首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycan accumulation within the arterial intima has been implicated in lipoprotein retention and in atherosclerosis progression in humans. Two commonly studied murine models of atherosclerosis, the apolipoprotein E (apoE)-deficient (apoE-/-) mouse and the low density lipoprotein receptor-deficient (LDLR-/-) mouse, develop arterial lesions similar to those of human atherosclerosis. However, specific proteoglycan classes that accumulate in lesions of these mice and their relation to the retention of specific apolipoproteins have not been previously determined. In this report, we characterized the distribution of proteoglycans (versican, biglycan, and perlecan) and apolipoproteins (apoB, apoA-I, and apoE) in proximal aortic lesions of chow-fed apoE-/- and LDLR-/- mice at 10, 52, and 73 weeks of age. We observed that similar to the apoE-/- mice, the LDLR-/- mice develop intermediate and advanced plaques within 52 weeks of age. Perlecan and biglycan (both are proteoglycans) appeared early in lesion development with distinct expression patterns as the plaques advanced. Versican, a major proteoglycan detected in human plaques, was mostly absent in both strains. ApoA-I and apoB were detected in early through advanced lesions in regions of proteoglycan accumulation in both strains. Our results indicate that proteoglycans may contribute to the retention of lipoproteins at the earliest stage of atherosclerosis in murine models of atherosclerosis.  相似文献   

2.
Despite a clear association between obesity, insulin resistance and atherosclerosis in humans, to date, no animal models have been described in which insulin resistance is associated with atherosclerotic lesion burden. Using two mouse models of obesity-induced hyperlipidemia:leptin deficient (ob/ob) mice on an apolipoprotein E deficient (apoE-/-) or low density lipoprotein receptor deficient (LDLR-/-) background, we sought to determine metabolic parameters most closely associated with atherosclerotic lesion burden. Total plasma cholesterol (TC) levels in ob/ob;apoE-/- mice and ob/ob;LDLR-/- mice were indistinguishable (682+/-48 versus 663+/-16, respectively). Analysis of lipoprotein profiles showed that cholesterol was carried primarily on VLDL in the ob/ob;apoE-/- mice and on LDL in the ob/ob;LDLR-/- mice. Plasma triglycerides (TG) were 55% lower (P<0.001), non-esterified fatty acids (NEFA) were 1.5-fold higher (P<0.01), and insulin levels were 1.7-fold higher (NS) in ob/ob;apoE-/- mice compared to ob/ob;LDLR-/- mice. Other parameters such as body weight, fat pad weight, and glucose levels were not different between the groups. Aortic sinus lesion area of ob/ob;apoE-/- mice was increased 3.2-fold above ob/ob;LDLR-/- mice (102,455+/-8565 microm2/section versus 31,750+/-4478 microm2/section, P<0.001). Lesions in ob/ob;apoE-/- mice were also more complex as evidenced by a 7.7-fold increase in collagen content (P<0.001). Atherosclerotic lesion area was positively correlated with body weight (P<0.005), NEFA (P=0.007), and insulin (P=0.002) levels in the ob/ob;LDLR-/- mice and with insulin (P=0.014) in the ob/ob;apoE-/- mice. In contrast, lesion burden was neither associated with TC and TG, nor with individual lipoprotein pools, in either animal model. These data provide a direct demonstration of the pathophysiologic relevance of hyperinsulinemia, NEFA, and increased body weight to atherosclerotic lesion formation.  相似文献   

3.
Eitzman DT  Westrick RJ  Xu Z  Tyson J  Ginsburg D 《Blood》2000,96(13):4212-4215
Dissolution of the fibrin blood clot is regulated in large part by plasminogen activator inhibitor-1 (PAI-1). Elevated levels of plasma PAI-1 may be an important risk factor for atherosclerotic vascular disease and are associated with premature myocardial infarction. The role of the endogenous plasminogen activation system in limiting thrombus formation following atherosclerotic plaque disruption is unknown. This study found that genetic deficiency for PAI-1, the primary physiologic regulator of tissue-type plasminogen activator (tPA), prolonged the time to occlusive thrombosis following photochemical injury to carotid atherosclerotic plaque in apolipoprotein E-deficient (apoE(-/-)) mice. However, anatomic analysis revealed a striking difference in the extent of atherosclerosis at the carotid artery bifurcation between apoE(-/-) mice and mice doubly deficient for apoE and PAI-1 (PAI-1(-/-)/apoE(-/-)). Consistent with a previous report, PAI-1(+/+)/apoE(-/-)and PAI-1(-/-)/apoE(-/-) mice developed similar atherosclerosis in the aortic arch. The marked protection from atherosclerosis progression at the carotid bifurcation conferred by PAI-1 deficiency suggests a critical role for PAI-1 in the pathogenesis of atherosclerosis at sites of turbulent flow, potentially through the inhibition of fibrin clearance. Consistent with this hypothesis, intense fibrinogen/fibrin staining was observed in atherosclerotic lesions at the carotid bifurcation compared to the aortic arch. These observations identify significant differences in the pathogenesis of atherosclerosis at varying sites in the vascular tree and suggest a previously unappreciated role for the plasminogen activation system in atherosclerosis progression at sites of turbulent flow. (Blood. 2000;96:4212-4215)  相似文献   

