首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zafirlukast, a cysteinyl leukotriene receptor antagonist, is indicated for the treatment of patients with mild to moderate asthma. Zafirlukast is metabolized mainly by CYP3A4 and CYP2C9. We investigated the effects of the major CYP2C9 variant alleles in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of zafirlukast in healthy Korean subjects. A single 20-mg oral dose of zafirlukast was given to 23 Korean male subjects divided into two genotype groups according to CYP2C9 genotypes, CYP2C9EM (n = 11; CYP2C9*1/*1) and CYP2C9IM (n = 12; 9 and 3 carriers of CYP2C9*1/*3 and *1/*13, respectively). Zafirlukast concentrations were determined using a validated HPLC–MS/MS analytical method in plasma samples collected after the drug intake. Compared with the CYP2C9EM group, the Cmax and AUCinf of zafirlukast in the CYP2C9IM group were 1.44- and 1.70-fold higher, respectively (p < 0.01 and p < 0.0001). The CL/F of zafirlukast was 42.8 % lower in the CYP2C9IM group compared with the CYP2C9EM group (p < 0.001). Slightly higher Cmax and AUC, and lower CL/F of zafirlukast were observed in subjects with the CYP2C9*1/*13 genotype compared with the CYP2C9*1/*3 genotype subjects. CYP2C9*3 and CYP2C9*13 alleles significantly affected the plasma concentrations of zafirlukast.  相似文献   

2.

Purpose  

It has been suggested that drug-metabolizing enzymes might play important roles in the development of anti-tuberculosis drug (ATD)-induced maculopapular eruption (MPE), as in ATD-induced hepatitis. We investigated the associations between the genetic polymorphisms of drug-metabolizing enzymes and ATD-induced MPE.  相似文献   

3.

Aim  

To evaluate the impact of polymorphisms in the cytochrome P450 (CYP) 2C9, 2C19 and 2C8 genes on the risk of mild hypoglycaemic attacks in patients treated with sulphonylureas.  相似文献   

4.
Celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, is used for the treatment of rheumatoid arthritis and osteoarthritis. The predominant hepatic metabolism of celecoxib to celecoxib carboxylic acid (CCA) is mediated mainly by CYP2C9. We investigated the effects of the major CYP2C9 genetic variants in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in healthy Korean subjects. A single 200-mg oral dose of celecoxib was given to 52 Korean subjects with different CYP2C9 genotypes: CYP2C9EM (n = 26; CYP2C9*1/*1), CYP2C9IM (n = 24; CYP2C9*1/*3 and *1/*13), and CYP2C9PM (n = 2; CYP2C9*3/*3). Celecoxib and CCA concentrations in plasma samples collected up to 48 or 96 h after drug intake were determined by HPLC–MS/MS. The mean area under the plasma concentration–time curve (AUC0–∞) of celecoxib was increased 1.63-fold (P < 0.001), and the apparent oral clearance (CL/F) of celecoxib was decreased by 39.6% in the CYP2C9IM genotype group compared with that of CYP2C9EM (P < 0.001). The overall pharmacokinetic parameters for celecoxib in CYP2C9*1/*13 subjects were similar to those in CYP2C9*1/*3 subjects. Two subjects with CYP2C9PM genotype both showed markedly higher AUC0–∞, prolonged half-life, and lower CL/F for celecoxib than did subjects with CYP2C9EM and IM genotypes. CYP2C9*3 and CYP2C9*13 variant alleles significantly affected the plasma concentration of celecoxib.  相似文献   

5.

Purpose  

To assess the impacts of erythromycin on the pharmacokinetics of voriconazole and its association with CYP2C19 genotypes in healthy Chinese male subjects.  相似文献   

6.
7.
Zolpidem is predominantly metabolized by CYP3A4, and to a lesser extent by CYP2C9, CYP1A2, CYP2D6 and CYP2C19. The aim of this study was to identify the effects of CYP2C9*3 allele on the pharmacokinetics of zolpidem. Healthy male subjects were divided into two genotype groups, CYP2C9*1/*1 and CYP2C9*1/*3. They received a single oral dose of 5 mg zolpidem, and the plasma concentrations of zolpidem were determined up to 12 h after drug administration. In addition, since zolpidem is metabolized at a high rate by CYP3A4, the effect of CYP2C9*3 allele on the pharmacokinetics of zolpidem was also observed in the condition where CYP3A4 was sufficiently inhibited by the steady-state concentration of clarithromycin, a potent CYP3A4 inhibitor. For this, clarithromycin 500 mg was administered twice daily for 5 days. Plasma concentrations of zolpidem were determined using liquid chromatography-tandem mass spectrometry method. The overall pharmacokinetic parameters of zolpidem were not significantly different between two CYP2C9 genotypes. Even with the potent CYP3A4 inhibitor clarithromycin present at steady-state concentrations, there were no significant differences in the exposure of zolpidem, except for elimination half-life (t1/2). In conclusion, our study suggests that CYP2C9*1/*3 genotype does not affect the plasma exposure of zolpidem.  相似文献   

8.
9.

