首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The midbrain dopaminergic (mDA) neurons of the substantia nigra and the ventral tegmental area play a fundamental role in the control of voluntary movement and the regulation of emotion, and are severely affected in Parkinson's disease. Recent advances in mouse genetics and vertebrate development have provided us with insight into the genetic cascades involved in the development of mDA neurons, including the induction of mDA neuron progenitors in the ventral mesencephalon, the specification of the mDA neuronal fate and the maintenance of postmitotic mDA neurons. In parallel, rapid progress has been made in the generation of DA neurons from pluripotent stem cells and the development of stem cell-based therapies for Parkinson's disease. Here, we summarize the new findings via the developmental progression of mDA neurons and outline how this knowledge has been exploited to develop novel paradigms for the in vitro generation of these neurons from embryonic stem cells.  相似文献   

3.
Bonilla S  Hall AC  Pinto L  Attardo A  Götz M  Huttner WB  Arenas E 《Glia》2008,56(8):809-820
The floor plate (FP), a signaling center and a structure rich in radial glia-like cells, has been traditionally thought to be devoid of neurons and neuronal progenitors. However, in the midbrain, the FP contains neurons of the dopaminergic (DA) lineage that require contact with radial glia-like cells for their induction. We, therefore, decided to explore the interaction relationship between radial glia and neurons during DA neurogenesis. Taking advantage of a novel FP radial glia-like cell culture system and retroviruses, DA neurons were lineage traced in vitro. In utero BrdU pulse-chases extensively labeled the midbrain FP and traced DA neurons both in vivo and in FP cultures. Moreover, from E9.5 to E13.5 the midbrain FP contained dividing cells only in the most apical part of the neuroepithelium, in cells identified as radial glia-like cells. We, therefore, hypothesized that midbrain FP radial glia-like cells could be DA progenitors and tested our hypothesis in vivo. Lineage tracing of DA progenitors with EGFP in Tis21-EGFP knock-in mice, and genetic fate mapping in GLAST::CreERT2/ZEG mice identified the neuroepithelium of the midbrain FP, and specifically, GLAST+ radial glia-like cells as DA progenitors. Combined, our experiments support the concept that the midbrain FP differs from other FP regions and demonstrate that FP radial glia-like cells in the midbrain are neurogenic and give rise to midbrain DA neurons.  相似文献   

4.
Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are potentially valuable in drug screening and as a possible source of donor tissue for transplantation in Parkinson's disease. However, existing culture protocols that promote the differentiation of DA neurons from hESCs are complex, involving multiple steps and having unreliable results between cultures. Here we report a simple and highly reproducible culture protocol that induces expandable DA neuron progenitors from hESCs in attached cultures. We found that the hESC-derived neuronal progenitors retain their full capacity to generate DA neurons after repeated passaging in the presence of basic fibroblast growth factor (bFGF) and medium conditioned with PA6 stromal cells. Using immunocytochemistry and RT-PCR, we found that the differentiated DA neurons exhibit a midbrain phenotype and express, e.g., Aldh1a, Ptx3, Nurr1, and Lmx1a. Using HPLC, we monitored their production of DA. We then demonstrated that the expanded progenitors are possible to cryopreserve without loosing the dopaminergic phenotype. With our protocol, we obtained large and homogeneous populations of dopaminergic progenitors and neurons. We conclude that our protocol can be used to generate human DA neurons suitable for the study of disease mechanisms, toxicology, drug screening, and intracerebral transplantation.  相似文献   

5.
Parkinson's disease is characterized by a loss of midbrain dopamine (DA) neurons and is generally viewed as a potential target for stem cell therapy. Although several studies have reported the generation of postmitotic DA neurons from embryonic stem (ES) cells, it is unknown whether the proliferative progenitors of DA neurons can be isolated in vitro. To investigate this possibility, we have developed a combined approach in which ES cells are cocultured with PA6 stromal cells to expose them to stromal cell-derived inducing activity (SDIA) and are then cultured as neurospheres. Mouse ES cell colonies were detached from PA6 feeder cells after 8 days of SDIA treatment and then expanded as spheres for another 4 days in serum-free medium supplemented with fibroblast growth factor-2. The spheres exhibited neural stem cell characteristics and contained few DA neurons at this stage of culture. After being induced to differentiate on polyornithine/laminin-coated dishes for 7 days, these spheres generated DA neurons in vitro at a relatively low frequency. Intriguingly, addition of PA6 cell conditioned medium to the sphere culture medium significantly increased the percentage of DA neurons to 25-30% of the total number of neurons. Transplantation of conditioned medium-treated day 4 spheres, which contained DA neuron progenitors, into the mouse striatum resulted in the generation of a significant number of graft-derived DA neurons. These findings suggest that progenitors of DA neurons are generated and can proliferate in ES cell-derived neurospheres induced by serial SDIA and PA6 conditioned medium treatment.  相似文献   