4.
To study the possible role of the human lipid-oxidizing enzyme 15-lipoxygenase (15-LO) in atherosclerosis, we overexpressed it specifically in the vascular wall of C57B6/SJL mice by using the murine preproendothelin-1 promoter. The mice overexpressing 15-LO were crossbred with low density lipoprotein (LDL) receptor-deficient mice to investigate atherogenesis. High levels of 15-LO were expressed in the atherosclerotic lesion in the double-transgenic mice as assessed by immunohistochemistry. The double-transgenic, 15-LO-overexpressing, LDL receptor-deficient mice (LDLR-/-/15LO) developed significantly larger atherosclerotic lesions at the aortic sinus compared with lesions in the LDL receptor-deficient (LDLR-/-) mice after 3 and 6 weeks (107,000 versus 28,000 microm(2) [P:<0.001] and 121,000 versus 87,000 microm(2) [P:<0.05], respectively) of an atherogenic diet. LDL from the LDLR-/-/15LO mice was more susceptible to oxidation than was the LDL from the control LDLR-/- mice, as shown by a shorter lag period for copper-induced conjugated diene formation. On the other hand, no differences were found in the levels of serum anti-oxidized LDL antibodies between the study groups. There were also no differences with respect to the density of macrophages and T lymphocytes infiltrating the lesions in both experimental groups. Taken together, these results support the hypothesis that 15-LO overexpression in the vessel wall is associated with enhanced atherogenesis.  相似文献   

5.
Resveratrol is one of the major polyphenolics in red wine that has been shown to exert the preventive effects against cardiovascular diseases. The effect of trans-resveratrol (t-RES) administered as an ingredient of the diet on the atherothrombotic tendency was assessed in genetically hypercholesterolemic mice after laser-induced damage on endothelium. Mice lacking both apolipoprotein E and low-density lipoprotein receptor (apoE-/-/LDLR-/-) were fed with a high-fat diet with or without t-RES (9.6 and 96 mg/kg diet) for 8 weeks. The atherosclerotic tendency was morphometrically analyzed in their aortae. The thrombotic tendency was determined by inducing thrombus by the irradiation of a helium-neon laser on carotid arteries of these mice with injection of Evans blue. Atherosclerotic area and thrombus size were evaluated by image analyzing in a computer system. Even though the plasma concentrations of lipids (total cholesterol and triacylglycerol) did not change in the control and t-RES groups, a significant decrease (approximately 30%) in the formation of atheroma was observed in the aortae of the t-RES group. The size of laser-induced thrombus that mostly consisted of platelet aggregates was significantly reduced (approximately 25%) in the t-RES group compared with that in the control group. Thus, t-RES orally administrated with a high-fat diet in apoE-/-/LDLR-/- mice significantly suppressed atherosclerosis in their aortae and reduced the laser-induced thrombosis in their carotid arteries.  相似文献   