Purpose

To evaluate the effects of CYP2C19 and CYP2C9 genotypes on the pharmacokinetic variability of valproic acid (VPA) in epileptic patients using a population pharmacokinetic (PPK) approach.

Methods

VPA concentrations were measured in 287 epileptic patients, who were genotyped for CYP2C19*2/*3 and CYP2C9*3. Patients who were on monotherapy with VPA were divided into two groups, a PPK-model group (n?=?177) and a PPK-valid group (n?=?110). The PPK parameter values for VPA were calculated in the PPK-model group by using the NONMEM software. Ultimately, a biological model and a final model were established. Each model was then used to independently predict the concentrations of the PPK-valid group to validate the two models.

Results

There was a significant effect of the CYP2C19 and CYP2C9 genotypes on the pharmacokinetic (PK) variability (P?<?0.01) in the final PPK model of CL/F. The interindividual CL was calculated according to the final model: CL/F?=?0.0951?×?(1?+?e0.0267?×?(3???genotype))?+?0.0071?×?age (L/h). The coefficient of variation (CV) (omega CL/F) of the final model was 29.3%, while that of the biological model was 31.7%. Based on the genotype, the individual PK parameters can be calculated more accurately than before.

Conclusion

The CYP2C19 and CYP2C9 genotypes significantly influenced the PK variability of VPA, as quantified by NONMEM software.
  相似文献   

10.
OBJECTIVES: The objective of this study was to determine the quantitative influence of vitamin K epoxide reductase complex subunit 1 (VKORC1) and cytochrome P450 2C9 (CYP 2C9) polymorphisms on warfarin dose requirements in Turkish patients. METHODS: A total of 205 patients taking warfarin for >2 months were enrolled in the study. Deoxyribonucleic acid (DNA) samples from these patients were genotyped for polymorphisms in VKORC1 and CYP2C9 genes. A linear regression analysis was used to determine the independent effects of genetic and non-genetic factors on mean warfarin dose requirements. RESULTS: The VKORC1 promoter polymorphism (3673 G>A) was associated with differences in weekly mean varfarin dose: for GG genotype the dose was 43.18 mg/week, for GA genotype 33.78 mg/week and for AA genoype 25.83 mg/week (P < 0.0001). Patients who carried VKORC1 and CYP2C9 variants needed a 40% lower mean weekly warfarin dose compared to wild types. Variables associated with lower warfarin dose requirements were VKORC1 3673 AA or GA genotype (both P < 0.0001), one or two CYP2C9 variant alleles (both P < 0.0001), increasing age (P < 0.0001) and non-indication of venous thromboembolism for warfarin therapy (P = 0.002). CONCLUSION: Polymorphisms in VKORC1 and CYP2C9 genes were important determinants of warfarin dose requirements in Turkish patients.  相似文献   

11.
Vinyl chloride monomer (VCM) is a known human carcinogen, which may be metabolized by cytochrome P450 2E1 (CYP2E1), aldehyde dehydrogenase 2 (ALDH2), and glutathione S-transferase T1 (GSTT1). A DNA-repair gene, X-ray repair cross-complementing group 1 ( XRCC1, exon 10), may also be implicated in the process of VCM-related carcinogenesis. Thus, VCM-exposed workers with inherited susceptible metabolic and DNA-repair genotypes may experience an increased risk of genotoxiciy. This study was designed to investigate whether metabolic and DNA-repair genotypes affected sister chromatid exchange (SCE) frequency in occupationally VCM-exposed workers from polyvinyl chloride (PVC) manufacturing plants. Study subjects comprised 61 male workers having experienced VCM exposure, and 29 male controls. Questionnaires were administered to obtain detailed histories of cigarette-smoking habits, alcohol consumption behavior, and occupation. The frequency of SCE in peripheral lymphocytes was determined using a standardized method, and genotypes of CYP2E1, ALDH2, GSTT1 and XRCC1 were identified by the polymerase chain reaction (PCR) procedure. Our results demonstrated that smoking, age and VCM exposure and XRCC1 ( P=0.03), CYP2E1 ( P=0.04), and ALDH2 ( P=0.08) were significantly associated with an increased SCE frequency. Further analysis of gene combinations, including CYP2E1, ALDH2 and XRCC1, revealed an increased trend for these genotypes to influence SCE frequencies for the low VCM-exposure group ( P<0.01), but not so for the high VCM-exposure group ( P=0.29) or for controls ( P=0.49). These results suggest that workers with susceptible metabolic and DNA-repair genotypes, may experience an increased risk of DNA damage elicited by VCM exposure.  相似文献   

