C from high performance liquid chromatography data. This allowed the general degradation profile of cefotaxime to be decomposed into a degradation profile attributed to the opening of the beta-lactam nucleus and a degradation profile attributed to the deacetylation. From the calculations of the individual rate constants, the activity of degraded cefotaxime solutions could be predicted. In the pH range of injectable solutions of cefotaxime 5-7, roughly equivalent amounts of inactive beta-lactam cleavage products and deacetylated compound which has a different spectrum of antibacterial activity are formed.  相似文献   

9.
The chemical stability of methotrexate (I) in aqueous solution protected from light was studied utilizing an HPLC procedure. The investigation of the kinetics of degradation took place in aqueous buffer solutions at 85°C over the pH-range of 0–12. The pH-rate profile obtained from first-order kinetic plots showed maximum stability at about pH 7. An Arrhenius-type plot indicated a shelf-life at pK ~ 8.5 of about 4.5 years at 25 °C.At pH above 6.5 N10-methyl-folic acid (II) was the only degradation product while in acidic solution several compounds are formed.  相似文献   

10.
The kinetics of degradation of the new anti-tumor drug, 4-dedimethylamino sancycline (col-3) in aqueous solution at 25oC were investigated by high-pressure liquid chromatography (HPLC) over the pH-range of 2-10. The influences of pH, buffer concentration, light, temperature, and some additives on the degradation rate were studied. The degradation of col-3 was found to follow first order kinetics. A rate expression covering the degradation of the various ionic forms of the drug was derived and shown to account for the shape of the experimental pH-rate profile. Under basic conditions, the degradation of col-3 involves oxidation, which is catalyzed by metal ions and inhibited by EDTA and Sodium bisulfite. Copyright  相似文献   

11.
The objective of this study was to investigate the stability and the degradation pathway of epothilone-D (Epo-D), an experimental anticancer agent. In pH range 4-9, Epo-D displayed pH-independent stability and the highest stability was observed at pH 1.5-2 where its thiazole group is protonated. Increasing the pH >9 or <1.5 resulted in an increase in the degradation rate. Epo-D contains an ester group that can be hydrolyzed. The formation of the hydrolytic product was confirmed by the nuclear magnetic resonance (NMR), fast atom bombardment mass spectroscopy and liquid chromatography/mass spectroscopy/mass spectroscopy techniques. The largely sigmoidal pH-rate profile is not consistent with the normal pH dependency of ester hydrolysis involving an addition/elimination mechanism. Hence, a hydrolysis mechanism through a carbonium ion was suggested. At pH 4 and 7.4, no buffer catalysis was observed (0.01, 0.02, and 0.05 M buffers) and no significant deuterium kinetic solvent isotope effect was noted. The degradation was very sensitive to changes in the dielectric constant of the solvents as significant enhancement in the stability was observed in buffer-acetonitrile and 0.1 M (SBE)7m-beta-cyclodextrin solutions compared with just buffer, suggesting that the rate-determining step in the degradation pathway involved formation of a polar transition state. Mass spectral analysis of the reaction run in 18O water was consistent with incorporation of the 18O in the alcohol hydroxyl rather than the carboxylate group. These observations strongly support the carbonium ion mechanism for the hydrolysis of Epo-D in the pH range 4-9. A pKa value of 2.86 for Epo-D was estimated from the fit of the pH-rate profile. This number was confirmed independently by the changes in ultraviolet absorbance of Epo-D as a function of pH (pKa 3.1) determined at 25 degrees C and the same ionic strength.  相似文献   

12.
Mechanism of decarboxylation of p-aminosalicylic acid   总被引:2,自引:0,他引:2  
The rate of decarboxylation of p-aminosalicylic acid (1) in aqueous solutions was studied at 25 degrees C (mu = 0.5) as a function of pH and buffer concentration. A pH-rate profile was generated by using the rate constants extrapolated to zero buffer concentration. The profile was bell-shaped, with the maximum rate of decarboxylation near the isoelectric pH. The rate constants obtained in buffered solutions indicated general acid catalysis. Bronsted behavior appeared to be adhered to. The two ionization constants of 1 were determined spectrophotometrically at 25 degrees C and at an ionic strength of 0.5. An HPLC method was used to characterize the degradation products of the reaction. Kinetic solvent deuterium isotope effects were studied to further confirm the mechanism of decarboxylation. Below pH 7.0, the mechanism of 1 decarboxylation is the rate controlling proton attack on the carbon-alpha to the carboxylic acid group of 1 anion and the ampholyte, followed by the rapid decarboxylation of the formed intermediate.  相似文献   