6.
Viral and bacterial infectious agents have been implicated in the etiology of atherosclerosis. We have previously shown that a gamma-herpesvirus can accelerate atherosclerosis in the apolipoprotein E-deficient (apoE-/-) mouse. To address whether a virally induced systemic immune response is sufficient to trigger enhanced atheroma formation, we infected apoE-/- mice with murine gamma-herpesvirus-68 (MHV-68) or herpes simplex virus-1 (HSV-1). In this study, we show that both viruses were able to induce a cell-mediated and humoral immune response in the apoE-/- mouse, which was sustained over a period of 24 weeks. Although intranasal or intraperitoneal infection with MHV-68 induced similar levels of virus-specific IgG1 and IgG2a antibodies in the serum of apoE-/- mice, those infected with HSV-1 showed higher anti-HSV-1 IgG2a compared with IgG1 antibody levels. In addition, viral message was not detected in the aortas of HSV-1-infected animals, whereas we have shown previously that MHV-68 mRNA can be detected in the aortas of infected mice as early as 5 days after infection. Compared with control mice, apoE-/- mice infected with MHV-68 showed accelerated atherosclerosis, whereas mice infected with HSV-1 did not. These data indicate that a systemic immune response to any particular infectious agent is insufficient to induce enhanced atherosclerosis in the apoE-/- mouse and point to specific infections or immune mechanisms that might be essential for virally enhanced atherogenesis.  相似文献   

7.
8.
The very low density lipoprotein receptor (VLDLR) has been shown to modulate cell migration and foam cell formation in vitro. This suggests a role for the VLDLR in vascular pathology associated with intimal thickening and atherogenesis. In the present paper both intimal thickening and atherosclerosis were studied using VLDLR knockout and transgenic mouse models. The role of the VLDLR in intimal thickening was established in an in vivo model for vascular injury. A non-restrictive cuff was placed around the femoral artery of VLDLR deficient (VLDLR-/-), heterozygous deficient (VLDLR+/-) and wild type (WT) mice. Intimal thickening was assessed after 3 weeks by determining the intima to media (I/M) volume ratio. Both VLDLR-/- (I/M ratio 42%) and VLDLR+/- (I/M ratio 40%) mice showed a significant increase as compared with WT littermates (I/M ratio 25%). The effect of VLDLR deficiency on atherosclerosis was examined in VLDLR-/- mice on an LDLR deficient (LDLR-/-) background. In addition, we assessed whether increased endothelial VLDLR expression levels affect atherosclerotic lesion formation. Therefore, atherosclerosis was studied in LDLR deficient mice that over express the VLDLR in endothelial cells (PVL, LDLR-/-). Both VLDLR deficiency and endothelial VLDLR over expression did not affect the atherosclerotic lesion size. Interestingly, VLDLR-/-, LDLR-/- mice showed a high incidence of necrosis in both fatty streaks and atherosclerotic plaques as compared with LDLR-/- mice (75 vs. 0% and 76 vs. 45%, respectively). In conclusion, deficiency for the VLDLR profoundly increased intimal thickening after vascular injury.  相似文献   

9.
Elevated plasma homocysteine (Hcy) levels have been recognized as an independent risk factor for atherosclerosis leading to cardiovascular diseases. However, the mechanisms contributing to atherosclerosis have not been delineated. Since, scavenger receptors mediated uptake of oxidized-LDL (oxLDL) by macrophages resulting in foam cell formation is an early event in atherosclerosis, we hypothesized that atherogenic effects of Hcy may be mediated via regulating expression of scavenger receptor(s). We have tested this hypothesis using apoE-/- female mice fed normal rodent chow (NC) diet or NC supplemented with Hcy in drinking water (9 g/L). Hcy-fed mice showed increased fatty streak lesions in aortic sinus/root compared to NC group without alterations in plasma lipid profiles. Similar findings were observed in the enface analysis of the descending aorta. To determine the molecular mechanisms underlying Hcy-mediated progression of fatty streak lesions, expression of scavenger receptors such as CD36 and lectin-like oxidized LDL binding protein-1 (LOX-1) in the aortic lesions were analyzed. Interestingly, Hcy-fed mice had increased immuno-positive staining for CD36 and LOX-1 in the atherosclerotic lesions compared to NC-fed mice. In vitro analyses showed neither Hcy nor HcyLDL directly affect the expression of CD36 and LOX-1 on mouse macrophages. However, Hcy supplementation in apoE-/- mice resulted in elevated oxLDL levels in plasma. Since oxLDL has been shown to upregulate the expression of CD36 and LOX-1, these findings suggest that Hcy may exert its atherogenic effect in part by elevating the levels of oxLDL. Interestingly, interaction of monocytes with Hcy-activated endothelial cells resulted in upregulation of CD36 expression on monocytes, suggesting a possible mechanism by which Hcy may upregulate CD36 expression at the lesion site. Further, these findings suggest a novel mechanism by which Hcy may promote atherogenesis.  相似文献   