12.

Purpose  

To evaluate the effects of two major polymorphisms of CYP2C9, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of irbesartan in healthy Korean volunteers.  相似文献   

13.
Objective The objective of this study is to investigate the association between CYP2D6*4, CYP3A5*3 and ABCB1 3435T polymorphisms and drug-related falls. Method Multivariate logistic regression was performed in an existing database in order to study the association between falls history and CYP2D6*4, CYP3A5*3, ABCB1 3435T polymorphisms in patients using fall-risk-increasing CYP2D6, CYP3A5 and P-glycoprotein (gene product of ABCB1) substrates. Results No statistically significant increased fall risk was found in ‘poor metabolizers’ compared to ‘extensive’ and ‘intermediate metabolizers’ using fall-risk-increasing CYP2D6 substrates (Odds ratio (OR) = 2.2; 95% confidence interval (CI) 0.2–25.0), CYP3A5 substrates (OR = 0.9; 95% CI 0.2–3.3) and P-glycoprotein substrates (OR = 2.1; 95% CI 0.2–17.2). Conclusion The hypothesis that ‘poor metabolizers’ have an increased fall risk was not confirmed. A larger study population is needed to confirm the potential association that was seen between CYP2D6*4 and ABCB1 3435T polymorphisms and drug-related falls.  相似文献   

14.
Objective  To investigate the interaction between allicin and omeprazole and to observe the effects of allicin on CYP2C19 and CYP3A4 activity in healthy Chinese male volunteers with different CYP2C19 genotypes. Methods  Eighteen subjects (six CYP2C19*1/CYP2C19*1, four CYP2C19*1/CYP2C19*2, two CYP2C19*1/ CYP2C19*3, and six CYP2C19*2/ CYP2C19*2) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or a 180 mg allicin capsule once daily for 14 consecutive days. The pharmacokinetics of omeprazole (20 mg orally on day 15) was determined for up to 12 h following administration by high-performance liquid chromatography. Results  In carriers of the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotype, allicin treatment increased the peak plasma concentration (Cmax) of omeprazole by 49.7 ± 7.2 (p < 0.001) and 54.2 ± 9.2% (p < 0.001), and increased the area under the plasma time–concentration curve ( ) of omeprazole by 48.1 ± 9.0 (p = 0.001) and 73.6 ± 26.7% (p < 0.001), respectively. The ratio of of 5-hydroxyomeprazole to omeprazole (a marker for CYP2C19 activity) decreased significantly (p < 0.001 and p = 0.001, respectively). However, no pharmacokinetic parameters were significantly changed by allicin in CYP2C19*2/CYP2C19*2. The Cmax and of omeprazole sulfone were unchanged in all three genotypes. Conclusions  Allicin reduced the metabolism of omeprazole by inhibiting CYP2C19 activity in individuals with the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotypes, but not in those with the CYP2C19*2/ CYP2C19*2 genotype. Allicin did not significantly affect the activity of CYP3A4 in all subjects.  相似文献   