6.
Fibroblast growth factor 2 (FGF2) exhibits pleiotropic functions during embryogenesis. In neural development, both pro- and antineurogenic activities of FGF2 have been described in the differentiation of neuronal progenitors into postmitotic neurons. We used cultured neural stem cells (NSCs) derived from rat embryonic day 14.5 cortex to determine the FGF2 effect on the induction of early neuronal progenitors. Our data showed that the presence of FGF2 during serum-induced differentiation of NSCs reduced the number of Tuj1(+) neurons. A bromodeoxyuridine (BrdU)/Tuj1 double-labeling assay and expression analyses of the pro- and antineurogenic basic helix-loop-helix (bHLH) factors showed that FGF2 blocked the generation of early neuronal progenitors, but not the cell-cycle exit of dividing neurons. This negative regulation of neuronal induction by FGF2 was associated with the persistent expression of an antineurogenic bHLH, hairy and enhancer of split (HES)-1. A gene-profiling study demonstrated that the developmental programs underlying neuronal differentiation were altered as a whole and identified several developmentally regulated, neural-enriched genes. This work shows that FGF2 exerts an antineurogenic effect during the developmental window when neuronal progenitors are first induced from NSCs. It also provides a novel experimental system that can be used to prospectively identify genes expressed at different stages of neuronal differentiation.  相似文献   

7.
In order to understand the relationship between astrocytes, microglia and injured neurons, we studied the weaver mutant mouse. One of the main characteristics of this mutant is the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway that starts around postnatal day 15 (P15), in the substantia nigra pars compacta (SNpc) and progresses until adult age (P60). In the present paper, we analysed the relationship between astroglial and microglial cells within DA neurons in the nigrostriatal system of homozygous weaver mice, at different postnatal ages corresponding to specific stages of the DA neuronal loss. The activation of astrocytes was found to be an early event in weaver DA denervation, appearing massively at the onset of DA neuronal loss in the SNpc at P15. Astrocytes remained activated in the adult brain even after the slowing down of the neuronal death process. Interestingly, in the ventral tegmental area, where no DA neuronal death could be detected, a profound, permanent astrogliosis was also observed in adult animals. In contrast, an activation of microglial cells was transiently observed in the SNpc but only at the postnatal age when maximal neuronal death was observed (P30). Lastly, in the striatum, where there was a massive loss of DA nerve terminals, neither astrogliosis nor microglial activation was detected. Hence, the reaction of astrocytes and microglial cells to progressive and spontaneous DA neuronal death showed different temporal kinetics, suggesting a different role for these two cell types in the DA neurodegenerative process in the weaver mouse.  相似文献   

8.
9.
The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%–2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse-induced pluripotent stem (iPS) cell-derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT-and NTRK-like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human-iPS cell-derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.  相似文献   

10.
To investigate the effect of estrogen on neuronal differentiation, especially on dopaminergic (DA) neurons, human neural stem cells (NSCs) were differentiated in the presence of 17beta-estradiol. NSCs gave rise to tyrosine hydroxylase (TH)-positive neurons in vitro, the proportion of which was increased by 17beta-estradiol. Increase in TH-positive neurons was abrogated by an estrogen receptor (ER) antagonist, ICI182780, suggesting ERs play a role in differentiation of DA neurons. The observation that ERs were expressed in both proliferating NSCs and postmitotic DA neurons suggested that increase in TH-positive neurons was due to induction and support of DA neurons. 17beta-Estradiol also increased the number of DA neurons derived from human NSCs in vivo when the cells were grafted into mouse brains. These results support a possible role for estrogen in the transplantation of NSCs for Parkinson's disease.  相似文献   