10.
Although age is a strong risk factor for atherosclerosis, it is unclear whether age may directly influence the process of atherogenesis. We, therefore, performed several studies in young (2-4 months old), mature (10-14 months old), and old (20-22 months old) mice to determine if the rate of aortic lesion formation increases with age, and whether this is related to increases in oxidative stress or vascular cell adhesion molecule (VCAM-1) expression in the aortic wall. In chow-fed low-density lipoprotein receptor-deficient (LDLR-/-) mice, plasma total cholesterol levels increased with age (250 +/- 52 mg/dl in young, 276 +/- 58 in mature, and 314 +/- 101 mg/dl in old mice). In contrast, the extent of atherosclerosis rose more rapidly, increasing from 3.6 +/- 2.7% of the aortic surface in mature mice to 18.2 +/- 8% in old mice. Plasma and tissue levels of antioxidant enzymes and molecules, as well as plasma thiobarbituric acid reactive substances and low-density lipoprotein susceptibility to oxidation, did not change with age. In a second study, VCAM-1 expression in the aortic arch and the extent of atherosclerosis in the aortic origin were significantly greater in old LDLR-/- mice than in young LDLR-/- mice. Additionally, after 1 month of a high-fat diet, which induced equally elevated plasma cholesterol levels in both young and old LDLR-/- mice, VCAM-1 expression and aortic lesion formation were still greater in old mice. The extent of atherosclerosis correlated well (r = .65,p <.01) with the expression of VCAM-1 in the aortic origin. In a final study, we measured VCAM-1 expression and atherosclerosis in young, mature, and old C57BL/6 mice, which have low plasma cholesterol levels (< or =100 mg/dl) when fed a standard chow diet. Although plasma cholesterol levels did not increase with age, old C57BL/6 mice had significantly more VCAM-1 expression in the aortic arch than did young mice. However, no lesions were observed in the aortic origin in either group. These data demonstrate that plasma cholesterol levels and VCAM-1 expression increase with age and suggest that this may contribute to the increased rate of atherosclerotic lesion formation in LDLR-/- mice. Importantly, the age-dependent increase in VCAM-1 expression does not appear to be related to plasma cholesterol levels. This study also suggests that in the absence of elevated plasma cholesterol, an increased expression of VCAM-1 alone is not sufficient for lesion formation.  相似文献   

11.
OBJECTIVE: To examine the role of the balance between interleukin (IL)-1 and IL-1 receptor antagonist (IL-1Ra) in atherosclerosis and vascular inflammation. METHODS: Transgenic (Tg) mice overexpressing either secreted IL-1Ra or intracellular IL-1Ra1 as well as IL-1Ra-deficient mice (IL-1Ra -/-) were crossed with apolipoprotein E-deficient mice (ApoE -/-). RESULTS: In males fed a cholesterol-rich diet for 10 weeks, average atherosclerotic lesion area within aortic roots was significantly decreased in ApoE -/- secreted IL-1Ra Tg (-47%) and ApoE -/- intracellular IL-1Ra1 Tg (-40%) mice as compared to ApoE -/- non-Tg controls. The extent of sudanophilic lesions was reduced within the thoraco-abdominal aorta in ApoE -/- secreted IL-1Ra (-53%) and ApoE -/- intracellular IL-1Ra1 (-67%) Tg mice. In parallel experiments, we observed early mortality and illness among double deficient mice, whereas ApoE -/- IL-1Ra +/+ and ApoE +/+ IL-1Ra -/- mice were apparently healthy. After 7 weeks of diet, ApoE -/- IL-1Ra -/- mice exhibited massive aortic inflammation with destruction of the vascular architecture, but no signs of atherosclerosis. ApoE -/- IL-1Ra +/+ had atherosclerosis and a moderate inflammatory reaction, whereas ApoE +/+ IL-1Ra -/- mice were free of vascular lesions. Macrophages were present in large amounts within inflammatory lesions in the adventitia of ApoE -/- IL-1Ra -/- mice. CONCLUSION: Our results demonstrate that the IL-1/IL-1Ra ratio plays a critical role in the pathogenic mechanisms leading to vascular inflammation and atherosclerosis in ApoE -/- mice.  相似文献   