13.
The degradation kinetics of a 3- acetoxymethylcephalosporin , cefotaxime sodium salt, in aqueous solution investigated by HPLC under different conditions (pH, ionic strength, temperature) and using different buffers. The scheme of degradation involves a cleavage of the beta-lactam nucleus and the deacetylation of the side chain. In highly acidic medium, the deacetylated derivative is easily converted to the lactone. The degradation rate constants were calculated at three pH values (1.9, 4.0, and 9.0) by measuring the residual cephalosporin and the main decomposition products. The degradation pathway is both supported by the results of a primary salt effect and by the agreement between the theoretical pH-rate profile and the experimental values. In the pH range from 3.0 to 7.0, the main process is a slow water-catalyzed or spontaneous cleavage of the beta-lactam nucleus with intramolecular participation of the side chain amido fraction in the 7-position. In alkaline or strongly acidic medium, the hydrolysis is a base- or acid-catalyzed reaction. Of the buffer systems investigated, carbonate buffer (pH 8.5) and borate buffers (pH 9.5 and 10.0) are found to increase the degradation rates, while acetate buffer decreases the degradation rates. The apparent activation energies determined at different pH values are compatible with a solvolysis mechanism and similar to those previously given in the literature for other cephalosporins. Cefotaxime in aqueous solution is slightly less stable than the main cephalosporin derivatives, despite its high resistance to the beta-lactamases and its remarkable biological activity.  相似文献   

14.
Studies have been initiated to evaluate the catalytic effect of monohydrogen phosphate ions on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions in an aqueous solution under atmospheric oxygen conditions. The reactions were performed with an initial concentration of 1 × 10?4 M ferrous sulfate in solutions containing varying concentrations of phosphate buffer (0.005–0.0175 M) over the pH range of 6.6–7.1. The final ionic strength of the solutions were adjusted to 0.1 M with sodium chloride and the temperature was kept constant at 25 ± 0.5 °C. The rates of oxidation reactions were measured by following the increase in UV absorbance due to the formation of ferric ion in solution. The reactions appeared to follow pseudo-first-order kinetics and were very prone to catalysis by monohydrogen phosphate at any given pH. H2PO4? seemed to have no effect on the reaction. HPOs2? was the sole catalytic species with a second-order rate constant of 116.74 M?1 · min?1. The buffer independent pH-rate profile showed a sigmoidal behavior with the pseudo-first-order rate constant increasing with increasing pH. The sigmoidal nature of the experimental pH-rate profile could possibly suggest a change in the reactivity of the oxidizing species which might follow complex kinetics. The effects of ionic strength and temperature on the reaction rates were also evaluated.  相似文献   

15.
The kinetics of the degradation of betamethasone-17-valerate in aqueous solutions of pH 0.5–8 have been investigated at 60°C using a reversed-phase HPLC procedure for determining remaining steroid and the products of its degradation, betamethasone-21-valerate and betamethasone. The overall degradation was shown to proceed entirely through a rearrangement of the 17-valerate ester to the 21-valerate ester followed by hydrolysis of the latter to yield betamethasone. The acyl group migration from C17 to C21 was subject to both specific acid and base catalysis as well as to catalysis by water. The pH-rate profile for the rearrangement showed a minimum at pH 3.5.  相似文献   

16.
The degradation kinetics of Abbott-79175 in aqueous solution have been studied as a function of pH. Concentration/time plots indicated a pseudo-first order nature of reactions throughout the pH range studied. Additionally, the effects of temperature, ionic strength, and buffer concentration have been examined. From multiple temperature experiments, Arrhenius and activation parameters were calculated. Furthermore, it was determined that upon ionization, Abbott-79175 degradation proceeded independently of ionic strength. These data in addition to the plateau-like nature of the pH-rate constant profile above pH 10 suggest a lack of participation of hydroxide ion during the reaction. This behavior in the neutral and alkaline regions was qualitatively very similar to that of zileuton, a 5-lipoxygenase inhibitor in phase III clinical trials. In addition to allowing the determination of the buffer independent rate constants, kinetic studies as a function of buffer concentration allowed in some of the systems the deduction of which buffer species were catalytic. A multi-parameter model was fitted to the pH buffer independent rate constant data using non-linear regression. This modeling yielded parameters such as the microscopic rate constants and the pKa under the aforementioned conditions. From the pH-rate constant profile, Abbott-79175 was found to be more labile than zileuton throughout the pH range studied. This difference was greater than three orders of magnitude at pH 1. Such acid lability produced a pH profile which had a much narrower region of maximum stability.  相似文献   