11.
Neurogenesis in the adult mammalian brain continues in the subventricular zone (SVZ). Neuronal precursors from the SVZ migrate along the rostral migratory stream to replace olfactory bulb interneurons. After the destruction of the nigro-striatal pathway (SN-lesion), some SVZ precursors begin to express tyrosine hydroxylase (TH) and neuronal markers (NeuN). Grafting of chromaffin cells (CCs) into the denervated striatum increases the number of TH+ cells (SVZ TH+ cells; Arias-Carrión et al., 2004). This study examines the functional properties of these newly differentiating TH+ cells. Under whole-cell patch-clamp, most SVZ cells recorded from lesioned and grafted animals (either TH+ or TH-) were non-excitable. Nevertheless, a small percentage of SVZ TH+ cells had the electrophysiologic phenotype of mature dopaminergic neurons and showed spontaneous postsynaptic potentials. Dopamine (DA) release was measured in SVZ and striatum from both control and SN-lesioned rats. As expected, 12 weeks after SN lesion, DA release decreased drastically. Nevertheless, 8 weeks after CCs graft, release from the SVZ of SN-lesioned rats recovered, and even surpassed that from control SVZ, suggesting that newly formed SVZ TH+ cells release DA. This study shows for the first time that in response to SN-lesions and CC grafts neural precursors within the SVZ change their developmental program, by not only expressing TH, but more importantly by acquiring excitable properties of mature dopaminergic neurons. Additionally, the release of DA in a Ca(2+)-dependent manner and the attraction of synaptic afferents from neighboring neuronal networks gives further significance to the overall findings, whose potential importance is discussed.  相似文献   

12.
13.
A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in sufficient quantities for the unmet cell transplantation need for patients with PD and related disorders.  相似文献   

14.
15.
The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.  相似文献   

16.
目的 探索脐带间充质于细胞(MSCs)的分离培养及将其诱导分化为多巴胺能神经元的方法.方法 分离脐带间充质组织,Ⅳ型胶原酶消化分离脐带MSCs,原代培养于含10%FBS的DMEM/F12培养基中,观察细胞形态并应用流式细胞仪检测细胞表面标志物和细胞周期,CCK8法绘制细胞生长曲线;采用二步法诱导分化P3代脐带MSCs,培养3、6、9 d后终止诱导,应用免疫荧光染色和Wcstern blotting检测分化后细胞酪氨酸羟化酶(TH)、神经元特异性烯醇化酶(NSE)的表达.结果 分离培养的脐带MSCs形态呈相对均一的成纤维样细胞,平行排列或旋涡状生长.P3代细胞CD29、CD44、CD73、CD90、CD105、CD166表达阳性,而CD34、CD45、CD19、CD31、HLA-DR表达阴性.对数生长期细胞倍增时间为48 h,处于G0~G1期细胞占91.13%;诱导分化后细胞多数为两级,形态与神经元相似,免疫荧光染色检测结果显示诱导9 d时细胞NSE、TH染色阳性率分别为19.5%和8.9%,Weston blotting检测结果显示诱导6 d时细胞NSE表达明显,TH仅有弱表达,诱导9 d时TH、NSE均表达明显.结论 脐带间充质组织中能分离出MSCs,且能分化成多巴胺能神经元.
Abstract:
Objective To investigate the methods of isolation of human umbilical cord mesenchymal stem cells (MSCs) in Wharton' s jelly and the differentiation of MSCs into dopaminergic neurons. Methods The umbilical cord mesenchymal tissue was scraped off from the Wharton's jelly,and then, collagenase Ⅳ was employed to isolate the MSCs. The isolated cells were primarily cultured in DMEM/F12 medium containing 10% FBS. Inverted microscopy was used to observe the cytomorphology, and flow cytometry was employed to detect the cell surface antigens and the cell cycle.We evaluated the cell viability using CCK8 kit. Two-step method was employed to induce the MSCs of the P3 generation to differentiate into dopaminergic neurons, and immunocytochemistry and Western blotting were used to detect the expressions of neuron specific enolase (NSE) and tyrosine hydroxylase (TH) 3, 6 and 9 d after the induction. Results The isolated MSCs showed fibroblast-like shape, with parallel arrangement and vortex-like growth. MSCs of the P3 generation expressed CD73, CD29, CD44and CD105, but did not express CD34, CD45, CD106 and HLA-DR. The doubling time in the exponential phase was at the 48th h of culture, and 91.13% cells were under G0-G1. These cells had similar morphology of the neurons. The immunocytochemical assay showed that the NSE and TH positive rates were 19.5% and 8.9% on the 9th d of induction; and Western blotting showed that MSCs obviously expressed NSE and weakly expressed TH.Conclusion MSCs can be isolated from the umbilical cord mesenchymal tissue, and be induced to differentiate into dopaminergic neurons in vitro.  相似文献   