12.
We have previously demonstrated that urokinase-type plasminogen activator (uPA) is highly expressed in the aneurysmal segment of the abdominal aorta (AAA) in apolipoprotein E-deficient (apoE-/-) mice treated with angiotensin II (Ang II). In the present study, we tested the hypothesis that uPA is essential for AAA formation in this model. An osmotic minipump containing Ang II (1.44 mg/kg per day) was implanted subcutaneously into 7- to 11-month-old male mice for 1 month. Ang II induced AAA in 9 (90%) of 10 hyperlipidemic mice deficient in apoE (apoE-/-/uPA+/+ mice) but in only 2 (22%) of 9 mice deficient in both apoE and uPA (apoE-/-/uPA-/- mice) (P<0.05). Although the expansion of the suprarenal aorta was significantly less in apoE-/-/uPA-/- mice than in apoE-/-/uPA+/+ mice, the aortic diameters of the aorta immediately above or below the suprarenal aorta were similar between the 2 groups. Ang II induced AAA in 7 (39%) of 18 strain-matched wild-type C57 black/6J control mice. The incidence was significantly higher in atherosclerotic apoE-deficient (apoE-/-) mice, in which 8 (100%) of 8 mice developed AAA. Only 1 (4%) of 27 uPA-/- mice developed AAA after Ang II treatment. We conclude the following: (1) uPA plays an essential role in Ang II-induced AAA in mice with or without preexisting hyperlipidemia and atherosclerosis; (2) uPA deficiency does not affect the diameter of the nonaneurysmal portion of the aorta; and (3) atherosclerosis and/or hyperlipidemia promotes but is not essential for Ang II-induced AAA formation in this model.  相似文献   

13.
14.
Angiotensin II (Ang II) is implicated in atherogenesis by activating inflammatory responses in arterial wall cells. Ang II accelerates the atherosclerotic process in hyperlipidemic apoE-/- mice by recruiting and activating monocytes. Monocyte chemoattractant protein-1 (MCP-1) controls monocyte-mediated inflammation through its receptor, CCR2. The roles of leukocyte-derived CCR2 in the Ang II-induced acceleration of the atherosclerotic process, however, are not known. We hypothesized that deficiency of leukocyte-derived CCR2 suppresses Ang II-induced atherosclerosis. METHODS AND RESULTS: A bone marrow transplantation technique (BMT) was used to develop apoE-/- mice with and without deficiency of CCR2 in leukocytes (BMT-apoE-/-CCR2+/+ and BMT-apoE-/-CCR2-/- mice). Compared with BMT-apoE-/-CCR2+/+ mice, Ang II-induced increases in atherosclerosis plaque size and abdominal aortic aneurysm formation were suppressed in BMT-apoE-/-CCR2-/- mice. This suppression was associated with a marked decrease in monocyte-mediated inflammation and inflammatory cytokine expression. CONCLUSIONS: Leukocyte-derived CCR2 is critical in Ang II-induced atherosclerosis and abdominal aneurysm formation. The present data suggest that vascular inflammation mediated by CCR2 in leukocytes is a reasonable target of therapy for treatment of atherosclerosis.  相似文献   

15.
The role of insulin resistance (IR) in atherogenesis is poorly understood, in part because of a lack of appropriate animal models. We assumed that fructose-fed LDL receptor-deficient (LDLR-/-) mice might be a model of IR and atherosclerosis because (1) fructose feeding induces hyperinsulinemia and IR in rats; (2) a preliminary experiment showed that fructose feeding markedly increases plasma cholesterol levels in LDLR-/- mice; and (3) hypercholesterolemic LDLR-/- mice develop extensive atherosclerosis. To test whether IR could be induced in LDLR-/- mice, 3 groups of male mice were fed a fructose-rich diet (60% of total calories; n=16), a fat-enriched (Western) diet intended to yield the same plasma cholesterol levels (n=18), or regular chow (n=7) for approximately 5.5 months. The average cholesterol levels of both hypercholesterolemic groups were similar (849+/-268 versus 964+/-234 mg/dL) and much higher than in the chow-fed group (249+/-21 mg/dL). Final body weights in the Western diet group were higher (39+/-6.2 g) than in the fructose- (27.8+/-2.7 g) or chow-fed (26.7+/-3.8 g) groups. Contrary to expectation, IR was induced in mice fed the Western diet, but not in fructose-fed mice. The Western diet group had higher average glucose levels (187+/-16 versus 159+/-12 mg/dL) and 4.5-fold higher plasma insulin levels. Surprisingly, the non-insulin-resistant, fructose-fed mice had significantly more atherosclerosis than the insulin-resistant mice fed Western diet (11.8+/-2.9% versus 7.8+/-2. 5% of aortic surface; P<0.01). These results suggest that (1) fructose-enriched diets do not induce IR in LDLR-/- mice; (2) the Western diets commonly used in LDLR-/- mice may not only induce atherosclerosis, but also IR, potentially complicating the interpretation of results; and (3) IR and hyperinsulinemia do not enhance atherosclerosis in LDLR-/- mice, at least under conditions of very high plasma cholesterol levels. The fact that various levels of hypercholesterolemia can be induced in LDLR-/- mice by fat-enriched diets and that such diets induce IR and hyperinsulinemia suggest that LDLR-/- mice may be used as models to elucidate the effect of IR on atherosclerosis, eg, by feeding them Western diets with or without insulin-sensitizing agents.  相似文献   