17.
A highly active cyclic hexapeptide analogue of somatostatin, Cyclo(N-Me-L-Ala-L-Tyr-D-Trp-L-Lys-L-Val-L-Phe), L-363,586, was found to improve the control of postprandial hyperglycemia in diabetic animals when given in combination with insulin. The compound is reported to be relatively stable in blood, nasal cavity, and intestinal lumen but undergoes rapid degradation in aqueous solution. The objective of this study was to elucidate the degradation mechanisms based on the kinetic data and the structure of the degradation products. Both pH and temperature had a profound influence on the instability of the peptide in aqueous solution. The data indicated that the peptide was most stable at a pH of about 4.7. The pH-rate profile exhibited specific acid catalysis at a pH less than 3.0 and base catalysis above pH 10.5. The kinetic pK a was determined to be 9.7. This pK a could be attributed to the tyrosine residue. The mechanisms of degradation under acidic and alkaline conditions appear to be different. Identification of the fragments obtained using mass spectrometry and amino acid sequencing suggest that the cyclic compound was cleaved to yield a linear fragment, which underwent further cleavage at both peptide linkages alpha to the trypto-phanyl residue. The indole group of that residue is probably the potential nucleophile attacking the adjacent carbonyls. A rate equation for the degradation of the hexapeptide has been proposed.  相似文献   

18.
The hydrolytic degradation of 2-(3,4-dimethyl-5-isoxazolylamine)-N-(3,4-dimethyl-5-isoxazolyl )-1,4- naphthoquinone-4-imine (1) was investigated over a wide range of pH values and at different temperatures. The degradation rates were determined by reversed-phase HPLC and were observed to follow pseudo-first-order kinetics with respect to the concentration of 1. The pH-rate profile was linear with slopes -1 and +1 in acid and alkaline pH, respectively, becoming pH independent in the region of maximum stability from pH 4.5 to 10.0. Neither primary salt effects nor buffer catalysis was observed due to the buffer species employed.  相似文献   

19.
The degradation kinetics of phentolamine hydrochloride in aqueous solution over a pH range of 1.2 to 7.2 and its stability in propylene glycol- or polyethylene glycol 400-based solutions were investigated. The observed rate constants were shown to follow apparent first-order kinetics in all cases. The pKa determination for phentolamine hydrochloride was found to be 9.55 +/- 0.10 (n = 5) at 25 +/- 0.2 degrees C. This indicated the protonated form of phentolamine occurs in the pH range of this study. The pH-rate profile indicated a pH-independent region (pH 3.1-4.9) exists with a minimum rate around pH 2.1. The catalytic effect of acetate and phosphate buffer species is ordinary. The catalytic rate constants imposed by acetic acid, acetate ion, dihydrogen phosphate ion, and monohydrogen phosphate ion were determined to be 0.018, 0.362, 0.036, and 1.470 L mol-1 h-1, respectively. The salt effect in acetate and phosphate buffers followed the modified Debye-Huckel equation quite well. The ZAZB value obtained from the experiment closely predicts the charges of the reacting species. The apparent energy of activation was determined to be 19.72 kcal/mol for degradation of phentolamine hydrochloride in pH 3.1, 0.1 M acetate buffer solution at constant ionic strength (mu = 0.5). Irradiation with 254 nm UV light at 25 +/- 0.2 degrees C showed a ninefold increase in the degradation rate compared with the light-protected control. Propylene glycol had little or no effect on the degradation of phentolamine hydrochloride at 90 +/- 0.2 degrees C; however, polyethylene glycol 400 had a definite effect.  相似文献   

20.
The apparent rate of degradation of penicillin G potassium micellar solutions of 500,000 units/ml, a concentration commonly encountered in vials reconstituted for storage in the refrigerator, was investigated and compared to that of nonmicellar solutions of 8000 units/ml at 25 degrees, ionic strength of 1.1 M, and pH range from 5.0 to 9.5. In the micellar solutions the apparent rate of the H+-catalyzed degradation was increased twofold but that of water- and OH minus-catalyzed hydrolysis was decreased two- to three-fold. Consequently, the pH-rate profile of the micellar solutions was shifted to higher pH values and the pH of minimum degradation was found to be at 7.0 compared to 6.5 for the nonmicellar solution of the same ionic strength. Compared at their respective pH-rate profile minima, micellar penicillin G is 2.5 times as stable as the nonmicellar solution under the conditions of constant pH and ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号