17.
P Ju  S Zhang  Y Yeap  Z Feng 《Glia》2012,60(11):1801-1814
Besides neural stem cells, some glial cells, such as GFAP+ cells, radial glia, and oligodendrocyte progenitor cells can produce neuronal cells. Attractively, NG2+ glial progenitors exhibit lineage plasticity, and they rapidly proliferate and differentiate in response to central nervous system (CNS) injuries. These attributes of NG2+ glial progenitors make them a promising source of neurons. However, the potential of neuronal regeneration from NG2+ glial progenitors in CNS pathologies remains to be investigated. In this study, we showed that antagonizing epidermal growth factor receptor (EGFR) function with EGFR inhibitor caused a significant number of proliferative NG2+ glial progenitors to acquire neuronal phenotypes in contusive spinal cord injury (SCI), which presumably led to an accumulation of newly generated neurons and contributed to the improved neural behavioral performance of animals. In addition, the neuronal differentiation of glial progenitors induced by EGFR inhibitor was further confirmed with two different cell lines either in vitro or through ex vivo transplantation experiment. The inhibition of EGFR signaling pathway under the gliogenic conditions could induce these cells to acquire neuronal phenotypes. Furthermore, we find that the Ras‐ERK axis played a key role in neuronal differentiation of NG2+ glial progenitors upon EGFR inhibition. Taken together, our studies suggest that the EGFR inhibitor could promote neurogenesis post SCI, mainly from the NG2+ glial progenitors. These findings support the possibility of evoking endogenous neuronal replacement from NG2+ glial progenitors and suggest that EGFR inhibition may be beneficial to CNS trauma. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Spontaneous release of [3H]dopamine (DA) was observed from reaggregates of dissociated cells from fetal rostral mesencephalic tegmentum (RMT) containing DA neurons cocultured with their axonal target cells from striatum (CS) or frontal cortex (FCx), or with non-target cells from occipital cortex (OCx), or tectum. Such release increased in response to 50 mM K+. Tetrodotoxin (TTX) suppressed the spontaneous release from RMT-CS and RMT-FCx reaggregates by 42%; from RMT-tectum reaggregates by 24%, and did not significantly inhibit the release from RMT-OCx cocultures. Since TTX blocks spontaneous neuronal activity, these results suggest that the presence of axonal target cells enhances the activity of the dopamine neurons. DA neurons within RMT-FCx reaggregates released significantly more [3H]DA in response to 50 mM K+ than in RMT-CS cocultures. This result is in accord with the findings in vivo that inhibitory feedback mechanisms on DA release, present in the striatum, are lacking in the frontal cortex.  相似文献   

19.
Ascorbic acid (AA) has been shown to increase the yield of dopaminergic (DA) neurons derived from basic fibroblast growth factor (bFGF)-expanded mesencephalic precursors. To understand the molecular mechanisms underlying this phenomenon, we used cDNA microarray analysis to examine differential expression of neuronal genes following AA treatment. The putative precursor cells were isolated from E13 rat ventral mesencephalons and expanded in the presence of bFGF. Cells were incubated in mitogen-free media supplemented with 200 microM AA or were left untreated as a control, and total RNA was isolated at different time points (expansion stage and 1, 3, and 6 days after induction of differentiation) and subjected to cDNA microarray analysis. Differentiation was evaluated by Western blot analysis and immunocytochemistry of neuron-specific markers. AA treatment of the mesencephalic precursors increased the expression of neuronal (MAP2) and astrocytic (glial fibrillary acidic protein) markers and the percentage of tyrosine hydroxylase (TH)-positive cells. The microarray analysis revealed that 12 known genes were up-regulated and 20 known genes were down-regulated in expansion-stage AA-treated cells. Six days after the induction of differentiation, AA-treated cells showed up-regulation of 48 known genes and down-regulation of 5 known genes. Our results identified several proteins, such as transferrin, S-100, and somatostatin, as being differentially regulated in AA-treated mesencephalic precursors. This novel result may lead to a better understanding of the molecular mechanisms underlying the AA-induced differentiation of mesencephalic precursors into DA neurons and may form the basis for improved DA neuronal production for treatment of Parkinson's disease patients.  相似文献   

20.
Differentiation of noradrenergic neurons from neural crest-derived precursors results in the formation of primary sympathetic ganglia. As sympathetic neurons continue to divide after the acquisition of adrenergic and neuronal properties it was unclear, whether the increase in neuron number during neurogenesis is due to neuron proliferation rather than differentiation of progenitor cells. Here, we demonstrate Sox10-positive neural crest progenitor cells and continuous sympathetic neuron generation from Phox2b-positive autonomic progenitors during early chick sympathetic ganglion development. In vivo activation of Notch signaling resulted in a decreased neuronal population, whereas expression of the Notch signaling inhibitor Su(H)(DBM) increased the proportion of Scg10-positive neurons. Similar results were obtained for sensory dorsal root ganglia (DRG). The effects of Notch gain- and loss-of-function experiments support the notion that progenitor maintenance and neuron differentiation from progenitor cells are essential for neurogenesis also during early sympathetic ganglion development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号