16.
Decreased fibrinolytic capacity has been suggested to accelerate the process of arterial atherogenesis by facilitating thrombosis and fibrin deposition within developing atherosclerotic lesions. Type 1 plasminogen activator inhibitor (PAI-1) is the primary inhibitor of tissue-type plasminogen activator and has been found to be increased in a number of clinical conditions generally defined as prothrombotic. To investigate the potential role of this inhibitor in atherosclerosis, we examined the expression of PAI-1 mRNA in segments of 11 severely diseased and 5 relatively normal human arteries obtained from 16 different patients undergoing reconstructive surgery for aortic occlusive or aneurysmal disease. Densitometric scanning of RNA (Northern) blot autoradiograms revealed significantly increased levels of PAI-1 mRNA in severely atherosclerotic vessels (mean densitometric value, 1.7 +/- 0.28 SEM) compared with normal or mildly affected arteries (mean densitometric value, 0.63 +/- 0.09 SEM; P less than 0.05). In most instances, the level of PAI-1 mRNA was correlated with the degree of atherosclerosis. Analysis of adjacent tissue sections from the same patients by in situ hybridization demonstrated an abundance of PAI-1 mRNA-positive cells within the thickened intima of atherosclerotic arteries, mainly around the base of the plaque. PAI-1 mRNA could also be detected in cells scattered within the necrotic material and in endothelial cells of adventitial vessels. In contrast to these results, PAI-1 mRNA was visualized primarily within luminal endothelial cells of normal-appearing aortic tissue. Our data provide initial evidence for the increased expression of PAI-1 mRNA in severely atherosclerotic human arteries and suggest a role for PAI-1 in the progression of human atherosclerotic disease.  相似文献   

17.
Endothelial dysfunction is characterized by abnormalities in vasoreactivity and is a marker of the extent of atherosclerosis. Cellular repair by circulating progenitor cells of ongoing vascular injury may be essential for vascular integrity and function and may limit abnormalities in vasoreactivity. Apolipoprotein E-deficient (apoE-/-) mice were splenectomized and treated with high-cholesterol diet for 5 weeks, resulting in marked impairment of endothelium-dependent vasodilation of aortic segments as compared with wild-type mice. Intravenous transfusion of 2x10(7) spleen-derived mononuclear cells (MNCs) isolated from wild-type mice on 3 consecutive days restored endothelium-dependent vasodilation in the apoE-/- mice, as measured 7, 14, and 45 days after transfusion. Histological analyses of aortic tissue identified fluorescent-labeled, exogenously applied progenitor cells that expressed the endothelial cell marker CD31 in the endothelial cell layer of atherosclerotic lesions. Progenitor cell treatment led to increased vascular nitric oxide synthase activity. Transfusion of either in vitro-differentiated Dil-Ac-LDL/lectin-positive endothelial progenitor cells, CD11b-positive (monocyte marker), CD45R-positive (B-cell marker), or Sca-1-positive (stem cell marker) MNC subpopulations significantly improved endothelium-dependent vasodilation, although these treatments were not as effective as transfusion of total MNCs. Depletion of MNCs of either CD11b-positive, CD45R-positive, or Sca-1-positive cells resulted in significant attenuation of endothelium-dependent vasodilation as compared with nondepleted MNCs; however, vasoreactivity was still significantly improved as compared with saline-treated apoE-/- mice. Intravenous transfusion of spleen-derived MNCs improves endothelium-dependent vasodilation in atherosclerotic apoE-/- mice, indicating an important role of circulating progenitor cells for the repair of ongoing vascular injury. More than 1 subpopulation of the MNC fraction seems to be involved in this effect.  相似文献   