15.
16.
Objective Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme catalysing the metabolism of several important drugs. Losartan has recently been suggested as a selective probe for CYP2C9 metabolic activity. The aim of the study was to determine the activity of CYP2C9, using losartan as a probe drug, in relation to CYP2C9 genotype in healthy Turkish subjects.Methods A single oral dose of 25 mg losartan was given to 85 Turkish unrelated subjects. Concentrations of losartan and its carboxylic acid metabolite, E3174, were analysed by means of high-performance liquid chromatography in urine collected for 8 h. The CYP2C9 genotypes were determined in 85 subjects using polymerase chain reaction-based endonuclease digestion methods specific for CYP2C9*2 and *3. Losartan oxidation was also studied in vitro, using human CYP2C8 and CYP2C9 enzymes expressed in yeast.Results The frequencies of the allelic variants CYP2C9*2 and CYP2C9*3 were 0.100 and 0.088, respectively. The urinary losartan/E3174 ratio was significantly higher in subjects with CYP2C9*1/*3 genotype (median 2.35, n=12) than in subjects with CYP2C9*1/*1 (0.71, n=58) and *1/*2 (0.85, n=10) genotypes (P<0.05). In contrast to CYP2C9, no E3174 was formed by CYP2C8 in vitro.Conclusion The urinary losartan to E3174 metabolic ratio after a 25-mg losartan dose was found to be a safe and useful phenotyping assay for CYP2C9 activity in vivo. CYP2C9*3 variant allele is a major determinant of the enzyme activity, and it decreases losartan metabolism significantly, while CYP2C9*2 allele has less impact on enzyme function.  相似文献   

17.
The genetically polymorphic CYP2C9 metabolizes many non-steroidal anti-inflammatory agents, including naproxen. This study examined the effects of a CYP2C9 genetic polymorphism on the pharmacokinetics of naproxen in Korean subjects. Twenty healthy male subjects carrying a CYP2C9*1/*1 (n=14) or CYP2C9*1/*3 (n=6) polymorphism were enrolled. After a single-dose of 275 mg naproxen Na, blood samples were collected at various times over a 72 h period and the plasma naproxen concentration was measured. The plasma concentration of naproxen was determined by HPLC analysis with UV detection, and the pharmacokinetic parameters were calculated. The mean plasma concentration-time profiles of naproxen in the CYP2C9*1/*3 and CYP2C9*1/*1 individuals were similar. There were no significant differences in the pharmacokinetics of naproxen between CYP2C9*1/*1 and CYP2C9*1/*3 genotypes. The AUC0-∞ (p = 0.759) and oral clearance (p = 0.823) of naproxen were also similar in individuals with CYP2C9*1/*3 and CYP2C9*1/*1. Overall, a genetic polymorphism of CYP2C9 does not significantly affect the pharmacokinetics of naproxen. Therefore, naproxen does not require a dose adjustment for individuals with the CYP2C9*1/*3 genotype.  相似文献   

18.

Rationale  

±3,4-Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a psychoactive drug that has marked effects on the serotonergic system. Serotonergic agonists are known to interact with the circadian pacemaker located in the suprachiasmatic nuclei (SCN).  相似文献   

19.
Three new ent-abietanoids, named xerophilusins XIV–XVI, and four known analogues, as well as four known chemical constituents were isolated from the leaves of Isodon xerophilus. Their structures were elucidated by extensive spectroscopic studies, and comparison with literature data. In addition, the cytotoxic activity of the ent-abietanoids against chronic myelogenous leukemia (K562), stomach adenocarcinoma (MKN45), and hepatocellular carcinoma (HepG2) human cell lines was investigated and no activities were observed.  相似文献   

20.
Species identification of five Dendrobium plants was conducted using phylogenetic analysis and the validity of the method was verified. Some Dendrobium plants (Orchidaceae) have been used as herbal medicines but the difficulty in identifying their botanical origin by traditional methods prevented their full modern utilization. Based on the emerging field of molecular systematics as a powerful classification tool, a phylogenetic analysis was conducted using sequences of two plastid genes, the maturase-coding gene (matK) and the large subunit of ribulose 1,5-bisphosphate carboxylase-coding gene (rbcL), as DNA barcodes for species identification of Dendrobium plants. We investigated five medicinal Dendrobium species, Dendrobium fimbriatum, D. moniliforme, D. nobile, D. pulchellum, and D. tosaense. The phylogenetic trees constructed from matK data successfully distinguished each species from each other. On the other hand, rbcL, as a single-locus barcode, offered less species discriminating power than matK, possibly due to its being present with little variation. When results using matK sequences of D. officinale that was deposited in the DNA database were combined, D. officinale and D. tosaense showed a close genetic relationship, which brought us closer to resolving the question of their taxonomic identity. Identification of the plant source as well as the uniformity of the chemical components is critical for the quality control of herbal medicines and it is important that the processed materials be validated. The methods presented here could be applied to the analysis of processed Dendrobium plants and be a promising tool for the identification of botanical origins of crude drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号