18.
We recently identified heat shock protein 27 (HSP27) as an estrogen receptor beta (ERbeta)-associated protein and noted its role as a biomarker for atherosclerosis. The current study tests the hypothesis that HSP27 is protective against the development of atherosclerosis. HSP27 overexpressing (HSP27o/e) mice were crossed to apoE-/- mice that develop atherosclerosis when fed a high-fat diet. Aortic en face analysis demonstrated a 35% reduction (P < or =0.001) in atherosclerotic lesion area in apoE-/-HSP27o/e mice compared to apoE-/- mice, but primarily in females. Serum -HSP27levels were 10-fold higher in female apoE-/-HSP27o/e mice compared to males, and there was a remarkable inverse correlation between circulating HSP27 levels and lesion area in both male and female mice (r(2)=0.78, P < or =0.001). Mechanistic in vitro studies showed upregulated HSP27 expression and secretion in macrophages treated with estrogen or acLDL. Moreover, exogenous HSP27 added to culture media inhibited macrophage acLDL uptake and competed for the scavenger receptor A (SR-A)--an effect that was abolished with the SR-A competitive ligand fucoidan and absent in macrophages from SR-A-/- mice. Furthermore, extracellular HSP27 decreased acLDL-induced release of the proinflammatory cytokine IL-1beta and increased the release of the antiinflammatory cytokine IL-10. HSP27 is atheroprotective, perhaps because of its ability to compete for the uptake of atherogenic lipids or attenuate inflammation.  相似文献   

19.
BACKGROUND: Inflammatory processes are an integral component of the initiation, progression, and destabilization of atherosclerotic lesions. Tumor necrosis factor-alpha (TNF-alpha) is considered a primary mediator of inflammatory processes. METHODS AND RESULTS: The role of TNF-alpha in plaque progression and plaque destabilization was investigated in the innominate arteries of older TNF-alpha receptor p55 deficient mice that were generated on a hyperlipidemic apolipoprotein E deficient background (p55-/- apoE-/-). There were no significant differences in levels of circulating cytokines, plaque progression, plaque composition or features of plaque destabilization in p55-/- apoE-/- compared to wild type (p55+/+ apoE-/-) mice. CONCLUSIONS: Progression and destabilization of advanced atherosclerotic lesions does not seem to be mediated via the TNF-alpha receptor p55.  相似文献   

20.
Paraoxonase 3 (PON3) is a member of the PON family, which includes PON1, PON2, and PON3. Recently, PON3 was shown to prevent the oxidation of low-density lipoprotein in vitro. To test the role of PON3 in atherosclerosis and related traits, 2 independent lines of human PON3 transgenic (Tg) mice on the C57BL/6J (B6) background were constructed. Human PON3 mRNA was detected in various tissues, including liver, lung, kidney, brain, adipose, and aorta, of both lines of Tg mice. The human PON3 mRNA levels in the livers of PON3 Tg mice were 4- to 7-fold higher as compared with the endogenous mouse Pon3 mRNA levels. Human PON3 protein and activity were detected in the livers of Tg mice as well. No significant differences in plasma total, high-density lipoprotein, and very-low-density lipoprotein/low-density lipoprotein cholesterol and triglyceride and glucose levels were observed between the PON3 Tg and non-Tg mice. Interestingly, atherosclerotic lesion areas were significantly smaller in both lines of male PON3 Tg mice as compared with the male non-Tg littermates on B6 background fed an atherogenic diet. When bred onto the low-density lipoprotein receptor knockout mouse background, the male PON3 Tg mice also exhibited decreased atherosclerotic lesion areas and decreased expression of monocyte chemoattractant protein-1 in the aorta as compared with the male non-Tg littermates. In addition, decreased adiposity and lower circulating leptin levels were observed in both lines of male PON3 Tg mice as compared with the male non-Tg mice. In an F2 cross, adipose Pon3 mRNA levels inversely correlated with adiposity and related traits. Our study demonstrates that elevated PON3 expression significantly decreases atherosclerotic lesion formation and adiposity in male mice. PON3 may play an important role in protection against obesity and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号